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Abstract
An important property for lifelong-learning
agents is the ability to combine existing skills
to solve new unseen tasks. In general, however,
it is unclear how to compose existing skills in a
principled manner. Under the assumption of de-
terministic dynamics, we prove that optimal value
function composition can be achieved in entropy-
regularised reinforcement learning (RL), and ex-
tend this result to the standard RL setting. Com-
position is demonstrated in a high-dimensional
video game, where an agent with an existing li-
brary of skills is immediately able to solve new
tasks without the need for further learning.

1. Introduction
A major challenge in artificial intelligence is creating agents
capable of leveraging existing knowledge for inductive trans-
fer (Taylor & Stone, 2009). Lifelong learning, in particular,
requires that an agent be able to act effectively when pre-
sented with new, unseen tasks.

One promising approach is to combine behaviours learned
in various separate tasks to create new skills. This compo-
sitional approach allows us to build rich behaviours from
relatively simple ones, resulting in a combinatorial explo-
sion in the agent’s abilities (Saxe et al., 2017).

Additionally, composition allows us to incrementally ex-
pand an agent’s abilities—an important property for lifelong
learning. Consider, for example, a robot in a warehouse
that has the ability to pack objects on shelves. Given a new
object, we would want to avoid retraining the robot from
scratch. Rather, we would like the robot to learn the skill of
packing only the new object, and then compose it with its
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previous abilities.

In reinforcement learning (RL), one existing approach to
composition are linearly-solvable Markov Decision Pro-
cesses (LMDPs) (Todorov, 2007), which structure the re-
ward function to ensure that the Bellman equation becomes
linear in the exponentiated value function. Todorov (2009)
proves that the optimal value functions of a set of LMDPs
can be composed to produce the optimal value function for
a composite task. This is a particularly attractive property,
since solving new tasks requires no further learning. How-
ever, the LMDP framework has so far been restricted to the
tabular case with known dynamics, limiting its usefulness.

Related work has focused on entropy-regularised RL
(Haarnoja et al., 2017; Schulman et al., 2017; Nachum et al.,
2017), where rewards are augmented with an entropy-based
penalty term. This has been shown to lead to improved
exploration and rich, multimodal value functions. Haarnoja
et al. (2018) demonstrate that these value functions can be
composed to approximately solve the intersection of tasks.
We complement these results by proving optimal compo-
sition for the union of tasks in the total-reward, absorbing-
state setting. Thus, any task that can be expressed as a
combination of a set of base tasks can be solved immedi-
ately, without any further learning. We provide a formula for
optimally composing value functions, and demonstrate our
method in a video game. Results show that an agent is able
to compose existing policies learned from high-dimensional
pixel input to generate new, optimal behaviours.

2. Background
A Markov decision process (MDP) is defined by the 4-tuple
(S,A, ρ, r) where (i) the state space S is standard Borel;
(ii) the action space A is finite (and therefore a compact
metric space when equipped with the discrete metric); (iii)
the transition dynamics ρ define a Markov kernel (s, a) 7→
ρ(s,a) from S×A to S; and (iv) the reward r is a real-valued
function on S ×A that is bounded and measurable.

In RL, an agent’s goal is to maximise its utility by making a
sequence of decisions. At each time step, the agent receives
an observation from S and executes an action from A ac-
cording to its policy. As a consequence of its action, the
agent receives feedback (reward) and transitions to a new
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state. Whereas the rewards represent only the immediate
outcome, the utility captures the long-term consequences
of actions. Historically, many utility functions have been
investigated (Puterman, 2014), but in this paper we consider
the total-reward criterion (see Section 2.1).

We consider the class of MDPs with an absorbing set G,
which is a Borel subset of the state space. We augment the
state space with a virtual state g such that ρ(s,a)({g}) = 1
for all (s, a) in G × A, and r = 0 after reaching g. In
the control literature, this class of MDPs is often called
stochastic shortest path problems (Bertsekas & Tsitsiklis,
1991), and naturally model domains that terminate after the
agent achieves some goal.

We restrict our attention to stationary Markov policies, or
simply policies. A policy s 7→ πs is a Markov kernel from S
to A. Together with an initial distribution ν over S , a policy
defines a probability measure over trajectories. To formalise
this, we construct the set of n-step histories inductively by
definingH0 = S andHn = Hn−1×A×S for n in N. The
n-step histories represent the set of all possible trajectories
of length n in the MDP. The probability measure on Hn
induced by the policy π is then

Pπν,n = ν ⊗ π ⊗ ρ⊗ · · · ⊗ π ⊗ ρ︸ ︷︷ ︸
n times

.

Using the standard construction (Klenke, 1995), we can
define a unique probability measure Pπν onH∞ consistent
with the measures Pπν,n in the sense that

Pπν (E × A× S ×A× · · · ) = Pπν,n(E),

for any n in N and any Borel set E ⊆ Hn. If ν is con-
centrated on a single state s, we simply write Pπν = Pπs .
Additionally for any real-valued bounded measurable func-
tion f onHn, we define Eπν [f ] to be the expected value of
f under Pπν .

Finally, we introduce the notion of a proper policy—a policy
under which the probability of reaching G after n steps
converges to 1 uniformly over S as n→∞. Our definition
extends that of Bertsekas & Tsitsiklis (1995) to general
state spaces, and is equivalent to the definition of transient
policies used by James & Collins (2006):

Definition 1. A stationary Markov policy π is said to be
proper if

sup
s∈S

∞∑
t=0

Pπs (st 6∈ G) <∞.

Otherwise, we say that π is improper.

2.1. Entropy-Regularised RL

In the standard RL setting, the expected reward at state s un-
der policy π is given by Ea∼π [r(s, a)]. Entropy-regularised

RL (Ziebart, 2010; Fox et al., 2016; Haarnoja et al., 2017;
Schulman et al., 2017; Nachum et al., 2017) augments the
reward function with a term that penalises deviating from
some reference policy π̄. That is, the expected reward is
given by Ea∼π [r(s, a)] − τKL[πs||π̄s], where τ is a pos-
itive scalar temperature parameter and KL[πs||π̄s] is the
Kullback-Leibler divergence between π and the reference
policy π̄ at state s. When π̄ is the uniform random policy,
the regularised reward is equivalent to the standard entropy
bonus up to an additive constant (Schulman et al., 2017).
This results in policies that are able to preserve multimodal-
ity when faced with a task that can be solved in multiple
different ways (Haarnoja et al., 2017). Additionally, the
reference policy can be used to encode prior knowledge
through expert demonstration.

Based on the above regularisation, we define the n-step
value function starting from s and following policy π as:

Vπ,n(s) = Eπs

[
n−1∑
t=0

r(st, at)− τKL[πst ||π̄st ]

]
.

Note that since the KL-divergence term is measurable
(Dupuis & Ellis, 2011, Lemma 1.4.3), Vπ,n is well-defined.
The infinite-horizon value function, which represents the
total expected return after executing π from s, is then

Vπ(s) = lim sup
n→∞

Vπ,n(s).

Since the reward function and KL-divergence are bounded,1

Vπ is well defined. Similarly, we define the Q-function to
be the expected reward after taking action a in state s, and
thereafter following policy π:

Qπ(s, a) = r(s, a) +

∫
S
Vπ(s′)ρ(s,a)(ds

′). (1)

Given the definitions above, we say that a measurable func-
tion V ∗ is optimal if V ∗(s) = supπ Vπ(s) for all s in S.
Furthermore, a policy π∗ is optimal if Vπ∗ = V ∗.

In the standard RL case, the optimal policy is always deter-
ministic and is defined by argmaxaQ

∗(s, a). On the other
hand, entropy-regularised problems may not admit an opti-
mal deterministic policy. This owes to the KL-divergence
term, which penalises deviation from the reference policy
π̄. If π̄ is stochastic, then a deterministic policy may incur
more cost than a stochastic policy.

3. Soft Value and Policy Iteration
The composition results to be discussed in Section 4 hold
only in total-reward, entropy-regularised MDPs defined in

1Under the assumptions that A is finite and π̄ is chosen so that
πs is absolutely continuous with respect to π̄s for any state s and
policy π.
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Section 2. While value and policy iteration in entropy-
regularised RL have been analysed previously (Nachum
et al., 2017), convergence results are limited to discounted
MDPs. Therefore, in this section, we sketch an argument
that an optimal proper policy exists under the total-reward
criterion and that the entropy-regularised versions of value
and policy iteration (see Algorithms 1 and 2) converge to
optimal solutions. More details can be found in the supple-
mentary material.

We begin by defining the Bellman operators:

[TπVπ](s) =

∫
A
Qπ(s, a)πs(da)− τKL[πs||π̄s], (2)

[T V ](s) = sup
π

[TπV ](s). (3)

Equations (2) and (3) are analogous to the standard Bellman
operator and Bellman optimality operator respectively. Note
that since the optimal policy may not be deterministic, the
Bellman optimality operator selects the supremum over
policies instead of actions.

We also define the soft Bellman operator

[LVπ](s) = τ log

∫
A

exp (Qπ(s, a)/τ) π̄s(da). (4)

Here L is referred to as “soft”, since it is a smooth approxi-
mation of the max operator. The soft Bellman operator is
connected to the Bellman optimality operator through the
following result:

Lemma 1. Let V : S → R be a bounded measurable
function. Then T V = LV and the supremum is attained
uniquely by the Boltzmann policy B[V ] defined by

dBs[V ]

dπ̄s
(a) =

exp
(
Q(s, a)/τ

)∫
A

exp
(
Q(s, a′)/τ

)
π̄(da′|s)

.

Proof. Follows directly from Dupuis & Ellis (2011, Propo-
sition 1.4.2).

Analogous to the standard RL setting, we can define value
and policy iteration in the entropy-regularised context,
where the Bellman operators are replaced with their “soft”
equivalents:

Algorithm 1 Soft Value Iteration

Input: MDP, temperature τ > 0, bounded function V
Output: Optimal value function V ∗

initialize V ∗ ← V
repeat

replace V ← V ∗

apply soft Bellman operator V ∗ ← L[V ]
until convergence

Algorithm 2 Soft Policy Iteration

Input: MDP, temperature τ > 0, proper policy π
Output: Optimal policy π∗

initialize π∗ ← π
repeat

replace π ← π∗

policy evaluation:
find Vπ , the fixed-point of Tπ

policy improvement:
compute the Boltzmann policy π∗ ← B[Vπ]

until convergence

In order to prove the convergence of the above algorithms
in the total-reward setting, we require the following assump-
tions:
Assumption 1. Suppose that the following hold:

(i) the map a 7→ r(s, a) is upper semicontinuous for all s
in S; and

(ii) for every state s in S and every bounded measurable
function f , the map

a 7→
∫
S
f(s′)ρ(s,a)(ds

′)

is continuous.

These conditions on the transition dynamics and reward
function are trivially satisfied if S is countable. We require
a further two assumptions:
Assumption 2. Suppose that the following hold:

(i) there exists at least one proper continuous policy; and
(ii) if a policy is improper, then its value function is un-

bounded below.

Along with the compactness of A, these assumptions are
identical to those of James & Collins (2006).

We now proceed with the main result of this section. The
proof follows closely along the lines of Bertsekas & Tsit-
siklis (1991) and James & Collins (2006), but special care
is taken to account for the fact that optimal policies are not
necessarily deterministic.
Theorem 1. Suppose that Assumptions 1 and 2 hold and
that the optimal value function is bounded above. Then:

(i) there exists an optimal proper policy;
(ii) the optimal value function is the unique bounded mea-

surable solution to the optimality equation;
(iii) the soft policy iteration algorithm converges to the

policy starting from any proper policy;
(iv) the soft value iteration algorithm converges to the opti-

mal value function starting from any proper policy.

Proof. See supplementary material.
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4. Compositionality
In a lifelong learning context, an agent is presented with a
series of tasks drawn from some distribution. The agent’s
goal is to exploit knowledge gained in previous tasks to
improve performance in the current task. We consider an
environment with fixed state space S , action space A, deter-
ministic transition dynamics ρ, and absorbing set G. Let D
be a fixed but unknown distribution over (S,A, ρ, r). The
agent is then presented with tasks sampled from D, which
differ only in their reward functions—that is, a task is di-
rectly specified by its reward function. In this section, we
describe a compositional approach to tackle this problem.

4.1. –OR– Composition

Suppose further that the reward functions drawn from D
differ only on the absorbing set G. This restriction was
introduced by Todorov (2009), and is a strict subset of the
successor representations framework (Dayan, 1993; Barreto
et al., 2017).

The composition we describe in this section can be viewed
as –OR– task composition: if objectives of two tasks are to
achieve goalsA andB respectively, then we aim to compose
the individual Q-functions to solve A–OR–B. To construct
the composed –OR– task, we take the maximum (or soft-
maximum) of the reward functions of the composite tasks.
We now show that, having encountered a set of tasks, we
can combine the library of previously-learned Q-functions
to solve any new tasks that lies in their “span”, without the
need for further learning:

Theorem 2 (Optimal Composition). LetM1, . . . ,Mm be
a library of tasks drawn from D. Let Q∗,kτ be the optimal
entropy-regularised Q-function, and rk be the reward func-
tion forMk. Define the functions r and Q∗τ : S×A → Rm
by:

r = [r1, . . . , rm] and Q∗τ = [Q∗,1τ , . . . , Q∗,mτ ].

Given a set of non-negative weights w, with ||w||1 = 1,
consider a further task drawn from D with reward function
satisfying

r(s, a) = τ log (|| exp(r(s, a)/τ)||w) (5)

for all s in G, where || · ||w denotes the weighted 1-norm.
Then the optimal Q-value for this task is given by:

Q∗τ (s, a) = τ log (|| exp(Q∗τ (s, a)/τ)||w) . (6)

That is, the optimal Q-functions for the library of tasks can
be composed to form Q∗τ .

Proof. Since ρ is deterministic, we can find a measurable
function f : S ×A → S such that ρ(s,a) = δf(s,a). For any

Q-function, define the desirability function

Z(s, a) = exp (Q(s, a)/τ) ,

and define the operator U on the space of non-negative
bounded measurable functions by

[UZ](s, a) = exp (r(s, a)/τ)

∫
A
Z(f(s, a), a′)π̄s(da

′).

We now show that the desirability function is a fixed point
of U .

Since V ∗τ is the fixed point of the Bellman optimality opera-
tor, by combining Lemma 1 and Theorem 1 we have

V ∗τ (s) = [T V ∗](s) = [LV ∗](s).

Then using the definition of the soft Bellman operator:

V ∗τ (s) = τ log

∫
A

exp (Q∗τ (s, a′)/τ) π̄s(da
′).

Additionally, under the assumption of a deterministic envi-
ronment, Equation (1) can be rewritten as

Q∗τ (s, a) = r(s, a) + V ∗τ (f(s, a)).

Then it follows that

[UZ∗τ ](s, a) = exp (r(s, a)/τ)

∫
A
Z∗τ (f(s, a), a′)π̄s(da

′)

= exp (r(s, a)/τ)

∫
A

exp (Q∗τ (f(s, a), a′)/τ) π̄s(da
′)

= exp (r(s, a)/τ) exp (V ∗τ (f(s, a))/τ)

= exp
(

(r(s, a) + V ∗τ (f(s, a))/τ
)

= exp (Q∗τ (s, a)/τ)

= Z∗τ (s, a).

Hence Z∗τ is a fixed point of U .

Given a task Mk and terminal state s in G, the optimal
Q-value at that state is simply rk(s, a). Therefore, for the
combined task with reward function (5), the optimal Q-
value satisfies

Q∗τ (s, a) = τ log (|| exp(r(s, a)/τ)||w)

= τ log (|| exp(Q∗τ (s, a)/τ)||w)

on G. Thus, restricted to G, the desirability function Z∗τ is
a linear combination of the desirability functions for the
family of tasks.

Finally, since (6) holds on G and it is clear that U is a linear
operator on the exponentiated Q-function, then (6) holds
everywhere.
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The following lemma links the previous result to the stan-
dard RL setting. Recall that entropy-regularisation appends
a temperature-controlled penalty term to the reward func-
tion. As the temperature parameter tends to 0, the reward
provided by the environment dominates the entropy penalty,
and the problem reduces to the standard RL case:
Lemma 2. Let {τn}∞n=1 be a sequence in R such that τn ↓
0. Let Q∗τn be the optimal Q-value function for MDP(τn):
the entropy-regularised MDP with temperature parameter
τn. Let Q∗0 be the optimal Q-value for the standard MDP.
Then Q∗τn ↑ Q

∗
0 as n→∞.

Proof. First note that for a fixed policy π, state s and action
a, we have Qπτn(s, a) ↑ Qπ0 (s, a) as n→∞. This follows
directly from the definition of the entropy-regularised value
function, and the fact that the KL-divergence is non-negative.
Then using Lemma 3.14 (Hinderer, 1970) to interchange
the limit and supremum, we have

lim
n→∞

Q∗τn = lim
n→∞

sup
π
Qπτn = sup

π
lim
n→∞

Qπτn

= sup
π
Qπ0 = Q∗0.

Since Qπτn ↑ Q
π
0 , we have Q∗τn ↑ Q

∗
0 as n→∞.

We can now show that composition holds in the standard
RL setting by using Lemma 2 to take the low-temperature
limit of Theorem 2.
Corollary 1. Let {τn}∞n=1 be a sequence in R such that
τn ↓ 0 and letQ∗0 be the optimal Q-function for the standard
MDP with a composite reward satisfying r = max r. Then
maxQ∗τn ↑ Q

∗
0 as n→∞.

Proof. For a fixed state s and action a and a possible re-
ordering of the vector Q∗0(s, a), we may suppose, without
loss of generality, that Q∗,10 (s, a) = maxQ∗0(s, a). Then
by Lemma 2, we can find an N in N such that

Q∗,1τn (s, a) = maxQ∗τn(s, a) for all n ≥ N.

Since log is continuous, we have from Theorem 2 that

lim
n→∞

Q∗τn = log
(

lim
n→∞

|| exp(Q∗τn)||1/τnw

)
,

where || · ||pw denotes the weighted p-norm. By factoring
exp(Q∗,1τn ) out of || exp(Q∗τn)||1/τnw , we are left with

||1, exp(∆2), . . . , exp(∆k)||1/τnw ,

where ∆i = Q∗,iτn −Q
∗,1
τn for i = 2, . . . , k. Since Q∗,1τn (s, a)

is the maximum of Q∗τn(s, a) for all n ≥ N , the limit as
n→∞ of the above is 1. Then it follows that

lim
n→∞

Q∗,1τn (s, a) = log
(

lim
n→∞

exp(Q∗,1τn (s, a))
)

= Q∗,10 (s, a).

Since s and a were arbitrary and Q∗,mτn ↑ Q∗,m0 , we have
that maxQ∗τn ↑ Q

∗
0 as n→∞.

Comparing Theorem 2 to Corollary 1, we see that as the
temperature parameter decreases to zero, the weight vector
has less influence on the composed Q-function. In the limit,
the optimal Q-function is independent of the weights and is
simply the maximum of the library functions. This suggests
a natural trade-off between our ability to interpolate between
Q-functions, and the stochasticity of the optimal policy.

Finally, we note that the assumption of deterministic dynam-
ics is necessary. To see this, consider an MDP with a fixed
start state and three goal states Red, Purple and Blue.
The MDP has three actions a, b, and c with transition dy-
namics given by:

Red Purple Blue
a 0.1 0.8 0.1
b 0.1 0.1 0.8
c 0.0 0.5 0.5

Suppose that tasks A and B are to reach the Purple and
Blue states respectively (with a reward of 1 for getting to
the correct state and 0 otherwise). The optimal policy for
the composed task A–OR–B is therefore to select action
c, yielding a return of 1. However, the policy given by
Corollary 1 selects either a or b with a return of 0.9.

4.2. –AND– Composition

Haarnoja et al. (2018) show that an approximate –AND–
composition is also possible for entropy-regularised RL.
That is, if the goalsA andB partially overlap, the composed
Q-function will achieve A–AND–B approximately. The
following result, included for completeness, demonstrates
that the optimal Q-function for the composite task can be
approximated by the average of the library Q-functions:

Lemma 3 (Haarnoja et al. (2018)). Let Q∗,1τ and Q∗,2τ be
the optimal Q-functions for two tasks drawn from D with
rewards r1 and r2. Define the averaged Q-function Qave :=
(Q∗,1τ + Q∗,2τ )/2. Then the optimal Q-function Q∗τ for the
task with reward function r = (r1 + r2)/2 satisfies

Qave ≥ Q∗τ ≥ Qave − C∗τ ,

where C∗τ is a fixed point of

τEs′∼ρ(s,a)
[
D 1

2

(
π∗,1s ||π∗,2s

)
+ max

a′
C(s′, a′)

]
,

the policy π∗,is is the optimal Boltzmann policy for task i,
and D 1

2
(·||·) is the Rényi divergence of order 1

2 .

Theorem 3 (Haarnoja et al. (2018)). Using the definitions
in Lemma 3, the value of the composed policy πave satisfies

Qπave ≥ Q∗τ − F ∗τ ,
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where F ∗τ is a fixed point of

τEs′∼ρ(s,a)
[
Ea′∼πave

s′
[C∗τ (s′, a′)− F (s′, a′)]

]
.

We believe that the low-temperature result from Lemma 2
can be used to obtain similar results for the standard RL
framework. We provide empirical evidence of this in the
next section, and leave a formal proof to future work.

5. Experiments
To demonstrate composition, we perform a series of experi-
ments in a high-dimensional video game (Figure 1b). The
goal of the game is to collect items of different colours and
shapes. The agent has four actions that move it a single
step in any of the cardinal directions, unless it collides with
a wall. Each object in the domain is one of two shapes
(squares and circles), and one of three colours (blue, beige
and purple), for a total of six objects (see Figure 1a).

We construct a number of different tasks based on the objects
that the agent must collect, the task’s name specifying the
objects to be collected. For example, Purple refers to the
task where an agent must collect any purple object, while
BeigeSquare requires collecting the single beige square.

For each task, the episode begins by randomly positioning
the six objects and the agent. At each timestep, the agent
receives a reward of −0.1. If the correct object is collected,
the agent receives a reward of 1 and the episode terminates.
We first learn to solve a number of base tasks using (soft)
deep Q-learning (Mnih et al., 2015; Schulman et al., 2017),
where each task is trained with a separate network. Each
network is trained for 1.5m timesteps to ensure near-optimal
convergence. The resulting networks are collected into a
library from which we will later compose new Q-functions.

The input to our network is a single RGB frame of size 84×
84, which is passed through three convolutional layers and
two fully-connected layers before outputting the predicted
Q-values for the given state.2 Using the results in Section 4,
we compose optimal Q-functions from those in the library.

In all our results, we visualise value functions by placing the
agent at each cell in the domain and feeding the resulting
state into the learned Q-function. We take the maximum
output as the value of the state and then interpolate between
cells to form a smooth surface.

5.1. –OR– Composition

Here we consider new tasks that can be described as the
union of a set of base tasks in the standard RL setting. We
train an agent separately on the Purple and Blue tasks,

2A full description of the architecture and hyperparameters is
provided in the supplementary material.

Beige Blue Purple

Square

Circle

(a) Items to be collected. (b) Layout of the grid-world.

Figure 1. The video game domain. The position of the walls and
obstacles remains fixed, but at the start of each episode, the agent
and objects are randomly positioned.

adding the corresponding Q-functions to our library. We
use Corollary 1 to produce the optimal Q-function for the
composite PurpleOrBlue task, which requires the agent
to pick up either blue or purple objects, without any further
learning. Results are given in Figure 2.

The local maxima over blue and purple objects illustrates
the multimodality of the value function (Figure 2a). This
is similar to approaches such as soft Q-learning (Haarnoja
et al., 2017), which are also able to learn multimodal poli-
cies. However, we have anecdotally observed that directly
learning a truly multimodal policy for the composite task
can be difficult. If the entropy regularisation is too high, the
resulting policy is extremely stochastic. Too low, and the
policy quickly collapses to a single mode without exploring
alternatives. It is instead far easier to learn unimodal value
functions for each of the base tasks, and then compose them
to produce optimal multimodal value functions.

5.2. Linear Task Combinations

In Theorem 2 we showed that in the entropy-regularised
setting, the composed Q-function is dependent on a weight
vector w. This allows us to achieve a more general type of
composition. In particular, we can immediately compute
any optimal Q-function that lies in the “span” of the library
Q-functions. Indeed, according to Theorem 2 the exponen-
tiated optimal Q-function is a linear combination of the
exponentiated library functions. Therefore, the weights can
be used to modulate the relative importance of the library
functions—modelling the situation in which an agent has
multiple concurrent objectives of unequal importance.

We illustrate the effect of the weight vector w using soft Q-
learning with a temperature parameter τ = 1. We construct
a new task by composing the tasks PurpleCircle and
BeigeSquare, and assign different weights to these tasks.
The different weighted value functions are given in Figure 3.

5.3. –AND– Composition

Here we consider tasks which can be described as the in-
tersection of tasks in the library. In general, this form of
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(a)
(b)

(c)

Figure 2. (a) The optimal value function for PurpleOrBlue, which is produced by composing the Purple and Blue Q-functions.
The multimodality of the composite value function is clearly visible. (b) Sample trajectories for the composite PurpleOrBlue task,
with the agent beginning at different positions. The agent selects the shortest path to any of the target objects. (c) Returns from 50k
episodes. The first two box plots are the results of acting in the PurpleOrBlue task using only one of the base Q-functions, while the
third uses the composite Q-function.

composition will not yield an optimal policy for the com-
posite task owing to the presence of local optima in the
composed value function.

However, in many cases we can obtain a good approxima-
tion to the composite task by simply averaging the Q-values
for the constituent tasks. While Haarnoja et al. (2018) con-
siders this type of composition in the entropy-regularised
case, we posit that this can be extended to the standard RL
setting by taking the low-temperature limit. We illustrate
this by composing the optimal policies for the Blue and
Square tasks, which produces a good approximation to
the optimal policy for collecting the blue square. Results
are shown in Figure 4.

5.4. Temporal

Our final experiment demonstrates the use of composition to
long-lived agents. We compose the base Q-functions for the
tasks Blue, Beige and Purple, and use the resulting Q-
function to solve the task of collecting all objects. Sample
trajectories are illustrated by Figure 5.

Despite the fact that the individual tasks terminate after
collecting the required object, if we allow the episode to
continue, the composed Q-function is able to collect all
objects in a greedy fashion. The above shows the power of
composition—if we possess a library of skills learned from
previous tasks, we can compose them to solve any task in
their union continually.

(a) BeigeSquare: 0.0 (b) BeigeSquare: 0.05 (c) BeigeSquare: 0.1 (d) BeigeSquare: 0.5

(e) BeigeSquare: 0.9 (f) BeigeSquare: 0.95 (g) BeigeSquare: 1.0
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Figure 3. (a–g) Weighted composed value function for the task BeigeSquareOrPurpleCircle. The weight assigned to the Q-
function for BeigeSquare is varied from 0 to 1. (h) The number of beige squares compared to purple circles collected by the agent as
the weights are varied in steps of 0.05. Results for each weight were averaged over 80 runs of 100 episodes.
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(a)
(b)

(c)

Figure 4. (a) The approximately optimal value function of the composed policies. Local optima are clearly visible. (b) Sample trajectories
from the composed policy beginning from different starting positions. The agent exhibits suboptimal, but sensible behaviour near beige
squares. (c) The IQR of returns from 50k episodes. The first box plot is the return from the optimal solution to the union of tasks, the
second is the result of the approximate intersection of tasks, and the third is the true optimal policy.

6. Related Work
As mentioned, the optimal composition described here can
be achieved through the LMDP framework (Todorov, 2009).
However, LMDPs require the passive dynamics (an S × S
matrix) to be specified upfront, which restricts their ap-
plicability to low-dimensional settings. Our approach, on
the other hand, shows that the same composition can be
achieved in both the entropy-regularised and standard RL
setting. As a result, we can perform composition in high-
dimensional state spaces such as video games.

Using the maximimum of a set of previously-learned Q-
functions appears in other contexts. Corollary 1 mirrors
that of generalised policy improvement (Barreto et al., 2017;
2018), which uses the successor representation framework
(Dayan, 1993) to show that maximising over Q-functions
results in an improved policy. In our work, the resulting
Q-function is not merely an improvement, but is in fact
optimal. More generally, Abel et al. (2018) provide the
MAXQInit algorithm, which can be used to solve a series of
tasks that differ only in reward function. When faced with a
new task, initialising the value function to be the maximum
over learnedQ-functions is shown to preserve optimism and
lower the sample complexity with high probability.

Finally, the composition described here differs from the

options framework (Sutton et al., 1999), which sequence
low-level actions to form high-level skills. Whereas options
compose actions temporally, our composition is concurrent,
but we note that we are sometimes able to mimic temporal
composition (see Figure 5). Since options themselves con-
tain policies, it is likely that they can be composed using the
theory described here; however, we would need to account
for options whose initiation sets and termination conditions
differ.

7. Conclusion
We showed that in entropy-regularised RL, value functions
can be optimally composed to solve the union of tasks.
Extending this result by taking the low-temperature limit,
we showed that composition is also possible in standard
RL. However, there is a trade-off between our ability to
smoothly interpolate between tasks, and the stochasticity of
the optimal policy.

We demonstrated, in a high-dimensional environment, that
a library of optimal Q-functions can be composed to solve
composite tasks consisting of unions, intersections or tempo-
ral sequences of simpler tasks. The proposed compositional
framework is a step towards lifelong-learning agents that are
able to combine existing skills to solve new, unseen tasks.

(a) (b) (c)

Figure 5. (a) and (b) Sample trajectories for the task of collecting all objects. (c) Returns from 50k episodes. The first box plot is the
return of the composed Q-function, while the second is the result of DQN trained to collect all objects explicitly.
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