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Abstract
An important property for lifelong-learning
agents is the ability to combine existing skills
to solve unseen tasks. In general, however, it is
unclear how to compose skills in a principled way.
We provide a “recipe” for optimal value function
composition in entropy-regularised reinforcement
learning (RL) and then extend this to the standard
RL setting. Composition is demonstrated in a
video game environment, where an agent with an
existing library of policies is able to solve new
tasks without the need for further learning.

1. Introduction
A major challenge in artificial intelligence is creating agents
capable of leveraging existing knowledge for inductive trans-
fer. Lifelong learning, in particular, requires that an agent
be able to act effectively when presented with a new, un-
seen task. A promising approach is to combine behaviours
learned in various separate tasks to create new skills (Taylor
& Stone, 2009). This compositional approach allows us to
build rich behaviours from relatively simple ones, resulting
in a (good!) combinatorial explosion in the agent’s abilities
(Saxe et al., 2017). However, in general, it is unclear how to
produce new optimal skills from known ones.

One approach to compositionality is Linearly-solvable
Markov Decision Processes (LMDPs) (Todorov, 2007),
which structure the reward function to ensure that the Bell-
man equation becomes linear in the exponentiated value
function. Todorov (2009) proves that the optimal value
functions of a set of LMDPs can be composed to produce
the optimal value function for a composite task. This is a
particularly attractive property, since solving new tasks re-
quires no further learning. However, the LMDP framework
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has so far been restricted to the tabular case with known
dynamics, limiting its usefulness.

Related work has focused on entropy-regularised reinforce-
ment learning (RL) (Schulman et al., 2017; Haarnoja et al.,
2017; Nachum et al., 2017), where rewards are augmented
with an entropy-based penalty term. This has been shown
to lead to improved exploration and rich, multimodal value
functions.

Prior work (Haarnoja et al., 2018) has demonstrated that
these value functions can be composed to approximately
solve the intersection of tasks. We complement these results
by proving optimal composition for the union of tasks in the
total-reward, absorbing-state setting. Thus, any task lying in
the “span” of a set of basis tasks can be solved immediately,
without any further learning. We provide a “recipe” for
optimally composing value functions, and demonstrate our
method in a video game. Results show that an agent is able
to compose existing policies learned from pixel input to
generate new, optimal behaviours.

2. Background
A Markov decision process (MDP) is defined by the 4-tuple
(S,A, ρ, r) where (i) the state space S is standard Borel;
(ii) the action space A is finite (and therefore a compact
metric space when equipped with the discrete metric); (iii)
the transition dynamics ρ define a Markov kernel (s, a) 7→
ρ(s,a) from S×A to S; and (iv) the reward r is a real-valued
function on S ×A that is bounded and measurable.

In RL, an agent’s goal is to maximise its utility by making a
sequence of decisions. At each time step, the agent receives
an observation from S and executes an action from A ac-
cording to its policy. As a consequence of its action, the
agent receives feedback (reward) and transitions to a new
state. Whereas the rewards represent only the immediate
outcome, the utility captures the long-term consequences
of actions. Historically, many utility functions have been
investigated (Puterman, 2014), but in this paper we only
consider the total-reward criterion (see Section 2.1).

We consider the class of MDPs with an absorbing set G,
which is a Borel subset of the state space. We augment the
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state space with a virtual state g such that ρ(s,a)({g}) = 1
for all (a, s) in G × A, and r = 0 after reaching g. In
the control literature, this class of MDPs is often called
stochastic shortest path problems (Bertsekas & Tsitsiklis,
1991), and naturally model domains that terminate after the
agent achieves some goal.

We restrict our attention to stationary Markov policies, or
simply policies. A policy s 7→ πs is a Markov kernel from S
to A. Together with an initial distribution ν over S , a policy
defines a probability measure over trajectories. To formalise
this, we construct the set of n-step histories inductively by
definingH0 = S andHn = Hn−1×A×S for n in N. The
n-step histories represent the set of all possible trajectories
of length n in the MDP. The probability measure on Hn
induced by the policy π is then

Pπν,n = ν ⊗ π ⊗ ρ⊗ · · · ⊗ π ⊗ ρ︸ ︷︷ ︸
n times

.

Using the standard construction (Klenke, 1995), we can
define a unique probability measure Pπν onH∞ consistent
with the measures Pπν,n in the sense that

Pπν (E × A× S ×A× · · · ) = Pπν,n(E),

for any n in N and any Borel set E ⊆ Hn. If ν is con-
centrated on a single state s, we simply write Pπν = Pπs .
Additionally for any real-valued bounded measurable func-
tion f onHn, we define Eπν [f ] to be the expected value of
f under Pπν .

Finally, we introduce the notion of a proper policy—a policy
under which the probability of reaching G after n steps
converges to 1 uniformly over S as n→∞. Our definition
extends that of Bertsekas & Tsitsiklis (1995) to general
state spaces, and is equivalent to the definition of transient
policies used by James & Collins (2006):

Definition 1. A stationary Markov policy π is said to be
proper if

sup
s∈S

∞∑
t=0

Pπs (st 6∈ G) <∞.

Otherwise, we say that π is improper.

2.1. Entropy-Regularised RL

In the standard RL setting, the expected reward at state s un-
der policy π is given by Ea∼π [r(s, a)]. Entropy-regularised
RL (Ziebart, 2010; Fox et al., 2016; Haarnoja et al., 2017;
Schulman et al., 2017; Nachum et al., 2017) augments the
reward function with a term that penalises deviating from
some reference policy π̄. That is, the expected reward is
given by Ea∼π [r(s, a)] − τKL[πs||π̄s], where τ is a pos-
itive scalar temperature parameter and KL[πs||π̄s] is the
Kullback-Leibler divergence between π and the reference

policy π̄ at state s. When π̄ is the uniform random policy,
the regularised reward is equivalent to the standard entropy
bonus up to an additive constant (Schulman et al., 2017).
This results in policies that are more robust to “winner’s
curse” (Fox et al., 2016). Additionally, the reference pol-
icy can be used to encode prior knowledge through expert
demonstration.

Based on the above regularisation, we define the n-step
value function starting from s and following policy π as:

Vπ,n(s) = Eπs,n

[
n−1∑
t=0

r(st, at)− τKL[πst ||π̄st ]

]
.

Note that since the KL-divergence term is measurable
(Dupuis & Ellis, 2011, Lemma 1.4.3), Vπ,n is well-defined.
The infinite-horizon value function, which represents the
total expected return after executing π from s, is then

Vπ(s) = lim sup
n→∞

Vπ,n(s).

Since the reward function and KL-divergence are bounded,1

Vπ is well defined. Similarly, we define the Q-function to
be the expected reward after taking action a in state s, and
thereafter following policy π:

Qπ(s, a) = r(s, a) +

∫
S
Vπ(s′)ρ(a,s)(ds

′). (1)

Given the definitions above, we say that a measurable func-
tion V ∗ is optimal if V ∗(s) = supπ Vπ(s) for all s in S.
Furthermore, a policy π∗ is optimal if Vπ∗ = V ∗.

In the standard RL case, the optimal policy is always de-
terministic and is defined by argmaxaQ

∗(s, a). On the
other hand, entropy-regularised problems may not admit
an optimal deterministic policy. This results from the KL-
divergence term, which penalises deviation from the refer-
ence policy π̄. If π̄ is stochastic, then a deterministic policy
may incur more cost than a stochastic policy. To see this,
consider the simple two-state MDP shown in Figure 1:

s g
r(s,Right) = −1

r(s,Left) = −1

Figure 1. A two-state MDP with absorbing state g.

Given τ > 0 and a uniformly random reference policy,
let π be the deterministic policy that selects Right with
probability 1, and let πε be the stochastic policy that selects
Right with probability 1 − ε and Left with probability

1Under the assumptions that A is finite and π̄ is chosen so that
πs is absolutely continuous with respect to π̄s for any state s and
policy π.
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ε. Then, choosing ε small enough, we can guarantee that
Vπε > Vπ. Therefore for any τ > 0, the optimal policy is
non-deterministic.

Proof. First, the value of state s under the policy π is given
by Vπ(s) = −1− τ log 2. On the other hand, the expected
number of steps from s to g under πε is 1/(1 − ε) so we
have

Vπε(s) = −1 + ε log 2ε

1− ε
− log 2(1− ε).

Now, choose ε such that

ε <
τ(log 2− 1/2)

2 + τ
. (2)

Then, from (2) we have that:

(i) ε < 1/2 and therefore log 2(1− ε) < 0,
(ii) log 2ε < 2ε, and

(iii) log 2− 1/2 < 1 and therefore ε < τ/(2 + τ)

Using the above facts we get the chain of inequalities:

Vπε
(s)

(i)
> −1 + ε log(2ε)

1− ε
(ii)
> −1 + 2ε

1− ε
(iii)
> −1− τ/2− ε(2 + τ)

(2)
> −1− τ log 2.

The last inequality follows directly from (2), giving
Vπε(s) > Vπ(s).

3. Soft Value and Policy Iteration
In this section, we investigate the total-reward, entropy-
regularised criterion defined above. While value and pol-
icy iteration in entropy-regularised RL have been analysed
previously (Nachum et al., 2017), convergence results are
limited to discounted MDPs. We sketch an argument that an
optimal proper policy exists under the total-reward criterion
and that the soft versions of value and policy iteration (see
Algorithms 1 and 2) converge to optimal solutions.

We begin by defining the Bellman operators:

[TπVπ](s) =

∫
A
Qπ(s, a)πs(da)− τKL[πs||π̄s], (3)

[T V ](s) = sup
π

[TπV ](s). (4)

Equations (3) and (4) are analogous to the standard Bellman
operator and Bellman optimality operator respectively. Note
that since the optimal policy may not be deterministic, the
Bellman optimality operator selects the supremum over
policies instead of actions.

We also define the soft Bellman operator

[LVπ](s) = τ log

∫
A

exp (Qπ(s, a)/τ)πs(da). (5)

Here L is referred to as “soft”, since it is a smooth approxi-
mation of the max operator. The soft Bellman operator is
connected to the Bellman optimality operator through the
following result:

Lemma 1. Let V : S → R be a bounded measurable
function. Then T V = LV and the supremum is attained
uniquely by the Boltzmann policy B[V ] defined by

dBs[V ]

dπ̄s
(a) =

exp
(
Q(s, a)/τ

)∫
A

exp
(
Q(s, a′)/τ

)
π̄(da′|s)

.

Proof. Follows directly from Dupuis & Ellis (2011, Propo-
sition 1.4.2).

Analogous to the standard RL setting, we can define value
and policy iteration in the entropy-regularised context,
where the Bellman operators are replaced with their “soft”
equivalents:

Algorithm 1 Soft Value Iteration

Input: MDP, temperature τ > 0, bounded function V
Output: Optimal value function V ∗

initialize V ∗ ← V
repeat

replace V ← V ∗

apply soft Bellman operator V ∗ ← L[V ]
until convergence

Algorithm 2 Soft Policy Iteration

Input: MDP, temperature τ > 0, proper policy π
Output: Optimal policy π∗

initialize π∗ ← π
repeat

replace π ← π∗

policy evaluation:
find Vπ , the fixed-point of Tπ

policy improvement:
compute the Boltzmann policy π∗ ← B[Vπ]

until convergence

Following closely along the lines of Bertsekas & Tsitsiklis
(1991) and James & Collins (2006), but taking special care
to account for the fact that optimal policies are not necessar-
ily deterministic, it can be shown that the above algorithms
converge to optimal solutions.
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Theorem 1. Suppose that Assumptions 1 and 2 (James &
Collins, 2006) hold and that the optimal value function is
bounded above. Then:

(i) there exists an optimal proper policy;
(ii) the optimal value function is the unique bounded mea-

surable solution to the optimality equation;
(iii) the soft policy iteration algorithm converges to the

policy starting from any proper policy;
(iv) the soft value iteration algorithm converges to the opti-

mal value function starting from any proper policy.

4. Compositionality
In lifelong learning, an agent is presented with a series of
tasks drawn from some distribution. The goal is to exploit
knowledge gained in previous tasks to improve performance
in the current task. We consider an environment with fixed
state space S, action space A, deterministic transition dy-
namics ρ, and absorbing set G. LetD be a fixed but unknown
distribution over (S,A, ρ, r). The agent is then presented
with tasks sampled from D, which differ only in their re-
ward functions. In this section, we describe a compositional
approach for tackling this problem.

Suppose that the reward functions drawn from D differ only
on the absorbing set G. This restriction was introduced
by Todorov (2009), and is a strict subset of the successor
representations framework (Dayan, 1993; Barreto et al.,
2017). Given a library of previously-solved tasks, we can
combine their Q-functions to solve any task lying in the
“span” of the library without further learning:

Theorem 2 (Optimal Composition). LetM1, . . . ,Mn be
a library of tasks drawn from D. Let Q∗,kτ be the optimal
entropy-regularised Q-function, and rk be the reward func-
tion forMk. Define the vectors

r = [r1, . . . , rn] and Q∗τ = [Q∗,1τ , . . . , Q∗,nτ ].

Given a set of non-negative weights w, with ||w||1 = 1,
consider a further task drawn from D with reward function
satisfying r = τ log (|| exp(r/τ)||w) for all s in G, where
|| · ||w denotes the weighted 1-norm. Then the optimal
Q-value for this task is given by:

Q∗τ = τ log (|| exp(Q∗τ/τ)||w) . (6)

That is, the optimal Q-functions for the library of tasks can
be composed to form Q∗τ .

Proof. Since ρ is deterministic, we can find a measurable
function f : S ×A → S such that ρ(s,a) = δf(s,a). For any
Q-function, define the desirability function

Z(s, a) = exp (Q(s, a)/τ) ,

and define the operator U on the space of non-negative
bounded measurable functions by

[UZ](s, a) = exp (r(s, a)/τ)

∫
A
Z(f(s, a), a)π̄s(da

′).

We now show that the desirability function of Q∗τ is a fixed
point of U . Since V ∗τ is the fixed point of the Bellman
optimality operator, by combining Equation (1), Lemma 1
and Theorem 1, we have

V ∗τ (s) = τ log

∫
A

exp (Q∗τ (f(s, a), a′)/τ) π̄s(da
′)

and Q∗τ (s, a) = r(s, a) + V ∗τ (f(s, a)).

Then it follows that

[UZ∗τ ](s, a) = er(s,a)/τ
∫

exp (Q∗τ/τ) d(ρ(s,a) ⊗ π̄s)

= er(s,a)/τ exp (V ∗τ (f(s, a))/τ) = Z∗τ (s, a).

Hence Z∗τ is a fixed point of U . Under the assumptions on
the reward function r, the optimal Q-value satisfies Q∗τ =
τ log (|| exp(Q∗τ/τ)||w) on G. Therefore, restricted to G,
Z∗τ is a linear combination of the desirability functions for
the family of tasks. Since (6) holds on G and it is clear that
U is a linear operator, then (6) holds everywhere.

The following lemma links the previous result to the stan-
dard RL setting. Recall that entropy-regularisation appends
a temperature-controlled penalty term to the reward func-
tion. As the temperature parameter tends to 0, the reward
provided by the environment dominates the entropy penalty,
and the problem reduces to the standard RL case:

Lemma 2. Let {τn}∞n=1 be a sequence in R such that τn ↓
0. Let Q∗τn be the optimal Q-value function for MDP(τn):
the entropy-regularised MDP with temperature parameter
τn. Let Q∗0 be the optimal Q-value for the standard MDP.
Then Q∗τn ↑ Q

∗
0 as n→∞.

Proof. First note that for a fixed policy π, state s and action
a, we have Qπτn(s, a) ↑ Qπ0 (s, a) as n→∞. This follows
directly from the definition of the entropy-regularised value
function, and the fact that the KL-divergence is non-negative.
Then using Lemma 3.14 (Hinderer, 1970) to interchange
the limit and supremum, we have

lim
n→∞

Q∗τn = lim
n→∞

sup
π
Qπτn = sup

π
lim
n→∞

Qπτn

= sup
π
Qπ0 = Q∗0.

Since Qπτn ↑ Q
π
0 , we have Q∗τn ↑ Q

∗
0 as n→∞.

Finally, we show that composition holds in the standard RL
setting by taking the low-temperature limit of Theorem 2.
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Corollary 1. Let {τn}∞n=1 be a sequence in R such that
τn ↓ 0. Then maxQ∗τn ↑ Q

∗
0 as n→∞.

Proof. For a fixed state s and action a and a possible re-
ordering of the vector Q∗0(s, a), we may suppose, without
loss of generality, that Q∗,10 (s, a) = maxQ∗0(s, a). Then
by Lemma 2, we can find an N in N such that

Q∗,1τn (s, a) = maxQ∗τn(s, a) for all n ≥ N.

Since log is continuous, we have from Theorem 2 that

lim
n→∞

Q∗τn = log
(

lim
n→∞

|| exp(Q∗τn)||1/τnw

)
,

where || · ||pw denotes the weighted p-norm. By factoring
exp(Q∗,1τn ) out of || exp(Q∗τn)||1/τnw , we are left with

||1, exp(∆2), . . . , exp(∆k)||1/τnw ,

where ∆i = Q∗,iτn −Q
∗,1
τn for i = 2, . . . , k. Since Q∗,1τn (s, a)

is the maximum of Q∗τn(s, a) for all n ≥ N , the limit as
n→∞ of the above is 1. Then it follows that

lim
n→∞

Q∗,1τn (s, a) = log
(

lim
n→∞

exp(Q∗,1τn (s, a))
)

= Q∗,10 (s, a).

Since s and a were arbitrary and Q∗,mτn ↑ Q∗,m0 , we have
that maxQ∗τn ↑ Q

∗
0 as n→∞.

Comparing Theorem 2 to Corollary 1, we see that as the
temperature parameter decreases to zero, the weight vector
has less influence on the composed Q-function. In the limit,
the optimal Q-function is independent of the weights and
is simply the maximum of the library functions. This sug-
gests a natural trade-off between our ability to interpolate
between Q-functions, and the stochasticity of the optimal
policy. Furthermore, Corollary 1 mirrors that of generalised
policy improvement (Barreto et al., 2017), which shows that
computing the maximum of a set ofQ-functions results in an
improved Q-function. In our case, the resulting Q-function
is not merely an improvement, but is in fact optimal.

The composition described in this section can be viewed as
an –OR– task composition: if objectives of two tasks are
to achieve goals A and B respectively, then the composed
Q-function will achieve A–OR–B optimally. Haarnoja et al.
(2018) show that an approximate –AND– composition is
also possible for entropy-regularised RL. That is, if the goals
A and B partially overlap, the composed Q-function will
achieve A–AND–B approximately. The idea is that the opti-
mal Q-function for the composite task can be approximated
by the average of the library Q-functions. We include their
results for completeness:

Lemma 3 (Haarnoja et al., 2018). Let Q∗,1τ and Q∗,2τ be
the optimal Q-functions for two tasks drawn from D with
rewards r1 and r2. Define the averaged Q-function Qave :=
(Q∗,1τ + Q∗,2τ )/2. Then the optimal Q-function Q∗τ for the
task with reward function r = (r1 + r2)/2 satisfies

Qave ≥ Q∗τ ≥ Qave − C∗τ ,

where C∗τ is a fixed point of

τEs′∼ρ(s,a)
[
D 1

2

(
π∗,1s ||π∗,2s

)
+ max

a′
C(s′, a′)

]
,

the policy π∗,is is the optimal Boltzmann policy for task i,
and D 1

2
(·||·) is the Rényi divergence of order 1

2 .

Theorem 3 (Haarnoja et al., 2018). Using the definitions in
Lemma 3, the value of the composed policy πave satisfies

Qπave ≥ Q∗τ − F ∗τ ,

where F ∗τ is a fixed point of

τEs′∼ρ(s,a)
[
Ea′∼πave

s′
[C∗τ (s′, a′)− F (s′, a′)]

]
.

We believe that the low-temperature result from Lemma 2
can be used to obtain similar results for the standard RL
framework. We provide empirical evidence of this in the
next section, and leave a formal proof to future work.

5. Experiments
To demonstrate composition, we perform a series of experi-
ments in a grid-world video game (Figure 2b). The goal of
the game is to collect items of different colours and shapes.
The agent has four actions that move it a single step in any
of the cardinal directions, unless it collides with a wall.Each
object in the domain is one of two shapes (squares and cir-
cles), and one of three colours (blue, beige and purple), for
a total of six objects (see Figure 2a).

Beige Blue Purple

Square

Circle

(a) Items to be collected. (b) Layout of the grid-world.

Figure 2.

We construct a number of different tasks based on the objects
that the agent must collect, the task’s name specifying the
objects to be collected. For example, Purple refers to the
task where an agent must collect any purple object, while
BeigeSquare requires collecting the single beige square.
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For each task, the episode begins by randomly positioning
the six objects and the agent. At each timestep, the agent
receives a reward of −0.1. If the correct object is collected,
the agent receives a reward of 1 and the episode terminates.
We first learn to solve a number of base tasks using (soft)
deep Q-learning (Mnih et al., 2015; Schulman et al., 2017),
where each task is trained with a separate network. The
resulting networks are collected into a library from which
we will later compose new Q-functions.

The input to our network is a single RGB frame of size 84×
84, which is passed through three convolutional layers and
two fully-connected layers before outputting the predicted
Q-values for the given state. Using the results in Section 4,
we compose optimal Q-functions from those in the library.

5.1. –OR– Composition

Here we consider new tasks that can be described as the
union of a set of base tasks in the standard RL setting. We
train an agent separately on the Purple and Blue tasks,
adding the corresponding Q-functions to our library. We
use Corollary 1 to produce the optimal Q-function for the
composite PurpleOrBlue task, which requires the agent
to pick up either blue or purple objects, without any further
learning. Results are given in Figure 3.

The local maxima over blue and purple objects illustrates
the multimodality of the value function (Figure 3a). This
is similar to approaches such as soft Q-learning (Haarnoja
et al., 2017), which are also able to learn multimodal poli-
cies. However, we have observed that directly learning a
truly multimodal policy for the composite task can be diffi-
cult. If the entropy regularisation is too high, the resulting
policy is extremely stochastic. Too low a temperature re-
sults in a loss of multimodality, owing to winner’s curse. It
is instead far easier to learn unimodal value functions for
each of the base tasks, and then compose them to produce
optimal multimodal value functions.

5.2. Linear Task Combinations

In Theorem 2 we showed that in the entropy-regularised
setting, the composed Q-function is dependent on a weight
vector w. This allows us to achieve a more general type of
composition. In particular, we can immediately compute
any optimal Q-function that lies in the “span” of the library
Q-functions. Indeed, according to Theorem 2 the exponen-
tiated optimal Q-function is a linear combination of the
exponentiated library functions. Therefore, the weights can
be used to modulate the relative importance of the library
functions—modelling the situation in which an agent has
multiple concurrent objectives of unequal importance.

We illustrate the effect of the weight vector w using soft Q-
learning with a temperature parameter τ = 1. We construct
a new task by composing the tasks PurpleCircle and
BeigeSquare, and assign different weights to these tasks.
The different weighted value functions are given in Figure 4.

5.3. –AND– Composition

Here we consider tasks which can be described as the inter-
section of tasks in the library. In general, this form of compo-
sition will not yield an optimal policy for the composite task
owing to the presence of local optima in the composed value
function. However, in many cases we can obtain a good
approximation to the composite task by simply averaging
the Q-values for the constituent tasks. While Haarnoja et al.
(2018) considers this type of composition in the entropy-
regularised case, we posit that this can be extended to the
standard RL setting by taking the low-temperature limit.
We illustrate this by composing the optimal policies for the
Blue and Square tasks, which produces a good approxi-
mation to the optimal policy for collecting the blue square.
Results are shown in Figure 5.

(a)
(b)

(c)

Figure 3. (a) The optimal value function for PurpleOrBlue, which is produced by composing the Purple and Blue Q-functions.
The multimodality of the composite value function is clearly visible. (b) Sample trajectories for the composite PurpleOrBlue task,
with the agent beginning at different positions. The agent selects the shortest path to any of the target objects. (c) Returns from 50k
episodes. The first two box plots are the results of acting in the PurpleOrBlue task using only one of the base Q-functions, while the
third uses the composite Q-function.
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(a) BeigeSquare: 0.0 (b) BeigeSquare: 0.05 (c) BeigeSquare: 0.1 (d) BeigeSquare: 0.5

(e) BeigeSquare: 0.9 (f) BeigeSquare: 0.95 (g) BeigeSquare: 1.0

BeigeSquare

PurpleCircle
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Figure 4. (a–g) Weighted composed value function for the task BeigeSquareOrPurpleCircle. The weight assigned to the Q-
function for BeigeSquare is varied from 0 to 1. (h) The number of beige squares compared to purple circles collected by the agent as
the weights are varied in steps of 0.05. Results for each weight were averaged over 80 runs of 100 episodes.

5.4. Temporal

Our final experiment demonstrates the use of composition to
long-lived agents. We compose the base Q-functions for the
tasks Blue, Beige and Purple, and use the resulting Q-
function to solve the task of collecting all objects. Sample
trajectories are illustrated by Figure 6.

Despite the fact that the individual tasks terminate after
collecting the required object, if we allow the episode to
continue, the composed Q-function is able to collect all
objects in a greedy fashion. The above shows the power of
composition—if we possess a library of skills learned from
previous tasks, we can compose them to solve any task in
their union continually.

6. Conclusion
We showed that in entropy-regularised RL, value functions
can be optimally composed to solve the union of tasks.
Extending this result by taking the low-temperature limit,
we showed that composition is also possible in standard
RL. However, there is a trade-off between our ability to
smoothly interpolate between tasks, and the stochasticity of
the optimal policy. We demonstrated, in a high-dimensional
environment, that a library of optimal Q-functions can be
composed to solve composite tasks consisting of unions, in-
tersections or temporal sequences of simpler tasks. The pro-
posed compositional framework is a step towards lifelong-
learning agents that are able to combine existing skills to
solve new, unseen problems.

(a)
(b)

(c)

Figure 5. (a) The approximately optimal value function of the composed policies. Local optima are clearly visible. (b) Sample trajectories
from the composed policy beginning from different starting positions. The agent exhibits suboptimal, but sensible behaviour near beige
squares. (c) The IQR of returns from 50k episodes. The first box plot is the return from the optimal solution to the union of tasks, the
second is the result of the approximate intersection of tasks, and the third is the true optimal policy.
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(a) (b)
(c)

Figure 6. (a) and (b) Sample trajectories for the task of collecting all objects. (c) Returns from 50k episodes. The first box plot is the
return of the composed Q-function, while the second is the result of DQN trained to collect all objects explicitly.
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