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ABSTRACT

Training sparse networks to converge to the same performance as dense neural architec-
tures has proved to be elusive. Recent work suggests that initialization is the key. However,
while this direction of research has had some success, focusing on initialization alone ap-
pears to be inadequate. In this paper, we take a broader view of training sparse networks
and consider the role of regularization, optimization, and architecture choices on sparse
models. We propose a simple experimental framework, Same Capacity Sparse vs Dense
Comparison (SC-SDC), that allows for a fair comparison of sparse and dense networks.
Furthermore, we propose a new measure of gradient flow, Effective Gradient Flow (EGF),
that better correlates to performance in sparse networks. Using top-line metrics, SC-SDC
and EGF, we show that default choices of optimizers, activation functions and regularizers
used for dense networks can disadvantage sparse networks. Based upon these findings, we
show that gradient flow in sparse networks can be improved by reconsidering aspects of the
architecture design and the training regime. Our work suggests that initialization is only
one piece of the puzzle and taking a wider view of tailoring optimization to sparse networks
yields promising results.

1 Introduction

Over the last decade, a “bigger is better” race in the number of model parameters has gripped the field of
machine learning (Amodei et al., 2018; Thompson et al., 2020), primarily driven by overparameterized deep
neural networks (DNNs). Additional parameters improve top-line metrics, but drive up the cost of training
(Horowitz, 2014; Strubell et al., 2019) and increase the latency and memory footprint at inference time
(Warden & Situnayake, 2019; Samala et al., 2018; Lane & Warden, 2018). Moreover, overparameterized
networks are more prone to memorization (Zhang et al., 2016; Hooker et al., 2019).

To address some of these limitations, there has been a renewed focus on compression techniques that pre-
serve top-line performance, while improving efficiency. A considerable amount of research focus has cen-
tred on pruning, where weights estimated to be unnecessary are removed from the network at the end of
training (Louizos et al., 2017; Wen et al., 2016; Cun et al., 1990; Hassibi et al., 1993a; Ström, 1997; Hassibi
et al., 1993b; Zhu & Gupta, 2017; See et al., 2016; Narang et al., 2017). Pruning has shown a remarkable
ability to preserve top-line performance metrics, even when removing the majority of weights (Gale et al.,
2019; Frankle & Carbin, 2019). Furthermore, pruned networks also have faster training (Dettmers & Zettle-
moyer, 2019; Luo et al., 2017) and inference (Molchanov et al., 2016; Luo et al., 2017) times, while also
being more robust to noise (Ahmad & Scheinkman, 2019). Even with the substantial benefits of pruning,
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most pruning techniques still require training a large, overparameterized model before pruning a subset of
weights.

Due to the drawbacks of starting dense prior to introducing sparsity, there has been a recent focus on methods
that allow networks that start sparse at initialization, to converge to similar performance as dense networks
(Frankle & Carbin, 2019; Frankle et al., 2019b; Liu et al., 2018). These efforts have focused dispropor-
tionately on understanding the properties of initial sparse weight distributions that allow for convergence.
However, while this work has had some success, focusing on initialization alone has proved to be inadequate
(Frankle et al., 2020; Evci et al., 2019). Furthermore, certain aspects of sparse networks are poorly under-
stood, such as their sensitivity to learning rates, notably higher ones (Frankle & Carbin, 2019; Liu et al.,
2018; Frankle et al., 2019b). This hints to optimization in sparse networks not being well understood, even
though it appears to be critical to designing well-performing sparse networks.

In this work, we take a broader view of why training sparse networks to converge to the same performance
as dense networks has proved to be elusive. We reconsider many of the basic building blocks of the training
process and ask whether they disadvantage sparse networks or not. Our work focuses on the behaviour of
networks with random, fixed sparsity at initialization and we aim to gain further intuition into how these
networks learn. Furthermore, we provide tooling tailored to the analysis of these networks.

To study sparse network optimization in a controlled environment, we propose an experimental framework,
Same Capacity Sparse vs Dense Comparison (SC-SDC). Contrary to most prior work comparing sparse to
dense networks, where overparameterized dense networks are compared to smaller sparse networks, SC-SDC
compares sparse networks to their equivalent capacity dense networks (same number of active connections
and depth). This ensures that the results are a direct result of sparse connections themselves and not due
to having more or fewer weights (as is the case when comparing large, dense networks to smaller, sparse
networks).

Historically, exploding and vanishing gradients were a common problem in neural networks (Hochreiter
et al., 2001; Hochreiter, 1991; Bengio et al., 1994; Glorot & Bengio, 2010; Goodfellow et al., 2016). Recent
work has suggested that poor gradient flow is an exacerbated issue in sparse networks (Wang et al., 2020;
Evci et al., 2020). To this end, we go beyond simply comparing top-line metrics by also measuring the
impact on gradient flow of each intervention. To accurately measure gradient flow in sparse networks,
we propose a normalized measure of gradient flow, which we term Effective Gradient Flow (EGF) – this
measure normalizes gradient flow by the number of active weights and is thus better suited to studying the
training dynamics of sparse networks. We use this measure in conjunction with SC-SDC to see where sparse
optimization fails, and consider where this failure could be due to poor gradient flow.

Contributions Our contributions are enumerated as follows:

1. New Tooling to Study Sparse Network Optimization We conduct large-scale experiments to evaluate
the role of regularization, optimization and architecture choices on sparse models. We first introduce a
new experimental framework — Same Capacity Sparse vs Dense Comparison (SC-SDC) — that fairly
compares sparse networks to their equivalent capacity dense networks (same number of active connec-
tions, depth, and weight initialization). We also propose a new measure of gradient flow, Effective Gra-
dient Flow (EGF), that we show to be a stronger predictor, in sparse networks, of top-line metrics such as
accuracy and loss than current gradient flow formulations.

2. Batch Normalization Plays a Disproportionate Role in Stabilizing Sparse Networks We show that
batch normalization (BatchNorm) (Ioffe & Szegedy, 2015) is statistically more critical for sparse net-
works than for dense networks, suggesting that gradient instability is a key obstacle to starting sparse.

3. Not All Optimizers and Regularizers Are Created Equal We show that optimizers that use an expo-
nentially weighted moving average (EWMA) to obtain an estimate of the variance of the gradient, such
as Adam (Kingma & Ba, 2014) and RMSProp (Hinton et al., 2012), are sensitive to higher gradient flow.
This results in these methods, at times, having poor performance when used with L2 regularization or
data augmentation.

4. Changing Activation Functions Can Benefit Sparse Networks We benchmark a wide set of activation
functions, specifically ReLU (Nair & Hinton, 2010) and non-sparse activation functions, such as PReLU
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(He et al., 2015), Swish (Ramachandran et al., 2017), ELU (Clevert et al., 2015), SReLU (Jin et al., 2015)
and Sigmoid (Neal, 1992). Our results show that Swish is a promising activation function when using
adaptive optimization methods, while when using stochastic gradient descent (SGD), PReLU and Swish
both show promise. We also show that due to Swish’s non-monotonic formulation, it leads to better
gradient flow, which helps performance in the sparse regime.

Implications Our work is timely as sparse training dynamics are poorly understood. Most training algo-
rithms and methods have been developed to suit training dense networks. Our work provides insight into the
nature of sparse optimization. It suggests the need for a broader viewpoint beyond initialization to achieve
better performing sparse networks. Our proposed approach provides a more accurate measurement of the
training dynamics of sparse networks. This can be used to inform future work on the design of networks
and optimization techniques that are tailored explicitly to sparsity.

2 Methodology

In this paper, we study sparse network optimization and measure which architecture and optimization
choices favour sparse networks relative to dense networks. To this end, in the following sub-sections we
introduce Same Capacity Sparse vs Dense Comparison (SC-SDC) , a framework that we use to fairly com-
pare sparse and dense networks (Section 2.1) and Effective Gradient Flow (EGF), a better measure of gradient
flow in sparse networks to study network optimization (Section 2.2). We use both SC-SDC and EGF in con-
junction with test loss and accuracy to study the behaviour of these networks and better understand their
training dynamics (Section 4).

2.1 Same Capacity Sparse vs Dense Comparison (SC-SDC)

Figure 1: Same Capacity Sparse vs Dense Comparison (SC-SDC). SC-SDC is a simple framework that
fairly compares sparse and dense networks. This is done by ensuring that the compared sparse and dense
networks have the same number of active (nonzero) weights in each layer, and that these active weights are
initially sampled from the same distribution.

To fairly compare sparse and dense networks, we propose Same Capacity Sparse vs Dense Comparison
(SC-SDC), a simple framework that allows us to study sparse network optimization and identify which train-
ing configurations are not well suited for sparse networks.

SC-SDC can be summarized as follows (see Figure 1 for an overview):
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1. Initialize For a chosen network depth (number of layers) L and a maximum network width NMW , we
compare sparse network S and dense network D at various widths, while ensuring they have the same
parameter count. Initially, we mask the weights θS of sparse network S:

alS = θlS �ml , alD = θlD, for l = 1, . . . , L , (1)

where θlS �ml denotes an element-wise product of the weights θS of layer l and the random binary matrix
(mask) for layer l, ml, alS is the nonzero weights in layer l of sparse network S, and alD is the nonzero
weights in layer l of dense network D (all the weights since no masking occurs).

For a fair comparison, we need to ensure the same number of nonzero weights for sparse network S and
dense network D , across each layer L.

||alS ||0 = ||alD||0, for l = 1, . . . , L (2)

We provide more implementation details of how we achieve this in Appendix A.1.

2. Match active weight distributions Following prior work (Liu et al., 2018; Gale et al., 2019), we ensure
that the nonzero weights at initialization of the sparse and dense networks are sampled from the same
distribution at each layer as follows:

alS ∼ P l , alD ∼ P l, for l = 1, . . . , L , (3)

where P l refers to the initial weight distribution at layer l. This ensures that both sets of active weights
(sparse and dense) are initially sampled from the same distribution.

3. Train We then train the sparse and dense networks for the same number of epochs, allowing for conver-
gence (500 epochs for Fashion-MNIST, 1000 epochs for CIFAR-10 and CIFAR-100).

4. Evaluate the better architecture We gather the results across the different widths and conduct a paired,
one-tail Wilcoxon signed-rank test (Wilcoxon, 1945) to evaluate the better architecture. We have a sample
size of 30 networks for each test configuration. This comprises of five different network widths × three
independent training runs (different random seeds) × two architectures (sparse and dense variant).

Our null hypothesis (H0) is that sparse networks have similar or worse test accuracy than dense networks
(lower or the same median), while our alternative hypothesis (H1) is that sparse networks have better test
accuracy performance than dense networks of the same capacity (higher median). This can be formulated
as:

H0 : Sparse <= Dense , H1 : Sparse > Dense (4)

2.2 Measuring Gradient Flow

Gradient flow (GF) is used to study optimization dynamics and is typically approximated by taking the norm
of the gradients of the network (Pascanu et al., 2013; Nocedal et al., 2002; Chen et al., 2018; Wang et al.,
2020; Evci et al., 2020). Looking at gradient flow is particularly relevant in the context of sparse networks,
since they are sensitive to poor gradient flow (Wang et al., 2020; Evci et al., 2020). Hence this would be a
useful analysis tool for their optimization.

We consider a feedforward neural network f : RD → R, with function inputs x ∈ RD and network weights
θ. The gradient norm is usually computed by concatenating all the gradients of a network into a single
vector, g = ∂C

∂θ , where C is our cost function. Then the vector norm is taken as follows:

gfp = ||g||p , (5)

where p denotes the pth-norm and gfp is the gradient flow. Traditional gradient flow measures take the
L1 or L2 norm of all the gradients (Chen et al., 2018; Pascanu et al., 2013; Evci et al., 2020). Unless
gradients are masked before calculating the gradient flow, the standard gradient flow formulation could result
in gradients of masked weights, which do not influence the forward pass, being included in the formulation.
Furthermore, computing the L1 or L2 gradient norm by concatenating all the gradients into a single vector
gives disproportionate influence to layers with more weights.
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Effective Gradient Flow To address these shortcomings with the standard gfp measures, we propose a
simple modification of Equation 5, which we term Effective Gradient Flow (EGF), that computes the average,
masked gradient (only gradients of active weights) norm across all layers.

We calculate EGF as follows:

g = (
∂C
∂θ1
�m1,

∂C
∂θ2
�m2, . . . ,

∂C
∂θL

�mL) , (6)

EGFp =

L∑
n=1
||gn||p

L
, (7)

where L is the number of layers. For every layer l,
∂C
∂θl
� ml denotes an element-wise product of the

gradients of layer l,
∂C
∂θl

, and the mask ml applied to the weights of layer l. For a fully dense network, ml

is a matrix of all ones, since no gradients are masked.

EGF has the following favourable properties:

• Gradient Flow Is Evenly Distributed Across Layers EGF distributes the gradient norm across the layers
equally. This prevents layers with many weights from dominating the measure, and prevents layers with
vanishing gradients from being hidden in the formulation, as is the case with equation 5 (when all gradients
are appended together).

• Only Gradients of Active Weights Are Used EGF ensures that for sparse networks, only gradients of
active weights are used. Even though weights are masked, their gradients are not necessarily zero since
the partial derivative of the weight w.r.t. the loss is influenced by other weights and activations. Therefore,
even though the weight is zero, its gradient can be nonzero.

• Possibility for Application in Gradient-based Pruning Methods Tanaka et al. (2020) showed that
gradient-based pruning methods like GRASP (Wang et al., 2020) and SNIP (Lee et al., 2018), dispro-
portionately prune large layers and are susceptible to layer-collapse, which is when an algorithm prunes
all the weights in a specific layer. Since EGF is evenly distributed across layers, maintaining EGF (as
opposed to standard gradient norm) could be used as pruning criteria. Furthermore, current approaches
measuring or approximating the change in gradient flow during pruning in sparse networks (Wang et al.,
2020; Evci et al., 2020; Lubana & Dick, 2021), could benefit from this new formulation.

To evaluate EGF against other standard gradient norm measures, such as the L1 and L2 norm, we empirically
compare these measures and their correlation to test loss and accuracy. We take the average of the absolute
Kendall Rank correlation (Kendall, 1938), across the different experiment configurations. We follow a
similiar approach to Jiang et al. (2019), but unlike their work which has focused on correlating network
complexity measures to the generalization gap, we measure the correlation of gradient flow to performance
(accuracy and loss). We measure gradient flow at points evenly spaced throughout training.

Our results from Table 1 show that in sparse networks, EGF consistently has a higher average absolute
correlation to both test loss and accuracy. We see that EGF has similar correlation to standard gradient flow
measures in dense networks. This shows that the benefits of using EGF are more apparent when used in
conjunction with sparse networks, since EGF only considers the gradients of nonzero weights. Due to the
comparative benefits of EGF in sparse networks, we use it for the remainder of the paper to measure the
impact of interventions. We include experimental results using other gradient flow measures in Appendix B
for completeness.
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Measure Sparse Dense
Test Loss Test Accuracy Test Loss Test Accuracy

FM
N

IS
T ||g||1 0.355 0.316 0.365 0.354

||g||2 0.282 0.292 0.285 0.329
EGF1 0.419 0.373 0.365 0.354
EGF2 0.360 0.323 0.298 0.320

C
IF

A
R

-1
0 ||g||1 0.440 0.327 0.380 0.251

||g||2 0.447 0.308 0.355 0.290
EGF1 0.371 0.300 0.380 0.252
EGF2 0.451 0.332 0.363 0.287

C
IF

A
R

-1
00

||g||1 0.355 0.385 0.325 0.319
||g||2 0.373 0.393 0.357 0.385
EGF1 0.358 0.320 0.325 0.319
EGF2 0.402 0.396 0.359 0.382

Table 1: The Average Correlation Between Gradient Flow Measures and Generalization Performance.
We compare the average, absolute Kendall Rank correlation (Kendall, 1938) between different formulations
of gradient flow and generalization (test loss and test accuracy). The subscripts (1 or 2) denote the p-norm
(l1 or l2 norm). We see that for sparse networks, our proposed measure, EGF (Equation 6), consistently has
higher absolute correlation to performance compared to standard gradient flow measures (||g||1 and ||g||2,
Equation 5). For each dataset, we highlight the measure with the highest correlation to performance in bold.

3 Empirical Setting

3.1 Average EGF

To measure gradient flow, we use the Average EGF calculated at the end of 11 epochs, evenly spread through-
out the training. This is done because it would be computationally costly to calculate gradient norms at the
end of every epoch.

3.2 Architecture, Normalization, Regularization and Optimizer Variants

We briefly describe our key experiment variants below and also include for completeness all unique variants
in Table 2.

1. Activation Functions ReLU networks (Nair & Hinton, 2010) are known to be more resilient to
vanishing gradients than networks that use Sigmoid or Tanh activations, since they only result in
vanishing gradients when the input is less than zero, while on active paths, due to ReLU’s linearity,

Configuration Variants

Optimizers Adagrad, Adam, RMSProp, SGD and SGD with mom (0.9).

Regularization/Normalization
No Regularization (NR), Weight Decay (L2), Data Aug-
mentation (DA), Skip Connections (SC) and BatchNorm
(BN).

Number of hidden layers 1, 2 and 4.
Dense Width 308, 923, 1538, 2153 and 2768.
Activation functions ReLU, PReLU, ELU, Swish, SReLU and Sigmoid.
Learning rate 0.001 and 0.1.
Datasets Fashion-MNIST, CIFAR-10 and CIFAR-100.

Table 2: Network Configurations. Different network configurations for Sparse and Dense Comparisons.
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the gradients flow uninhibited (Glorot et al., 2011). Although most experiments are run on ReLU
networks, we also explore different activation functions, namely PReLU (He et al., 2015), ELU
(Clevert et al., 2015), Swish (Ramachandran et al., 2017), SReLU (Jin et al., 2015) and Sigmoid
(Neal, 1992).

2. Batch Normalization and Skip Connections We empirically explore the relative benefits of Batch-
Norm (Ioffe & Szegedy, 2015) and skip connections (Srivastava et al., 2015; He et al., 2016) across
dense and sparse networks.

3. Regularization Techniques We evaluate various popular regularization methods: weight decay/L2
regularization (λ = 0.0001) (Krogh & Hertz, 1992; Hanson & Pratt, 1989) and data augmentation
(random crops and random horizontal flipping (Krizhevsky et al., 2012)).

4. Optimization Techniques We benchmark the impact of the most widely used optimizers such as
minibatch stochastic gradient descent (SGD) (Robbins & Monro, 1951), minibatch stochastic gra-
dient descent with momentum (momentum term - 0.9) (Sutskever et al., 2013; Polyak, 1964), Adam
(Kingma & Ba, 2014), Adagrad (Duchi et al., 2011) and RMSProp (Hinton et al., 2012).

3.3 SC-SDC MLP Setting

We firstly use the SC-SDC empirical setting (Section 2.1) to evaluate which choices of optimizer, regulariza-
tion and architecture choices result in a statistically significant performance difference between sparse and
dense networks. We train 600 MLPs for 500 epochs on Fashion-MNIST (FMNIST) (Xiao et al., 2017) and
over 10 000 MLPs for 1000 epochs on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). We compare
sparse and dense networks across various widths, depths, learning rates, regularization and optimization
methods as shown in Table 2.

Dense Width Following from SC-SDC, these networks are compared at various network widths, specifically
a width of 308, 923, 1538, 2153, 2768 (10%, 30%, 50%, 70% and 90% of our maximum widthNMW (3076)
when using CIFAR datasets) as shown in Table 2. We use the term dense width to refer to the width of a
network if that network was dense. For example, when comparing sparse and dense networks at a Dense
Width of 308, this means the dense network has a width of 308, while the sparse network has a width of
NMW (3076), but has the same number of active connections as its dense counterpart. We provide more
details on Dense Width and other components of the SC-SDC implementation in Appendix A.1.

3.4 Extended CNN Setting

We also extend our experiments to CNNs and train 200 Wide ResNet-50 (WRN) models, specifically the
WRN-28-10 variant (Zagoruyko & Komodakis, 2016) for 200 epochs on CIFAR-100. We use the same
network training parameters used in the original paper (an initial learning rate of 0.1, dropped by 0.2 at
epochs 60,120 and 160, weight decay λ set to 0.0005 and a momentum term of 0.9).

4 Results and Discussion

We present our results studying sparse network optimization in MLPs, using SC-SDC and EGF. Furthermore,
we extend our results outside of SC-SDC, from MLPs to CNNs and from Random Pruning to Magnitude
Pruning.

For brevity, we use a shorthand notation for our different regularization/normalization methods — no reg-
ularization (NR), weight decay (L2), data augmentation (DA), skip connections (SC) and BatchNorm (BN).
When multiple of these methods are combined, we chain their abbreviations such as DA BN, which repre-
sents data augmentation and BatchNorm combined. Furthermore, for our discussion, we make a distinction
between optimization methods that use exponential weighted moving averages, also known as leaky averag-
ing, for estimates of the variance of their gradients (EWMA optimizers) - specifically Adam and RMSProp,
and methods which do not - Adagrad, SGD and SGD with momentum. We provide details on this distinction
in Appendix C.
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4.1 Comparison of Dense and Sparse Interventions Using SC-SDC

In this section, we use the results from SC-SDC to identify which optimization choices are currently well
suited for sparse networks and which are not. Most of the results discussed are achieved using four hidden
layers on CIFAR-100, while we provide the full set of results for Fashion-MNIST, CIFAR-10 and CIFAR-
100 in Appendix E.

4.1.1 Batch Normalization plays a disproportionate role in stabilizing Sparse Networks

BatchNorm ensures that the distribution of the nonlinearity inputs remains stable as the network trains,
which was hypothesized to help stabilize gradient propagation (gradients do not explode or vanish) (Ioffe &
Szegedy, 2015).

In Non-EWMA Optimizers, BatchNorm Favours Sparse Networks From Table 3a and 3b, we see that in
non-EWMA optimizers (Adagrad, SGD and SGD with momentum), BatchNorm is statistically more signif-
icant for sparse network performance than it is for dense networks. Without BatchNorm (configurations NR,
DA, L2 and SC), we see that sparse networks do not outperform their dense counterparts in test accuracy.
With the addition of BatchNorm, across high and low learning rates and at most configurations (except in
some cases where L2 is used), there is strong evidence that sparse networks outperform dense networks.

In EWMA Optimizers, BatchNorm Brings Sparse and Dense Networks Closer in Performance When
Adam or RMSProp are used as optimization algorithms, we see that sparse networks outperform dense
networks without BatchNorm (NR from Table 3a and 3b). When BatchNorm is added to these methods
(BN), we see that sparse networks lose their advantage and they perform similarly or slightly better than
their dense counterparts in test accuracy and gradient flow, as can be seen from Figure 2.

At Shallow Depths, BatchNorm is More Critical to Performance than Skip Connections Figures 2a
and 2c show that BatchNorm (BN) is more critical in terms of test accuracy than skip connections (SC).
Furthermore, we see that BatchNorm (BN) performs similarly, in terms of test accuracy, to skip connections
and BatchNorm combined (SC BN). This suggests that skip connections do not provide a performance
benefit when applied with BatchNorm. We believe this is due to the shallow depth of these networks (four
hidden layers), as skip connections have proved to be critical for deeper networks, even with BatchNorm
(Balduzzi et al., 2017; Yang et al., 2019; Labatie, 2019).

BatchNorm Stabilizes Gradient Flow Across all optimizers and learning rates, we see that when Batch-
Norm is used, it results in a lower, more stable EGF (Figures 2b and 2d), compared to the original network
without BatchNorm (comparing NR to BN, L2 to L2 BN, DA to DA BN and SC to SC BN). This further
emphasizes the importance of BatchNorm in stabilizing gradient flow.

4.1.2 EWMA optimizers are sensitive to high gradient flow

In EWMA Optimizers, L2 Regularization can hurt Network Performance For networks without Batch-
Norm and with L2 regularization (configuration L2), we can see from Figure 2a that when using adaptive
methods (Adagrad, Adam and RMSProp), L2 regularization mainly hurts sparse network performance. This
occurs particularly at high sparsity levels (a dense width of less than 2153). Conversely, equivalent capacity
and configured dense networks achieve a performance improvement with L2 regularization, compared to
their base configuration (comparing NR to L2).

For networks with BatchNorm, trained with EWMA optimizers, L2 regularization adversely affects both
sparse and dense network performance. From Figures 2c and 2d, we see that the addition of L2 (configu-
rations L2 BN and DA L2 SC BN) drastically decreases the accuracy of these networks. When we analyse
their EGF, from Figure 2d, we see that the addition of L2 consistently across all optimizers results in dis-
tinctively larger EGF values. This hints at EWMA optimizers being more sensitive to larger gradient norms
than other optimizers.

The poor performance of adaptive methods with L2 regularization (specifically EWMA optimizers) agrees
with Loshchilov & Hutter (2017). They proposed a different formulation of weight decay for Adam, named
AdamW, since the current L2 regularization formulation for adaptive methods could lead to weights with

8
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(a) Different Regularization Methods - Low learning rate (0.001)

NR DA L2 SC BN DA BN L2 BN SC BN

Adagrad 1.000 1.000 0.998 0.239 0.006 0.002 0.001 0.003
Adam 0.000 0.055 0.198 0.003 0.079 0.051 0.254 0.166
RMSProp 0.001 0.000 0.300 0.166 0.117 0.021 0.914 0.541
SGD 1.000 1.000 1.000 0.248 0.000 0.000 0.001 0.003
Mom (0.9) 1.000 1.000 1.000 0.999 0.001 0.000 0.007 0.008

(b) Different Regularization Methods - High learning rate (0.1)

BN DA BN L2 BN SC BN DA SC BN DA L2 SC BN

Adagrad 0.000 0.002 0.963 0.002 0.023 0.014
Adam 0.070 0.002 0.043 0.004 0.191 0.377
RMSProp 0.002 0.027 0.008 0.562 0.894 0.002
SGD 0.001 0.000 0.048 0.005 0.001 0.013
Mom (0.9) 0.001 0.002 0.488 0.003 0.005 0.212

(c) Different Activation Functions - High learning rate (0.1)

ReLU Swish PReLU SReLU Sigmoid ELU

Adagrad 0.023 0.005 0.050 0.182 0.568 0.003
Adam 0.191 0.182 0.039 0.062 0.005 0.000
RMSProp 0.894 0.167 0.002 0.012 0.997 0.153
SGD 0.013 0.027 0.005 0.078 0.030 0.056
Mom (0.9) 0.212 0.013 0.001 0.078 0.001 0.973

Colour Scale based on p-values : 0 .5 1
S > D S ≤ D

NR - No Regularization, BN - Batchnorm, SC - Skip Connections, DA - Data Augmentation, L2-
weight decay, D - Dense Networks and S - Sparse Networks.

Table 3: Wilcoxon Signed Rank Test Results for MLPs with Four Hidden Layers, Trained on CIFAR-
100. We show the results using different optimization and regularization methods, across various sparsity
levels as mentioned in Section 3.3. We use a p-value of 0.05, with the bold values indicating where we can
be statistically confident that sparse networks perform better than dense (reject H0 from 4). We also use a
continuous colour scale to make the results more interpretable. This scale ranges from green (0 - likely that
sparse networks perform better than dense) to yellow (0.5 - 50% chance that sparse networks perform better
than dense) to red (1 - highly likely that sparse networks do not outperform dense - cannot reject H0 from
4). The performance results for all these networks are present in Appendix E.

large gradients being regularized less. We experimentally verified this in Figure 23, showing that the
AdamW’s weight decay formulation has a lower EGF than the standard L2 formulation used in Adam,
and this correlates to better network performance in AdamW.

Data Augmentation Favours Non-EWMA Optimizers When networks are trained with data augmentation
and without BatchNorm (configuration DA), we see poor test accuracy for EWMA optimizers, across sparse
and dense networks (Figure 2a). With the addition of BatchNorm (configuration BN DA), when using a
low learning rate, we see that data augmentation benefits all optimizers (Figure 2a). This behaviour differs
when using a high learning rate (Figure 2c), where data augmentation results in a higher gradient flow in all
optimizers (comparing BN to DA BN). This then results in lower performance in EWMA optimizers, further
emphasizing the sensitivity of these optimizers to higher gradient flow.
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(a) Test Accuracy - Low learning rate (0.001) (b) Gradient Flow - Low learning rate (0.001)

(c) Test Accuracy - High learning rate (0.1) (d) Gradient Flow - High learning rate (0.1)

NR - No Regularization, BN - Batchnorm, SC - Skip Connections, DA - Data Augmentation and L2- weight
decay.

Figure 2: Test Accuracy and Gradient Flow in Sparse and Dense MLPs. We study the effect of different
regularization and optimization methods on test accuracy and average gradient flow, across different learning
rates. We see that for Adam, a higher gradient flow tends to correlate to poor performance. The results for
all optimizers can be found in Figures 19 and 21.

For non-EWMA optimizers, data augmentation consistently increases performance, even with a higher
learning rate and higher EGF, which suggests data augmentation is better suited for these methods.

EWMA Optimizers Struggle with High Gradient Flow If we take a closer look at the gradient flow,
through the average EGF (Figures 2b and 2d), we see that for EWMA optimizers the worst performing
variants (L2, NR, DA, L2 BN and DA L2 SC BN) consistently have a relatively high EGF, while the best
performing interventions (BN, BN SC and DA BN SC) have a lower EGF. This is also true of different ac-
tivation functions, where the worst performing activation function when using Adam, SReLU, also has the
highest EGF (Figure 3).

In non-EWMA optimizers, a higher gradient flow does not consistently lead to poor performance. This hints
that the higher effective learning rates of EWMA optimizers can be problematic during training, primarily
when used in conjunction with methods that result in high EGF. The sensitivity of networks trained with
EWMA optimizers, particularly sparse networks, to L2 and data augmentation suggests that, in their current
formulation, these methods are not adequate for sparse networks.

4.1.3 The potential of non-sparse activation functions - Swish and PReLU

We also explore the impact of different activation functions - specifically PReLU (He et al., 2015), ELU
(Clevert et al., 2015), Swish (Ramachandran et al., 2017), SReLU (Jin et al., 2015) and Sigmoid (Neal,
1992) - on network performance. The best regularization configuration for each optimizer was chosen.

10



USING GRADIENT FLOW TO STUDY SPARSE NETWORK OPTIMIZATION

(a) Test Accuracy (b) Gradient Flow

Figure 3: Effect of Activation Functions on Accuracy and Gradient Flow on CIFAR-100, With a Low
Learning Rate (0.001). We see that Swish is the most promising activation function across most optimizers.
The results across all optimizers and learning rates are shown in Figure 20 and 22.

From Table 3c and 6b, we see that Swish and PReLU consistently favour sparse networks across most
optimizers in a statistically significant manner. From the performance results shown in Figures 3a, 20 and
22, we see that Swish and PReLU are the most promising activation functions, with Swish being the best
performing activation function in adaptive methods, and PReLU achieving promising results for networks
trained with SGD.

In Appendix D, we plot the different activation functions (Figure 14a) and their gradients (Figure 14b).
We see that although most activation functions, apart from ReLU, are non-sparse (do not have zero gra-
dients), Swish is the only activation function that allows for the flow of negative gradients due to its non-
monotonicity. This leads to Swish having a lower, more stable gradient flow (Figures 3b, 20 and 22), which
could explain some of its success, particularly for EWMA optimizers. We continue to see a consistent trend
in EWMA methods that higher EGF values, for example in SReLU, correspond to poor performance, while
promising methods, such as Swish, result in a lower EGF.

We also see that the behaviours mentioned in this section are also present in CIFAR-10 and FMNIST (Table
4 and 5, Figures 15 and 19).

4.2 Generalization of results across architecture types - Wide ResNet-50

We move on from SC-SDC and extend our results to more complicated, convolutional architectures. We
train Wide ResNet-50 (the WRN-28-10 variant) (Zagoruyko & Komodakis, 2016) on CIFAR-100. We note
from Figure 4 that most of our results from SC-SDC also hold on Wide ResNet-50, specifically that L2
regularization (even with BatchNorm) hurts performance for adaptive methods (Adagrad and Adam) and
also results in higher EGF values (Figure 24). Furthermore, we see that Swish is a promising activation
function for adaptive methods and leads to lower EGF (Figure 24). Finally, we see that the combination of
Swish and AdamW (configuration Swish (AdamW)) achieve good performance for Adam, showing that the
AdamW (weight decay) results from SC-SDC are also consistent in Wide ResNet-50. These results show
that the SC-SDC results are not constrained to small scale experiments and that they can be used to learn
about the dynamics of larger, more complicated networks.

4.3 Generalization of results from Random Pruning to Magnitude Pruning

We briefly validate if some of our results achieved through random pruning, extend to magnitude pruning
(Zhu & Gupta, 2017; Han et al., 2015). For a comparable experimental setting to section 4.2, we train dense
Wide ResNet-50 for 100 epochs (50% of the training time) and use magnitude pruning to achieve the desired
sparsity, and then fine-tune for the remaining 100 epochs. From Figures 5a and 5b, we see that although
it appears magnitude pruned networks are more susceptible to vanishing gradients, these networks behave
similarly to randomly pruned networks. In these networks, L2 regularization leads to high EGF values
(L2 BN and DA L2 SC BN), which correlates to poor performance for EWMA optimizers (Adam). This
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provides evidence that some of the results achieved on random, sparse networks also extend to magnitude
pruned networks.

Figure 4: Wide ResNet-50 Test Accuracy on CIFAR-100. We see that the results achieved on MLPs, using
SC-SDC, are also consistent in CNNs. The densities range from 1% to 100% (fully dense) and the gradient
flow results can be found in Figure 24.

(a) Test Accuracy - Magnitude Pruning (b) Gradient Flow - Magnitude Pruning

Figure 5: Accuracy and Gradient Flow for Magnitude Pruning. We see that similarly to randomly pruned
networks, magnitude pruned networks trained with Adam and L2 lead to high EGF and poor performance.

5 Related work

Pruning at Initialization Methods that prune at initialization aim to start sparse, instead of first pre-training
an overparameterized network and then pruning. These methods use certain criteria to estimate which
weights should remain active at initialization. This criteria includes using the connection sensitivity (Lee
et al., 2018), gradient flow (via the Hessian vector product) (Wang et al., 2020) and conservation of synaptic
saliency (Tanaka et al., 2020).

Pruning during Training Another branch of pruning is Dynamic Sparse Training, which uses information
gathered during the training process, to dynamically update the sparsity pattern of these sparse networks
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(Mostafa & Wang, 2019; Bellec et al., 2017; Mocanu et al., 2018; Dettmers & Zettlemoyer, 2019; Evci et al.,
2019). While our work is motivated by the same goal of improving the performance of sparse networks and
allowing them to converge to the same performance as dense networks, we instead focus on the impact of
optimization and regularization choices on sparse networks.

Sparse Network Optimization as Pruning Criteria Optimization in sparse networks has often been ne-
glected in favour of studying network initialization. However, there has been work that has looked at sparse
network optimization from different perspectives, mainly as a guide for pruning criteria. This includes using
gradient information (Mozer & Smolensky, 1989; LeCun et al., 1989; Hassibi et al., 1993b; Karnin, 1990),
approximates of gradient flow (Wang et al., 2020; Dettmers & Zettlemoyer, 2019; Evci et al., 2020), and
Neural Tangent Kernel (NTK) (Liu & Zenke, 2020) to guide the introduction of sparsity.

Sparse Network Optimization to study Network Dynamics Apart from being used as pruning criteria,
optimization information has been used to investigate aspects of sparse networks, such as their loss landscape
(Evci et al., 2019), how they are impacted by SGD noise (Frankle et al., 2019a), the effect of different
activation functions (Dubowski, 2020) and their weight initialization (Lee et al., 2019). Our work differs
from these approaches as we consider more aspects of the optimization and regularization process in a
controlled experimental setting (SC-SDC), while using EGF to reason about some of the results.

6 Conclusions and Future Work

In this work, we take a more comprehensive view of sparse optimization strategies and introduce appropriate
tooling to measure the impact of architecture and optimization choices on sparse networks (EGF, SC-SDC).

Our results show that BatchNorm is critical to training sparse networks, more so than for dense networks,
as it helps stabilize gradient flow. Furthermore, we show that EWMA optimizers (Adam (Kingma & Ba,
2014) and RMSProp (Hinton et al., 2012)) are sensitive to high gradient flow (EGF). This results in these
optimizers, at times, performing poorly when used with L2 regularization or data augmentation. We also
show the potential of non-sparse activation functions for sparse networks such as Swish (Ramachandran
et al., 2017) and PReLU (He et al., 2015), with Swish’s non-monotonic formulation allowing for better
gradient flow. Finally, we show that our results extend to more complicated models, like Wide ResNet-50
(Zagoruyko & Komodakis, 2016) and popular pruning methods, such as magnitude pruning (Zhu & Gupta,
2017; Han et al., 2015).

We trust that this work emphasizes that initialization is simply one piece of the sparse network puzzle and
that a broader view of sparse network training is necessary for the benefits of sparsity to be fully realized.
Needless to say, this research is simply the start at investigating sparse network optimization and does not
cover all questions related to it. Future directions could include using EGF and SC-SDC to study other
regularization methods, such as Dropout (Srivastava et al., 2014) or L1 regularization (Tibshirani, 1996),
or other normalization methods, such as Layer Normalization (Ba et al., 2016). Furthermore, these tools
could inspire novel pruning, regularization, or optimization techniques, that are grounded in stabilizing the
gradient flow in sparse networks.
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A SC-SDC

In this section, we provide more information about SC-SDC and its benefits.

A.1 SC-SDC implementation details

Wilcoxon Signed Rank Test SC-SDC uses the Wilcoxon Signed Rank Test as the statistical test to com-
pare sparse and dense networks. This test is a non-parametric statistical test that compares dependent or
paired samples, without assuming the differences between the paired experiments are normally distributed
(McDonald, 2009; Demšar, 2006).

Random Sparsity Our work focuses on the training dynamics of random, sparse networks. We achieve
random sparsity, by generating a random mask for each layer and then multiply the weights by this mask
during each forward pass. The sparsity is distributed evenly across the network. For example, a 20% sparse
MLP has 20% of the weights remaining in each layer.

Dense Width A critical component to how we specify our experiments is a term we define as dense width.
In order to fairly compare sparse and dense networks, we need them to have the same number of active
connections at each depth. In the case of sparse networks, this means ensuring they have the same number
of active connections as the dense networks, while remaining sparse. Dense width refers to the width of a
network if that network was dense. This process of comparing sparse and dense networks at different dense
widths is illustrated in Figure 7.

Fair Comparison of Sparse and Dense Networks As can be seen from Figure 7, SC-SDC ensures the exact
same active parameter count, but the sparse networks will be connected to more neurons. It is possible that
the increased number of activations being used can lead to sparse networks having higher representational
power. However, most work on expressivity of neural networks looks at this from a depth perspective and
proves certain depths of networks are universal approximators (Eldan & Shamir, 2016; Hornik et al., 1989;
Funahashi, 1989). To this end, we ensure these networks have the same depth, but we believe going forward
an interesting direction would be ensuring they have a similar amount of active neurons.

SC-SDC Comparison Details For completeness, we provide more details of how we ensure sparse and
dense networks are of the same capacity.

Following from Equation 2, to ensure the same number of weights in sparse and dense networks, we can
ensure they have the same number of active weights at each layer as follows:

||alS ||0 = ||alD||0, for l = 1, . . . , L , (8)

where alS is the nonzero weights in layer l of sparse network S and alD is the nonzero weights in layer l of
dense network D (all the weights since no masking occurs).

This is achieved by masking each of the weight layers of sparse network S:

alS = θlS �ml for l = 1, . . . , L , (9)

where ml is a random binary matrix (mask) for layer l, s.t. ||ml||0 = ||alD||0, where ||alD||0 is the number
of active (nonzero) weights in the dense network and is determined by the chosen comparison width.

For SC-SDC, we need a maximum network width NMW and comparison width NW . We choose a max
network width NMW of n + 4, where n is the input dimension of the network. In the case of CIFAR,
n = 3072 and so our maximum width NMW = 3076. The choice of n + 4 follows from Lu et al. (2017),
where the authors prove a universal approximation theorem for width-bounded ReLU networks, with width
bounded to n + 4. Our comparison width, NW , is equivalent to dense widths we vary in our experiments
- 308, 923, 1538, 2153, 2768 (10%, 30%, 50%, 70% and 90% of our maximum width NMW (3076) when
using CIFAR datasets).

The dimensions of each of layers of the different networks, S (sparse) and D (dense), are as follows:

1. First Layer:
θ1D ∈ RI×NW , θ1S ∈ RI×NMW , m1 ∈ {0, 1}I×NMW (10)
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2. Intermediate Layers:

θ1S ∈ RNW×NW , θ1S ∈ RNMW×NMW , m{2,...,L−1} ∈ {0, 1}NMW×NMW (11)

3. Final Layer:

θLS ∈ RNW×O , θLS ∈ RNMW×O , mL ∈ {0, 1}NMW×O (12)

, whereNMW is maximum width of the sparse layer, NW is the comparison width, I is the input dimension,
O is output dimension, L is the number of layers in the network, θlS is the weights in layer l of sparse
network S and θlD is the weights in layer l of dense network D.

This process would be the same for convolutional layers, but there would be a third dimension to handle the
different channels. In Figure 6, we provide an illustrative example showing how to ensure sparse and dense
networks are compared fairly.

Figure 6: Fair Comparison of Sparse and Dense Networks. We fairly compare sparse and dense networks,
by ensuring they have the same number of connections per layer and turning off the bias unit.

A.2 Benefits of SC-SDC

The benefits of SC-SDC can be summarized as follows:

• We can better understand sparse network optimization. SC-SDC allows us to identify which
optimization or regularization methods are poorly suited to sparse networks in a controlled setting,
ensuring the results are a direct result of the sparse connections themselves.

• Learn at what parameter and size budget, sparse networks are better than dense. Comparing
sparse and dense networks of the same capacity allows us to see which architecture is better at dif-
ferent configurations. In configurations where sparse architectures perform better, we could exploit
advances in sparse matrix computation and storage (Zhao et al., 2018; Merrill & Garland, 2016; Ma
et al., 2019; Zhang et al., 2019b, 2020) to simply default to sparse architectures.
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Figure 7: Fairly Comparing Sparse and Dense Networks at Different Widths. We show how we ensure
that sparse and dense networks have the same parameter count, at different widths.

B Gradient Flow

In the main body of the paper, we use EGF2 (Equation 6) as our notion of gradient flow for its comparative
benefits with other measures of gradient flow. In this section, for completeness, we present the full set of
results using the different formulations of gradient flow on CIFAR-100. Namely, we show ||g||1 (Equation
5) (Figure 9 and 12) ,||g||2 (Equation 5) (Figure 10 and 13) and EGF1 (Equation 6) (Figure 8 and 11).

C Adaptive Methods

Not all adaptive methods are created equally. We briefly show the different update rules of the adaptive
learning rate methods we use in our experiments. In Equations 13, we highlight that Adam and RMSProp
have the same second moment estimate vt , which uses an exponential weighted moving average (EWMA)
of past squared gradients to obtain an estimate of the variance of the gradient, which differs from Adagrad’s
vt .
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Figure 8: Gradient Flow in CIFAR-100 using EGF1, with low learning rate (0.001)

Figure 9: Gradient Flow in CIFAR-100 using ||g||1, with low learning rate (0.001)

Adagrad RMSProp Adam
vt = vt−1 + g2

t vt = γvt−1 + (1− γ)g2
t mt = β1mt−1 + (1− β1)gt

wt = wt−1 −
η√

vt + ε
� gt wt = wt−1 −

η√
vt + ε

� gt vt = β2vt−1 + (1− β2)g2
t

mt =
mt

1− β1
vt =

vt

1− β2
g′t =

ηm̂t√
v̂t + ε

wt = wt−1 − g′t
(13)
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Figure 10: Gradient Flow in CIFAR-100 using ||g||2 , with low learning rate (0.001)

Figure 11: Gradient Flow in CIFAR-100 using EGF1, with high learning rate (0.1)

where gt are the gradients of a network, mt is the estimate of the first moment of the gradient, vt is the
estimate of the second moment of the gradient, η is the learning rate, β1,β2,γ are weighting parameters.

This difference between EWMA optimizers (Adam and RMSProp) and Adagrad is two-fold:

1. Adagrad’s vt is evenly weighted between the current squared gradient g2
t and the previous value

of vt. Adam and RMSProp’s vt use 0.9 (Hinton et al., 2012) or 0.999 (Kingma & Ba, 2014) as a
weighting parameter for the past vt, which weights past vt−1 more than gt.

2. Adagrad’s vt grows almost linearly over time (Zhang et al., 2019a), which results in fast decline in
learning rate (a higher vt results in a smaller effective learning rate since η is divided by vt). Since
Adam and RMSProp’s vt is multiplied by a weighting factor, this value decreases over time. This
occurs even if we choose a weighting factor of 0.5, since both vt and gt will be multiplied by 0.5. A
smaller vt , results in a higher effective learning rate, meaning learning rates stay higher for longer.
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Figure 12: Gradient Flow in CIFAR-100 using ||g||1, with high learning rate (0.1)

Figure 13: Gradient Flow in CIFAR-100 using ||g||2 , with high learning rate (0.1)

We believe the higher effective learning rate (point 2) is why Adam and RMSProp behave similarly in
some contexts. Furthermore, it has been noted that at times, when the vt estimate blows up, it can cause
optimizers to fail to converge (Zaheer et al., 2018; Zhang et al., 2019a). vt is also present in the formulation
of Adadelta (Zeiler, 2012).

D Activation Functions

We plot the activation functions we used (Figure 14a) and their gradients (Figure 14b).

E Detailed Results for SC-SDC

In this section, we present the detailed results for our experiments. For the tables, we use the following
colour scale, depending on the p-value from the Wilcoxon Signed Rank Test.

Colour Scale based on p-values: 0 .5 1
S > D S ≤ D
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where S refers to sparse networks and D refers to dense networks.

E.1 Detailed Results

We present the detailed results as follows:

1. FMNIST
1.1. All SC-SDC results for Four Hidden Layers with different regularization methods - Table 4.
1.2. Effects of Regularization with a low learning rate (0.001) - Figure 15.

2. CIFAR-10
2.1. All SC-SDC results for Four Hidden Layers with different regularization methods - Table 5.
2.2. Effects of Regularization with a low learning rate (0.001) - Figure 16.
2.3. Effects of Regularization with a high learning rate (0.1) - Figure 17.
2.4. Effects of Activations with a low learning rate (0.001) - Figure 18.

3. CIFAR-100
3.1. Detailed Results with a low learning rate (0.001)

i. One, Two and Four hidden layers showing all forms of regularization - accuracy and gra-
dient flow (Figure 19).

ii. Four Hidden Layers with different activation functions - accuracy and gradient flow (Figure
20).

iii. All SC-SDC results for Four Hidden Layers with different regularization and activation
methods- Table 6.

3.2. Detailed Results with a high learning rate (0.1)
i. Four Hidden Layers with BatchNorm - accuracy and gradient flow (Figure 21).

ii. Four Hidden Layers with different activation functions - accuracy and gradient flow (Figure
22).

iii. Adam vs AdamW - accuracy and gradient flow (Figure 23).
iv. Gradient Flow for Wide ResNet-50 - Figure 24.

(a) Activation Function with inputs [-5,5] (b) Derivative of Activation Function with inputs [-5,5]

Figure 14: Plot of Activation Functions. We plot the activation functions we used and their derivatives.
We see that Swish is the only activation function that allows for the flow of negative gradients, due its
non-monotonicity.
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NR Relu L2 Relu DA Relu SC Relu BN Relu DA SC BN Relu DA L2 SC BN Relu

Adagrad 0.993 0.992 1.000 0.941 0.001 0.001 0.000
Adam 0.170 0.995 0.088 0.012 0.020 0.000 0.076
Mom (0.9) 1.000 0.991 1.000 0.924 0.000 0.008 0.008

Table 4: Wilcoxon Signed Rank Test Results for MLPs With Four Hidden Layers, With a Low Learn-
ing Rate (0.001), trained on FMNIST.

(a) Different Regularization Methods - Low learning rate
(0.001)

NR DA L2 SC BN

Adagrad 0.555 0.681 0.999 0.271 0.000
Adam 0.024 0.001 0.681 0.000 0.000
RMSProp 0.000 0.598 0.866 0.001 0.005
SGD 1.000 1.000 1.000 0.000 0.000
Mom (0.9) 1.000 0.862 1.000 0.995 0.001

(b) Different Regularization Methods - High learning rate
(0.1)

BN DA BN L2 BN SC BN

Adagrad 0.001 0.063 0.953 0.000
Adam 0.009 0.001 0.074 0.000
RMSProp 0.227 0.375 0.219 0.037
SGD 0.000 0.500 0.289 0.000
Mom (0.9) 0.000 0.024 0.004 0.000

(c) Effect of Different Activation Functions - High learning rate (0.001)

ReLU SReLU Swish PReLU

Adam 0.004 0.006 0.002 0.005
Mom (0.9) 0.000 0.053 0.002 0.001

Table 5: Wilcoxon Signed Rank Test Results for MLPs with Four Hidden Layers, trained on CIFAR-
10. Wilcoxon Signed Rank Test Results for CIFAR-10, using a p-value of 0.05, with the bold values indicat-
ing where we can be statistically confident that sparse networks perform better than dense (reject H0 from
4). We also use a continuous colour scale to make the results more interpretable. This scale ranges from
green (0 - likely that sparse networks perform better than dense) to yellow (0.5 - 50% chance that sparse
networks perform better than dense) to red (1 - highly likely that sparse networks do not outperform dense -
cannot reject H0 from 4).
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Figure 15: Effect of Regularization on Accuracy and Gradient Flow for Dense and Sparse Networks, with
Four Hidden Layers on FMNIST, with low learning rate (0.001)

(a) Test Accuracy for Dense and Sparse Networks on FMNIST

(b) Gradient Flow for Dense and Sparse Networks on FMNIST
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Figure 16: Effect of Regularization on Accuracy and Gradient Flow for Dense and Sparse Networks, on
CIFAR-10, with low learning rate (0.001)

(a) Test Accuracy for Dense and Sparse Networks

(b) Gradient Flow for Dense and Sparse Networks
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Figure 17: Effect of Regularization on Accuracy and Gradient Flow for Dense and Sparse Networks, with
Four Hidden Layers on CIFAR-10, with high learning rate (0.1)

(a) Test Accuracy for Dense and Sparse Networks

(b) Gradient Flow for Dense and Sparse Networks
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Figure 18: Effect of Activation Functions on Accuracy and Gradient Flow for Dense and Sparse Networks
with Four Hidden Layers on CIFAR-10, with low learning rate (0.001)

(a) Test Accuracy for Dense and Sparse Networks on
CIFAR-10

(b) Gradient Flow for Dense and Sparse Networks on
CIFAR-10

(a) Effect of Different Regularization Methods

NR DA L2 SC BN DA BN L2 BN SC BN DA SC BN DA L2 SC BN

Adagrad 1.000 1.000 0.998 0.239 0.006 0.002 0.001 0.003 0.001 0.004
Adam 0.000 0.055 0.198 0.003 0.079 0.051 0.254 0.166 0.039 0.118
RMSProp 0.001 0.000 0.300 0.166 0.117 0.021 0.914 0.541 0.096 0.023
SGD 1.000 1.000 1.000 0.248 0.000 0.000 0.001 0.003 0.001 0.004
Mom (0.9) 1.000 1.000 1.000 0.999 0.001 0.000 0.007 0.008 0.001 0.003

(b) Effect of Activation Functions

relu swish srelu prelu elu sigmoid

Adagrad 0.000 0.001 0.104 0.001 0.000 0.011
Adam 0.042 0.003 0.076 0.001 0.004 0.000
RMSProp 0.104 0.165 0.065 0.047 0.013 0.001
SGD 0.002 0.000 0.180 0.000 0.001 0.000
Mom (0.9) 0.001 0.000 0.054 0.000 0.000 0.054

Table 6: Wilcoxon Signed Rank Test Results for MLPs with Four Hidden Layers, with low learning
rate (0.001), trained on CIFAR-100. Wilcoxon Signed Rank Test Results for CIFAR-100, using a low
learning rate. We use a p-value of 0.05, with the bold values indicating where we can be statistically
confident that sparse networks perform better than dense (reject H0 from 4). We also use a continuous
colour scale to make the results more interpretable. This scale ranges from green (0 - likely that sparse
networks perform better than dense) to yellow (0.5 - 50% chance that sparse networks perform better than
dense) to red (1 - highly likely that sparse networks do not outperform dense - cannot reject H0 from 4).
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Figure 19: Effect of Regularization on Accuracy and Gradient Flow for Dense and Sparse Networks with
One, Two and Four Hidden Layers on CIFAR-100, with low learning rate (0.001)

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100
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Figure 20: Effect of Activation Functions on Accuracy and Gradient Flow for Dense and Sparse Networks
with Four Hidden Layers on CIFAR-100, with low learning rate (0.001)

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100
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Figure 21: Effect of Regularization (with BatchNorm) on Accuracy and Gradient Flow for Dense and Sparse
Networks, with Four Hidden Layers on CIFAR-100, with high learning rate (0.1)

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100
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Figure 22: Effect of Activation Functions on Accuracy and Gradient Flow for Dense and Sparse Networks
with Four Hidden Layers on CIFAR-100, with high learning rate (0.1)

(a) Test Accuracy for Dense and Sparse Networks on CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on CIFAR-100
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Figure 23: Comparison of Adam and AdamW for Dense and Sparse Networks. We compare the perfor-
mance of Adam and AdamW for dense and sparse Networks with four hidden layers on CIFAR-100, with a
high learning rate (0.1). We see that AdamW’s weight decay formulation has a lower EGF than the standard
L2 formulation used in Adam and this correlates to better network performance in AdamW

(a) Test Accuracy for Dense and Sparse Networks on
CIFAR-100

(b) Gradient Flow for Dense and Sparse Networks on
CIFAR-100

Figure 24: Wide ResNet-50 Gradient Flow on CIFAR-100. We illustrate the gradient flow of Wide
ResNet-50 on CIFAR-100, with the density ranging from 1% to 100%. The accuracy results can be found
in Figure 4.
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