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Abstract  Invasive species management is often 
constrained by limited resources and complicated by 
ecological and socio-economic variability across land-
scapes, leading to inconsistent outcomes. We use water 
hyacinth (Pontederia crassipes) in South Africa as a 
case study to demonstrate how combining earth obser-
vation (EO) data, species distribution models (SDMs), 
and explainable artificial intelligence (xAI) can sup-
port more spatially explicit and context-sensitive man-
agement strategies. Despite decades of control efforts, 

water hyacinth remains widespread, with its prolifera-
tion shaped by ecological and socio-economic contexts 
in which the weed proliferates. Using SHapley Addi-
tive exPlanations (SHAP), we studied the environmen-
tal and socio-economic contexts impacting water hya-
cinth prevalence across multiple spatial scales in South 
Africa. Consistent patterns emerged with known physi-
ological constraints, such as minimum temperature, 
while novel spatial trends were revealed—highlighting 
temperature effects along the coast and the role of vege-
tation type in inland regions. These insights offer oppor-
tunities for targeted fieldwork to investigate emergent 
non-linear relationships and interaction effects between 
covariates. The spatially explicit outputs, covering all 
South African water bodies, provide a low-cost, scal-
able tool to guide the prioritization of risk, inform 
monitoring and early detection efforts, and support the 
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selection of locally appropriate management strate-
gies. While focused on water hyacinth, our approach is 
generalizable to other invasive species, illustrating the 
value of integrating EO data and xAI to enhance under-
standing of species-environment dynamics and enable 
adaptive, data-driven intervention planning.

Keywords  Satellite · Remote sensing · Google 
Earth Engine · Explainable artificial intelligence · 
Habitat suitability · Biological invasions

Introduction

Biological invasions impose significant economic, 
ecological, and societal costs (Cuthbert et  al., 2022; 
Diagne et  al., 2020). Species distribution models 
(SDMs) are widely used to estimate the potential dis-
tribution of invasive species within their non-native 
range and under projected climate change scenar-
ios (Barbet-Massin et  al., 2018; Elith, 2017). While 
machine learning models are frequently employed 
for this purpose (Elith, 2017), they are often discour-
aged when the primary objective is to understand the 
mechanistic relationships between an invasive species 
and its biotic or abiotic environment, due to their ten-
dency to function as black-box models that typically 
exhibit good predictive performance but with a trade-
off in interpretability. To address this limitation, the 
field of explainable artificial intelligence (xAI), which 
focuses on making the inner workings and decision 
processes of complex models more transparent, has 
introduced two widely used post hoc tools: feature 
importance and partial dependence plots (Ryo et al., 
2021). Feature importance attributes the relative 
importance of covariates in discerning species pres-
ence from absence, while partial dependency plots 
elucidate the relationship between a covariate and 
the probability of a species occurrence. Despite the 
promise of these tools, both largely ignore the spatial 
dimension, leading to analyses that largely exclude 
the role of location and context (Roussel & Böhm, 
2023).

Incorporating spatially explicit information on 
how invasive species respond to environmental, 
socio-economic, and ecological factors across dif-
ferent locations would greatly enhance the selec-
tion of management interventions, guide efficient 
resource allocation, and improve risk-management 

strategies (McGeoch et  al., 2016). Resource alloca-
tion for weed control in invasive species management 
is complex, requiring strategic distribution of limited 
resources across multiple invasive species, extensive 
areas, diverse management jurisdictions, and various 
management strategies, often with limited informa-
tion on their context-dependent effectiveness (Baker, 
2017). A shift toward pre-emptive management 
requires understanding the ecological and socio-eco-
nomic contexts influencing the risk of invasive spe-
cies establishment and spread (John R Wilson et al., 
2005). Understanding where and why invasive spe-
cies occur can inform management planning by iden-
tifying (1) locations where specific interventions may 
be most appropriate, (2) areas unsuitable for current 
approaches that could be used to develop and test new 
management strategies, and (3) sites with high sus-
ceptibility to invasion that should be prioritized for 
early detection and monitoring efforts. Although our 
study does not incorporate data on management his-
tory during modeling, these speculative cases high-
light the potential value of spatially explicit species-
environment relationships to support intervention 
type, prioritization, and monitoring efforts (King, 
2011; Rainford et al., 2020).

While monitoring provides insights into new weed 
infestations and the actual alien plant’s distribution 
(Kilroy et al., 2008), modeling habitat suitability and 
susceptibility offers valuable predictions of the risk 
of future invasions. SDMs address this need by repre-
senting the relative likelihood of an alien plant estab-
lishing should the species be introduced to each loca-
tion in the modeled landscape (Barbet-Massin et al., 
2018; Briscoe Runquist et al., 2021; Elith, 2017). To 
model the combined risk of susceptibility and suit-
ability, SDMs have been extended to include features 
that influence the introduction and spread of species 
(e.g., distance to roads, and the presence/absence of 
other species as proxies for biotic interaction) (Kumar 
et al., 2014; Srivastava et al., 2019; Wisz et al., 2013). 
These enhanced models provide a more comprehen-
sive understanding of invasion risk, integrating both 
environmental suitability and potential pathways for 
species spread.

While a comprehensive Risk Analysis for Alien 
Taxon (RAAT) has been established (Kumschick 
et al., 2020), it is not suited to spatially explicit and 
fine-scaled risk quantification. Previous studies inves-
tigating the risk of invasive plant distribution shifts 
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under varying climate change scenarios have utilized 
mechanistic climate matching models (CLIMEX) 
(Kriticos & Brunel, 2016) and correlative SDMs 
(Kriticos & Brunel, 2016; Rodriguez-Merino et  al., 
2018). However, several challenges limit the appli-
cability of previous results, including the use of a 
restricted set of features during modeling (Ahmed 
et  al., 2020; Elith & Leathwick, 2009), reliance on 
presence-only data, and insufficient attention to spa-
tial autocorrelation and spatially explicit analyses of 
feature importance during model selection, feature 
selection, and model interpretability (Domisch et al., 
2019; Elith & Leathwick, 2009). The present study 
directly addresses all of these limitations by incorpo-
rating presence-absence data based on a pre-existing 
satellite-derived distribution of water hyacinth and 
a broader set of EO-derived datasets for predictors 
(Singh et al., 2020), accounting for spatial structure in 
the data, while applying spatially explicit techniques 
to interpret model outputs captured by an SDM.

Unlike field-based approaches, earth observation 
(EO) data—when combined with recent advances 
in explainable AI (xAI)—are well-suited for SDMs 
across large areas and multiple spatial scales (Cha 
et al., 2021). This advantage can be attributed to free 
EO data policies along with the global, systematic, 
and frequent acquisition of these data (e.g., Grill 
et al., 2019; Kennedy et al., 2019; Pekel et al., 2016). 
These developments have encouraged the creation 
of EO-derived data products that capture ecological, 
hydrological, climatological, social, and topographi-
cal phenomena across the Earth’s surface (Bradie & 
Leung, 2017; Braunisch et  al., 2013). Furthermore, 
the recent availability of free cloud computing infra-
structure and open-source libraries has significantly 
lowered the barriers to large-scale EO data analysis 
(Jordahl, 2014). This combination of accessible data 
and tools enables researchers to conduct comprehen-
sive, wide-ranging studies of invasive species distri-
butions with unprecedented detail and scale.

As a case study, we focus on water hyacinth Pon-
tederia (previously Eichhornia) crassipes (Pellegrini 
et  al., 2018), which is listed among the “100 of the 
world’s worst” invasive species by the IUCN. It is 
recognized as the most problematic Invasive Alien 
Aquatic Plant (IAAP) species in terms of its impacts 
and difficulty to manage (Vila & Ibáñez, 2011; Vil-
lamagna & Murphy, 2010). While water hyacinth was 
first recorded in South Africa in 1908, it has been 

the target of extensive management efforts since the 
1960 s (Bick et  al., 2020; J A Coetzee et  al., 2011; 
Miller et  al., 2021; Tipping et  al., 2020). Despite 
many efforts to eradicate and/or control the weed, 
water hyacinth proliferates and was estimated to cover 
417.7 km2 of South Africa during 2013 (Singh et al., 
2020). The inconsistent success in managing water 
hyacinth has been attributed to abiotic factors includ-
ing low temperature, wind conditions, excess water 
nutrient conditions, and the largely reactive nature 
of biological, mechanical, and chemical management 
strategies (Martin P Hill & Coetzee, 2017).

This study demonstrates, for the first time, the util-
ity of integrating a machine learning-based species 
distribution modeling (SDM) approach with a post 
hoc explainable AI tool—SHapley Additive exPlana-
tions (SHAP)—using EO-derived data products and 
cloud computing resources available through Google 
Earth Engine (GEE) to (1) determine the relative 
importance of biotic and abiotic factors likely influ-
encing the occurrence of water hyacinth across mul-
tiple spatial scales, from individual water bodies to 
provincial and national extents; (2) capture the rela-
tionship between socio-economic and environmental 
factors and the probability of water hyacinth occur-
rence; and (3) elucidate the influence of estimated 
interaction effects between variables on the probabil-
ity of water hyacinth occurrence. Together, these con-
tributions represent a low-cost, desktop-based method 
that provides spatially explicit information to support 
and guide management strategy selection, resource 
allocation, and risk management —an approach that 
is transferable to other invasive alien plant species.

Materials and methods

This study followed four distinct phases (Fig.  1). 
These include (1) preparation of water hyacinth 
occurrence data; (2) selection and preparation of per-
tinent features; (3) fine-tuning of the model param-
eters coupled with cross-validation; and (4) model 
explainability.

Water hyacinth occurrence data preparation

To support large-scale species distribution mod-
eling, we used a satellite-derived presence–absence 
map of water hyacinth as a spatially consistent and 
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cost-effective alternative to field-based surveys. 
Unlike presence-only data, which are limited by 
uncertain absences, prevalence distortion, and sam-
pling bias, presence–absence data allow the applica-
tion of balanced classification metrics. This includes 
the Matthews correlation coefficient (MCC) and 
F1-score that are robust to class imbalance—where 
the number of invaded water bodies (positives) is 
much smaller than the number of uninvaded ones 
(negatives)— and enable meaningful comparisons 
across time periods, regions, and species. Although 
satellite-derived presence–absence labels may con-
tain classification errors, we adopted conservative 
model selection and hyperparameter tuning strategies 
(described later) to reduce their influence.

The national water hyacinth distribution map was 
generated using a remote sensing approach devel-
oped by Singh et  al. (2020). Their method involved 

a three-stage process: first, surface water bodies were 
mapped using satellite-derived water indices; second, 
aquatic vegetation was identified within these areas 
using thresholding and segmentation techniques; and 
third, water hyacinth was distinguished from other 
aquatic vegetation types using a supervised classifi-
cation model trained on a combination of 98 in-field 
survey sites and environmental predictors, including 
topographical, climatic, and meteorological vari-
ables, as well as Landsat-8 spectral reflectance. For 
each site, all pixels containing aquatic vegetation 
were used to train a classification model at 30-m 
spatial resolution. The resulting map estimated that 
water hyacinth covered 2.69% of the total surface 
water area in South Africa in 2013, with a classifica-
tion accuracy of 80% based on the MCC (Appendix, 
Fig. 9). Areas with the highest infestation—reflecting 
both high hyacinth abundance and environmentally 

Fig. 1   The general workflow used in this study to determine 
the relative importance of likely drivers of water hyacinth 
occurrence. The workflow highlights three main types of com-

ponents: inputs (green) pre-processing and modeling processes 
(white), and outputs (gray)
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suitable conditions—were located in the Western 
Cape province, northeastern KwaZulu-Natal prov-
ince, and along the northern boundary of the Gauteng 
province (Fig. 2).

Given the limited number of high-quality, water 
body-level field observations (n = 98) relative to the 
large number of candidate environmental predic-
tors (n = 140), we used the satellite-derived distri-
bution from Singh et  al. (2020) to generate pres-
ence–absence labels suitable for model training. This 
decision was motivated by two factors. First, relying 
solely on the 98 water bodies would have increased 
the risk of overfitting, compromising model general-
izability (Johnstone & Titterington, 2009; Kwon & 
Sim, 2013). Second, the original classification was 
performed at the pixel level using reflectance data, 
whereas our modeling framework required covariates 
aggregated at the water body scale.

To ensure compatibility, we converted the 
predicted distribution to water body-level pres-
ence–absence labels by spatially joining the vector-
ised hyacinth map with the Global Surface Water 
dataset (Pekel et  al., 2016). Water bodies with any 
predicted hyacinth presence were classified as posi-
tive (n = 27,206), while those without were labelled 
negative (n = 221,164). This process yielded a spa-
tially extensive dataset appropriate for large-scale 
species distribution modeling and downstream 
analyses.

Feature selection and preparation

We considered a total of 140 features for this study 
(Table A1), selecting them based on their availabil-
ity as Earth Observation (EO) data products for South 
Africa and their documented influence on water 

Fig. 2   (a) Distribution of surface water area (km², source: 
Global Surface Water 2013) and the area of water hyacinth 
across South Africa (source: Singh et  al., 2020), aggregated 
at 1°, and (b) per province, showing the Western Cape, East-
ern Cape, and KwaZulu-Natal provinces as the most affected 
regions. Dark blue areas correspond to the largest water hya-
cinth infestations in the country. The inset legend shows the 
joint distribution of surface water area and water hyacinth area. 

Each color represents a unique combination of water hyacinth 
area (vertical axis, in km²) and total surface water area (hori-
zontal axis, scaled between 0 and 30 km²) per grid cell. Darker 
colors (e.g., purple) indicate areas with both extensive surface 
water and high water hyacinth abundance. The original fine-
scale (30  m) distribution of water hyacinth can be viewed in 
the Appendix, Fig. 9
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hyacinth. In addition to considering fine-class land 
cover (73 of 140 variables) and broad-class land cover 
(10 of 140) (GEOTERRAIMAGE, 2020), we also 
considered 57 other climatic (e.g., temperature, pre-
cipitation, frost and wind), socio-economic (e.g., rela-
tive wealth index, human modification index), eco-
logical and hydrological features (e.g., interspecies 
competition, runoff, flood risk and riparian soil nutri-
ents, Table A2). In instances where variables were 
not available for the year 2013, the closest temporal 
data was utilized (21 variables). Only data from 1970 
to 2019 were used in the analysis, with the exception 
of the soil organic carbon layer from SoilGrids, which 
includes fewer than 5% of in situ measurements col-
lected prior to 1960 (Poggio et al., 2021). For datasets 
not readily available within the Google Earth Engine 
(GEE) data catalogue or GEE community datasets 
(Roy et  al., 2023), datasets were downloaded (Table 
A1) and subsequently uploaded to GEE for analysis.

We extracted water body-level covariates by sum-
marizing values for each vectorized surface water 
polygon from the 2013 Global Surface Water dataset 
(Pekel et  al., 2016). For variables natively available 
at 30-m resolution—such as minimum temperature, 
elevation, and vegetation indices (e.g., EVI)—we 
computed the mean value across all pixels intersect-
ing each water body. Datasets with coarser native res-
olution were resampled to 30 m using bilinear inter-
polation within GEE, which automatically performs 
this resampling when computing zonal statistics at 
a specified scale. Since covariates were ultimately 
aggregated at the water body level, this resampling 
step was a technical convenience rather than a trans-
formation of pixel-level data used directly in mod-
eling. For landscape-context variables—including 
soil properties, flood risk, and nutrient levels—we 
applied a 5-km buffer around each water body and 
extracted mean values. For land cover, we calculated 
class-specific area totals within the buffer, avoid-
ing interpolation due to the categorical nature of the 
data. For area calculations, GEE internally reprojects 
datasets to an equal-area projection determined by the 
region of interest. All other geoprocessing used the 
default EPSG:4326 (WGS84) as the working coordi-
nate reference system. All input layers were provided 
in standard geospatial formats (GeoTIFF for rasters, 
shapefile for vectors); no non-spatial tabular for-
mats (e.g., CSV or TXT) were used. The covariates 

extracted at the polygon or buffer scale served as 
water body-level summaries for subsequent modeling.

Given the extensive array of environmental lay-
ers (n = 140), we implemented a reproducible proce-
dure to select features for modeling. Feature selec-
tion is beneficial because it (1) mitigates redundancy 
among features; (2) promotes model parsimony and 
computational efficiency; (3) reduces the risk of over-
fitting; (4) precludes a biased evaluation of feature 
importance; (5) mitigates the adverse impact of high 
dimensionality on model performance; and (6) sim-
plifies model interpretation (Chandrashekar & Sahin, 
2014; Guyon & Elisseeff, 2003). Our feature selection 
procedure consisted of three sequential steps: first, 
we excluded unsuitable features based on low vari-
ance; next, we removed redundant features by analyz-
ing their correlation with the remaining features; and 
finally, we eliminated features with low predictive 
power.

Step 1: Removal of irrelevant features

We excluded variables related to the count of con-
secutive nights with temperatures below 10  °C and 
the quantity of upstream rivers due to their low vari-
ance across water bodies, indicating limited predic-
tive power in modeling. Additionally, we removed 
irrelevant features, such as snow and moss cover frac-
tion derived from global, broad-class landcover data 
(Buchhorn et al., 2020), as these variables have lim-
ited relevance in the South African context.

Step 2: Selection of uncorrelated variables

To mitigate redundancy among the remaining 136 
layers, we conducted a selection of uncorrelated vari-
ables by retaining only those features with an abso-
lute pairwise correlation coefficient less than |0.7| 
with all other features for subsequent analyses (Dor-
mann et al., 2013). When a pair of features exceeded 
this correlation threshold, we manually selected the 
most appropriate feature. This manual selection ena-
bled us to prioritize features with higher spatio-tem-
poral resolution, future scalability, and global avail-
ability. For example, minimum temperature in the 
coldest month was sourced from the WorldClim v1 
dataset (1970–1990), which was the most recent ver-
sion available in GEE at the time of analysis. Despite 
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the temporal mismatch with our 2013 baseline, we 
retained this layer due to its widespread use, full spa-
tial coverage, and strong correlation with more recent 
MODIS-derived cold season metrics. The decision 
reflected a trade-off between temporal precision and 
practical considerations such as data availability 
and processing efficiency. While our study used the 
most accessible climatic and environmental predic-
tors available in GEE at the time, we acknowledge 
that newer high-resolution datasets, such as CHELSA 
V2.1, may offer improved accuracy and relevance for 
more recent timeframes. Future efforts should con-
sider integrating such updated sources, particularly 
for applications requiring contemporary climate base-
lines. This stage reduced the feature set to 103 vari-
ables, which we then subjected to the final stage of 
selection.

Step 3: Recursive feature elimination

The recursive feature elimination with cross-valida-
tion (RFECV) method we implemented effectively 
selects optimal feature sets for both tree-based and 
linear models (e.g. Gomes et  al., 2019; Pullanagari 
et  al., 2018). In our case, the algorithm initiates by 
fitting a random forest model with all 103 features, 
evaluating performance, and ranking feature impor-
tance. It then iteratively removes the least important 
features, re-fits the model, and evaluates it, continu-
ing this process until identifying an optimal set of 
covariates that do not decrease the F1 score. RFECV 
produced a final selection of 82 features for mod-
eling (Table A1). We chose RFECV over alterna-
tives like elastic net regularization because of its suit-
ability for non-linear problems and its compatibility 
with a block Cross-Validation (CV) approach, which 
accounts for spatial autocorrelation (Kuhn & John-
son, 2013; Roberts et al., 2017).

Cross‑validation (CV), model selection, and model 
tuning

To obtain realistic and generalizable performance 
estimates, it is essential to evaluate models using 
cross-validation. However, when applied to spatial 
data, conventional random k-fold cross-validation can 
lead to overly optimistic results, as the spatial auto-
correlation between training and test data allows mod-
els to exploit spatial proximity rather than learning 

true ecological relationships (Roberts et  al., 2017). 
Moreover, spatial variability in the density of invaded 
and uninvaded water bodies can result in an uneven 
distribution of classes across folds, further biasing 
performance estimates. Therefore, careful spatial par-
titioning is necessary to ensure that each fold repre-
sents a spatially independent and balanced subset of 
the data. This, in turn, avoids class imbalance and 
inflated spatial autocorrelation within folds, which 
may lead to artificially high model accuracy (Meyer 
et al., 2019; Ploton et al., 2020; Valavi et al., 2019). 
To address these issues, we adopted a block cross-
validation (CV) strategy, spatially aggregating pres-
ence/absence observations into 1° (∼111 km) blocks. 
This block size was selected for practical and com-
putational reasons, rather than being based on a spe-
cific ecological process such as organismal dispersal 
distance. We then randomly assigned these blocks to 
one of ten validation folds, ensuring that all instances, 
both presences and absences, within a block remained 
in the same fold (either training or validation, but not 
both) throughout model calibration and validation. 
This approach ensured a more balanced distribution 
between positive and negative classes and reduced 
spatial autocorrelation within each fold. During ten-
fold block CV, the model trained iteratively on nine 
folds, with validation on the remaining fold, repeating 
this process until each fold served as a validation set, 
collectively referred to as block CV. This approach 
differs from spatial thinning (e.g., via the spThin 
package (Aiello‐Lammens et  al. 2015)), which dis-
cards spatially proximate records, whereas block CV 
retains all records but partitions them into spatially 
structured folds to control for spatial dependence dur-
ing model evaluation. We applied block CV for model 
selection, feature selection, hyperparameter tuning, 
model evaluation, and model interpretation.

For assessing models fitted to imbalanced data-
sets—where the number of invaded water bodies 
(positives) is much smaller than the number of unin-
vaded ones (negatives)—we used precision, recall, 
F1-score, Matthews correlation Coefficient (MCC), 
and balanced accuracy as evaluation metrics. These 
metrics are particularly advantageous due to their 
reduced sensitivity to variations in the number of 
positive and negative instances (Chicco & Jurman, 
2020). All metrics range from 0 to 1, except for MCC, 
which ranges from − 1 to 1, with higher values indi-
cating better model performance.
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Precision measures the ratio of true positives (cor-
rectly classified water hyacinth infestations) to total 
predicted positives (both correctly and incorrectly 
classified infestations). Recall represents the ratio of 
true positives to all actual positives (correctly clas-
sified infestations and misclassified uninvaded water 
bodies). Precision is prioritized when the cost of mis-
classifying uninvaded water bodies as invaded (i.e., 
false positives) is high, while recall is prioritized 
when the cost of falsely classifying actual infesta-
tions as uninvaded (i.e., false negatives) is greater. 
In this study, we optimized the precision score dur-
ing model selection and hyperparameter tuning. This 
decision aimed to reduce the effect of false positives 
originating from the satellite-derived distribution 
used to define water hyacinth presence. Since the pri-
mary objective of our analysis was to generate inter-
pretable models (rather than operational detection), 
minimizing false associations between covariates and 
incorrectly labeled positive instances was critical. 
High precision ensures that the model is less likely to 
incorrectly identify a water body as infested, which 
improves the reliability of subsequent interpretabil-
ity analyses, such as SHAP-based feature attribution. 
However, if the model were to be used for risk map-
ping or surveillance planning, where the priority is to 
avoid overlooking actual infestations, then recall (sen-
sitivity) would be a more suitable optimization target. 
In such cases, the model would prioritize capturing as 
many true infestations as possible, even at the cost of 
more false positives. When both objectives—accurate 
explanation and robust detection—are equally impor-
tant, F1-score, which balances precision and recall, 
may offer a suitable compromise.

In the model selection stage, we evaluated 15 can-
didate machine learning classifiers implemented in 
the PyCaret Python package. These included ensem-
ble-based decision tree models (e.g., random forest, 
extra trees, gradient boosting, AdaBoost, CatBoost, 
and extreme gradient boosting), linear models (e.g., 
logistic regression, ridge classifier, linear and quad-
ratic discriminant analysis), support vector machines 
(SVM with a linear kernel), k-nearest neighbors, and 
probabilistic models such as Naive Bayes. The per-
formance of each model was assessed using multiple 
metrics (e.g., F1-score, MCC, precision, recall; see 
Table A3), leading to the selection of the random for-
est classifier as the optimal model based on mean pre-
cision score (Table A3 and Fig. 3). The random forest 

algorithm constructs an accurate classifier by aggre-
gating multiple weak classifiers, specifically decision 
trees (Breiman, 2001). The ensemble-based random 
forest algorithm randomly selects multiple subsets of 
explanatory variables to train distinct decision tree 
models. Each tree in the ensemble independently 
predicts whether a water hyacinth infestation exists 
within a water body, and the final prediction is based 
on the aggregated votes of all trees. Random forests 
have gained widespread use in species distribution 
modeling due to their robustness to overfitting, ability 
to handle nonlinear relationships, and effectiveness 
with high-dimensional data (Cutler et  al., 2007; Mi 
et al., 2017).

We optimized the hyperparameters of the random 
forest model using sequential model-based optimiza-
tion (SMBO), a computationally efficient alternative 
to exhaustive grid or random search methods (Wis-
tuba et al., 2015). SMBO iteratively identifies promis-
ing hyperparameter combinations based on expected 
improvements in model performance, reducing the 
number of evaluations required. The tuning process 
considered the number of trees in the forest, the maxi-
mum tree depth, the minimum number of samples 
required to split an internal node, the minimum num-
ber of samples required at a leaf node, and whether or 
not bootstrap sampling was used. The final selected 
values were 542 trees, no maximum depth, a mini-
mum of 2 samples to split a node, a minimum of 1 
sample at each leaf, and no bootstrap sampling. These 
values were chosen to maximize model performance 
on the training data and are not intended to generalize 
across different study systems.

Model explainability using SHAP

Model explainability was used to understand the driv-
ers of water hyacinth occurrence across South Africa. 
In this study, we use SHapley Additive exPlanations 
(SHAP) to quantify each feature’s contribution to the 
model’s predictions. SHAP was selected for its theo-
retical rigor and its flexibility in providing both local 
and global interpretability.

Overview of SHAP

SHAP is a post hoc interpretability tool that can be 
combined with any machine learning model com-
monly used in SDMs. The contributions of a feature 
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are computed by considering how the inclusion or 
exclusion of a feature changes the average model 
output, in our case the probability of water hyacinth 
occurrence at a water body (Lundberg et  al. 2020). 
SHAP is preferred and increasingly adopted for 
model interpretation across various domains (Roscher 
et al., 2020), including ecology (e.g., Cha et al., 2021; 
Wang et  al., 2021; Yu et  al., 2020), because of its 
theoretical justification (e.g., additivity and consist-
ency properties) and analytical advantages over other 
proposed xAI tools (e.g., local interpretable model-
agnostic explanations (LIME) and mean decrease in 
impurity (MDI) feature importance). SHAP ensures 
consistency between local and global interpretations 
by guaranteeing that the sum of a feature’s contri-
butions across all individual predictions matches its 
overall importance. This means features that have 
greater influence locally will also be ranked higher 
globally, making SHAP a reliable tool for both levels 
of model interpretation.

SHAP analysis for water hyacinth occurrence

We applied SHAP to understand how different envi-
ronmental features drive the occurrence of water hya-
cinth. By generating SHAP values for each instance 

and predictor, we gained insights into both local and 
global feature importance within our model. SHAP 
values provide three key analytical approaches in 
our study. Using partial dependence plots and SHAP 
value analyses, we evaluate how variation in each 
environmental feature alters the predicted suitability 
of a water body for water hyacinth and quantify the 
contribution of each feature to the overall model out-
put (Fig.  4). For local interpretation, Roodekoppies 
Dam was selected as the example due to its favora-
ble characteristics for remote sensing analysis: it is 
large enough to be reliably detected in medium-res-
olution satellite imagery and is located downstream 
from Hartbeespoort Dam—a known hotspot for water 
hyacinth invasion—within an agriculturally inten-
sive catchment. By summing SHAP values for each 
feature across all water bodies, we obtain a measure 
of how much each feature contributes to the model’s 
overall predictions. This allows us to rank features by 
their relative importance either at the national scale 
(i.e., across South Africa) or within specific cohorts 
of water bodies (e.g., grouped by province or water 
body type) (Fig.  5). Features with higher absolute 
SHAP values have a greater contribution to predict-
ing water hyacinth occurrence. Additionally, SHAP 
dependence plots enable us to interpret suitability 

Fig. 3   The distribution 
(blue) and box plots of the 
random forest model evalu-
ation metrics, post-hyper-
parameter optimization. 
Scores are based on ten fold 
block cross-validation. The 
metrics include precision, 
recall, F1-score, and the 
Matthews correlation coef-
ficient (MCC)
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responses to changing environmental conditions. 
These plots also reveal interactions among features by 
displaying vertical dispersion at specific feature val-
ues (Fig. 6).

We report SHAP values on a log odds scale 
to account for technical constraints in translating 
SHAP contributions to probability values. For ref-
erence, log odds of 0 correspond to a probability of 
approximately 0.5, while extreme values of − 5 and 5 
approach probabilities of 0 and 1, respectively.

Implementation details

All analyses were conducted in Python, using the 
GEE Python API (Gorelick et al., 2017). The geemap 
library (Wu, 2020) facilitated batch extraction of 
covariates from GEE for all water bodies. Feature 
selection was performed using the RFECV method 
from scikit-learn, and model selection and training 
were carried out with pycaret (Ali, 2020). Hyper-
parameter tuning was implemented using Hyperopt 
(Bergstra et al., 2015), and model interpretability was 
assessed using SHAP and fastTreeSHAP (Lundberg 

et  al. 2020). Figures and spatial visualizations were 
generated using matplotlib (Barrett et  al., 2005), 
seaborn (Waskom, 2021), geopandas (Jordahl, 2014), 
and contextily (Arribas-Bel, 2021).

Results

Model evaluation

Model accuracy is critical for ensuring the reliability and 
consistency of explanations across different explainable 
AI (xAI) methods (Liu & Udell, 2020). Higher accu-
racy typically correlates with better agreement among 
various xAI techniques. Our model exhibits good overall 
performance (Fig. 3), with an F1 score exceeding 0.7—a 
threshold commonly interpreted in the literature as 
indicative of strong predictive capability (Liu & Udell, 
2020). However, when evaluated using the Matthews 
correlation coefficient (MCC), the model’s effectiveness 
shows a slight decrease (Fig.  3, mean MCC = 0.688). 
This discrepancy can be attributed to difficulties in cor-
rectly classifying uninvaded water bodies.

Fig. 4   SHAP summary plot showing the top predictors influ-
encing the modeled probability of water hyacinth presence at 
Roodekoppies Dam, South Africa. The actual feature values 
for this dam are shown in gray to the left of each predictor 
label. The colored bars indicate the contribution (SHAP value) 
of each feature to the site-specific prediction (f(X) = 0.517) rel-
ative to the average prediction across all sites (E[f(X)] = 0.114). 
Features that increase site suitability (positive SHAP values) 

are shown in red, while those that reduce it (negative SHAP 
values) appear in blue. For instance, a relatively warm mini-
mum temperature in the coldest month (2.909  °C) has the 
greatest positive contribution (+ 0.13), while near-average 
precipitation (474.21  mm) slightly decreases site suitability 
(–0.03). Inset maps show the dam’s location, and the 2013 
accumulated water hyacinth cover is shown in green
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The MCC metric also exhibits greater variabil-
ity (Fig.  3), differing from the trends observed in 
other metrics. Notably, model precision is the high-
est metric (Fig. 3, mean = 0.890), indicating the cor-
rect identification of 89.0% of water hyacinth-invaded 
sites. This high precision is advantageous for under-
standing the presence of the species rather than its 
absence. The high precision score, accompanied by 
a relatively elevated false negative rate, reflects our 
decision to optimize the model for precision. This 
minimizes false positives—i.e., incorrectly predicting 
infestations where none exist—which is useful when 
using model-derived distributional data with inherent 
errors. However, this comes at the cost of increased 
false negatives, where some actual infestations may 
go undetected.

Local (per water body) interpretation

To evaluate the contributions of the final 82 selected 
variables to the occurrence of water hyacinth at spe-
cific sites, we used a waterfall plot (Fig. 4). At Rood-
ekoppies Dam, with a known water hyacinth infesta-
tion, the probability of occurrence is 0.517, notably 
higher than the average probability of 0.114 observed 
across all sites in South Africa. The primary factors 
promoting the occurrence of water hyacinth at Rood-
ekoppies Dam include a relatively high minimum tem-
perature of 2.9  °C during the coldest month and the 
presence of surface water for more than 9 months of 
the year. Conversely, the precipitation level of approx-
imately 474.21 mm—close to the national average of 
463.42 mm (World bank group, 2021)—is associated 

Fig. 5   Feature importance for the top 20 features used to clas-
sify the occurrence of water hyacinth, sorted by their mean 
contribution (absolute SHAP values) to predict water hyacinth 

presence across South Africa for 2013. Features show either a 
positive (orange) or a negative effect (green) on the probability 
of water hyacinth occurrence
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with lower suitability for water hyacinth proliferation. 
Presumably, low rainfall results in stranded plants 
(Venter et al., 2017), while high rainfall causes flood-
ing that washes out seeds and plants (J R Wilson et al., 
2000). Alternatively, low runoff results in nutrient lim-
itation (Carignan & Neiff, 1992). We use Roodekop-
pies Dam as a demonstrative example to illustrate the 
interpretability of SHAP at a local scale, given its con-
textual relevance and observed infestation dynamics.

Global feature importance

Among the 82 selected features, 60 (> 72%) are asso-
ciated with land use and land cover (LULC) (Fig. 5). 

This highlights the significant impact of surrounding 
land cover on the occurrence of water hyacinth. Nota-
bly, 38 of the 60 land use and land cover (LULC) fea-
tures (63%) are linked to human modification. How-
ever, among all predictors considered—including 
climatic, topographic, and LULC variables—the most 
significant predictor of water hyacinth presence was a 
climatic variable, the minimum temperature (Fig. 5).

Our findings highlight previously underexplored pre-
dictors of water hyacinth distribution, complementing 
the well-documented association with low temperatures 
(Byrne et  al., 2010; Gettys et  al., 2014). Specifically, 
our analysis indicates that moderate shrub cover within 
a 5-km buffer is more significant than tree and grass 

Fig. 6   SHAP depend-
ence plots with interaction 
effects illustrating the effect 
of the two most influential 
predictors of water hyacinth 
occurrence. (a) Minimum 
temperature in the coldest 
month (°C), and (b) Surface 
water persistence (months 
present). The x-axis shows 
the value of the predictor, 
while the y-axis indicates 
the SHAP value, represent-
ing the feature’s contribu-
tion to the model predic-
tion. Positive SHAP values 
correspond to an increased 
likelihood of infestation. 
Each point represents 
a water body, colored 
according to the value of 
the feature that explains the 
most remaining variance 
(blue–red). In (a), abrupt 
shifts in SHAP values are 
observed around 2.5 °C and 
5 °C, suggesting potential 
ecological thresholds. In 
(b), water bodies with high 
persistence (> 10 months) 
and warmer winter 
temperatures consistently 
show increased positive 
contributions compared to 
those with low persistence 
(< 2 months) and low tem-
peratures
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cover (Fig. 5). Moreover, water systems with low topo-
graphic shading effects and heterogeneous temperature 
and moisture conditions—characterized by low Con-
tinuous Heat Insolation Load Index (CHILI) values and 
high topographic diversity—enhance the suitability for 
water hyacinth occurrence (Appendix, Fig. 10a and b).

Feature dependence and interactions

SHAP dependency plots are a feature-level plot that 
displays points that correspond to individual sites, 
providing insights into how feature importance var-
ies as feature values change. The plots also color-code 
points based on the feature that explains the most 
significant variation among the remaining modeled 
features. This informative visualization serves as a 
valuable tool for discerning species-environment 
responses, pinpointing inflection points indicative 
of abrupt alterations in feature importance, and elu-
cidating interactions among factors potentially influ-
encing the occurrence of water hyacinth. Noteworthy 
instances include sharp increases in the contribution 
of minimum temperature to predicted water hyacinth 
suitability at approximately 2.5  °C and 5  °C. These 
thresholds suggest that water hyacinth is more likely 
to occur in areas where winter temperatures remain 
above these values—reflecting lower temperature 
limits for survival or growth—highlighting the spe-
cies’ sensitivity to cold stress. The inflection point 
situated at 2.5 °C assumes a greater degree of impor-
tance in constraining the occurrence of water hya-
cinth, as evidenced by SHAP values surpassing 0 
at temperatures exceeding 2.5  °C. At this threshold 
(~ 2.5 °C), a higher shrub cover fraction is correlated 
with an increased likelihood of water hyacinth occur-
rence, showing a stronger association than observed 
at the latter inflection point (~ 5 °C; Fig. 6a). Further-
more, surface water persistence exhibits a gradual 
positive correlation with water hyacinth occurrence 
(Fig.  6b). The combined influence of surface water 
persistence (represented along the x-axis) and warmer 
temperatures (denoted by pink-red colors) enhances 
the suitability of a water system for the proliferation 
of water hyacinth. Water hyacinth occurrence shows 
an interesting non-linear response to the human modi-
fication index (Appendix, Fig. 10d), indicating a dual 
influence of human modification as both a facilitator 
and constraining factor of water hyacinth occurrence.

Spatial distribution of features’ importance

To depict the spatial distribution of variable impor-
tance, the SHAP values of individual variables were 
aggregated at a 5-km block level (Fig. 7). This aggre-
gation was achieved by computing the mean SHAP 
value of each variable within the corresponding 
block. Notably, lower temperatures exhibit a nega-
tive correlation with the likelihood of water hyacinth 
occurrence. Moreover, the log odds of water hyacinth 
occurrence have a much more abrupt change (Fig. 7b) 
in relation to the temperature gradient (Fig. 7a). The 
low suitability of the country’s interior, based on 
minimum temperature, is also evident (Fig. 7b).

Warmer temperatures, as indicated by higher mini-
mum temperature values, are correlated with pre-
dicted water hyacinth suitability in coastal regions. In 
contrast, natural land cover features are more strongly 
associated with suitability in inland areas  (Fig.  8), 
such as the Free State, where the most influential 
variables include tree and shrub cover, as well as pre-
cipitation  (Fig.  5). Therefore, the hydrological and 
natural land cover groups emerge as the predominant 
predictor groups shaping the occurrence patterns of 
water hyacinth in this region. This map does not indi-
cate areas of model extrapolation as shown in a Mul-
tivariate Environmental Similarity Surface (MESS) 
map produced by Maxent (Elith et  al., 2010). Nor 
does it correspond to the “most dissimilar variable” 
plot commonly generated alongside MESS outputs, 
which identifies the covariate contributing most to 
environmental dissimilarity from the training data. 
Instead, this map identifies, for each spatial block, the 
covariate group with the highest average SHAP value, 
thus highlighting the dominant feature group associ-
ated with water hyacinth occurrence across regions.

Discussion

Identification of the most suitable management strategy 
for an IAP depends on understanding the behavior of 
the plant in various environmental and socio-economic 
contexts (John R Wilson et al., 2005). In this study, we 
leveraged pre-existing EO-derived datasets, SDMs, and 
SHAP to discern the relative importance of features that 
probably influence the distribution of water hyacinth in 
South Africa at multiple spatial scales.
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Fig. 7   The distribution of minimum temperature (a)— the top 
national predictive feature of water hyacinth occurrence and 
the SHAP values for minimum temperature (b) across South 
Africa. SHAP values greater than 0 correspond to areas where 

less extreme minimum temperature does not hinder the occur-
rence of water hyacinth (limited mainly to coastal areas), while 
the interior of the country experiences more extreme cold tem-
peratures, reducing the suitability for water hyacinth

Fig. 8   The distribution of the most important feature (feature 
with the highest mean SHAP value) promoting water hyacinth 
occurrence at South African water systems per (5 × 5  km) 
block across South Africa (a) and the proportion cover of each 
group (b). Gray areas correspond to areas of no surface water 

and therefore no data. For a list of the factors included in each 
of the six groups, refer to Table A4. Note that climatic factors 
dominate in the coastal regions, whereas non-climate variables 
dominate in the interior of the country
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Our analysis of species–environment interactions 
for water hyacinth aligns with the plant’s known 
environmental preferences, particularly its sensitivity 
to cold. The species rarely persists where minimum 
temperatures fall below 2.5  °C, with higher suit-
ability observed above 5–8  °C—thresholds that are 
consistent with experimental studies and the thermal 
limits of associated biocontrol agents (Gopal, 1987; 
King, 2011; Owens & Madsen, 1995). This research 
offers new quantitative insights into plant–environ-
ment interactions through a nationwide, spatially 
explicit analysis of water hyacinth occurrence. In 
addition to highlighting general correlations with 
environmental and socio-economic variables, the sig-
nificant variation in species–environment responses 
across provinces and sites emphasizes the value of 
interpretable models for guiding localized manage-
ment strategies.

The influence of climatic factors on water hyacinth 
distribution

Temperature

Temperature plays a critical role in shaping the 
growth, survival, and spread of water hyacinth, mak-
ing it one of the most thoroughly investigated envi-
ronmental variables of the species’ ecology (Gopal, 
1987; Owens & Madsen, 1995; John R Wilson et al., 
2005). Understanding this relationship is especially 
important for validating model outputs. In this study, 
we examined temperature ranges with established 
physiological significance to interpret changes in the 
log-odds of water hyacinth occurrence, as revealed 
by SHAP values. These SHAP contributions align 
well with known biological responses. For instance, 
air temperatures below 0 °C are lethal to the plant’s 
above-water parts (Madsen et al., 1993), and survival 
during winter becomes highly unlikely when mini-
mum temperatures fall between 0 and 2.5 °C. This is 
reflected in our model by strongly negative SHAP val-
ues and a sharp decline in predicted occurrence below 
the 2.5  °C threshold. Such alignment enhances the 
ecological interpretability of the model and supports 
the reliability of SHAP-derived inferences. While 
low temperatures limit the plant’s broad distribution, 
microclimatic refugia may permit localized overwin-
tering even in areas below this threshold, accounting 
for the occurrence of water hyacinth in areas with 

minimum temperatures below 2.5  °C (Kriticos & 
Brunel, 2016; Miskella & Madsen, 2019).

Positive SHAP values in the range of 2.5 to 5 °C 
show the potential persistence of water hyacinth. 
However, these sites will harbor small populations, 
as short periods of cold exposure (below 5  °C for 
less than 2  weeks) may not kill the plant (Owens 
& Madsen, 1995). The survival of water hyacinth 
at these low temperatures may also be due to the 
reduced effectiveness of biological control agents 
under such conditions (J A Coetzee et  al., 2011). 
Low temperatures and subsequent diminished plant 
quantity and quality may hinder the establishment 
of biological control agents or suppress their pop-
ulation growth by affecting their developmental 
processes (Byrne et al., 2010; M P Hill & Cilliers, 
1999; M P Hill & Olckers, 2000). Between 5 and 
8 °C, there is a significant increase in the suitability 
for water hyacinth, indicating enhanced suitability 
under warmer temperatures. Beyond this range, we 
expect warmer temperatures to continue to improve 
the suitability for water hyacinth; however, a grad-
ual decrease in the log odds of water hyacinth pres-
ence is observed. This may be due to the increased 
management attention that thriving populations 
receive and the improved efficacy of biocontrol 
agents in warmer climates. Since these ranges and 
thresholds align with known ecological thresholds 
and physiological tolerances, there is increased sup-
port for SHAP-based model explanations and suit-
ability to help direct management resources to areas 
that maximize biocontrol success.

Warmer temperatures (> 8 °C) with positive SHAP 
values, indicative of promoting water hyacinth occur-
rence, are close to known controlled laboratory-
determined lower thermal developmental thresholds 
of biocontrol agents (e.g., 10–15  °C for two weevil 
biocontrol agents) (Julien, 2000). Where tempera-
tures exceed 8  °C, biocontrol agents have a higher 
chance of survival and efficacy. Subsequently, areas 
with prolonged minimum temperatures below 8  °C 
could focus less on extensive biocontrol investments 
and more on mechanical or chemical methods, given 
the limited likelihood of plant persistence or effec-
tive biocontrol in colder regions. Therefore, SHAP 
can inform managers on where to allocate biocontrol 
resources, focusing on areas where models predict 
high water hyacinth suitability due to warmer tem-
peratures. This data-driven approach aligns biological 
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control efforts with ecological feasibility, enhancing 
intervention effectiveness.

Microclimate effects

For IAP management, SHAP can assist in identify-
ing areas that are most at risk by quantifying the 
impact of interaction effects between variables, for 
example, topographic diversity and urban proximity 
on model predictions. Topographic diversity, which 
reflects local moisture and temperature conditions, is 
positively associated with a variety of temperature-
moisture habitats. Increased topographic diversity has 
been linked to greater species resilience under climate 
change (Lawrence et al., 2020). The response of water 
hyacinth suitability to both topographic diversity 
and urban area suggests that uninvaded water bod-
ies surrounded by landscapes with high topographic 
diversity (> ~ 0.5) and substantial urban area (2.5–3 
km2) within a 5-km radius may be particularly vul-
nerable to invasion. Consequently, any water body 
with a high predicted suitability owing to dominant 
contributions from the urban area and topographic 
diversity features could be automatically assigned a 
raised early-detection priority, allowing managers to 
rank and schedule monitoring efforts objectively. This 
makes SHAP an effective tool for prioritizing moni-
toring efforts, especially in vulnerable habitats (M P 
Hill, 2003; VonBank et al., 2018).

Precipitation and surface water persistence

SHAP dependence plots can illustrate precipitation 
thresholds above which the likelihood of water hya-
cinth increases (e.g., the > 560-mm per year threshold, 
Appendix, Fig. 10c). A resurgence of water hyacinth 
at New Year’s Dam, a small (150  ha), shallow, oli-
gotrophic dam in the Eastern Cape in 1998 has been 
linked with above-average rainfall for this semi-arid 
region (> 350–550 mm Palmer, 2004; Zengeni et al., 
2016)) (M P Hill & Olckers, 2000). The dependence 
plot for precipitation indicates that annual accumu-
lated precipitation exceeding ~ 560  mm (above the 
national average of 463  mm (World bank group, 
2021)) correlates with a higher probability of water 
hyacinth presence, supporting the role of increased 
rainfall in the water hyacinth resurgence event at New 
Year’s Dam.

Precipitation directly influences surface water 
presence and persistence, with a positive relationship 
evident between water persistence and water hyacinth 
occurrence (Fig.  6b). Although water hyacinth can 
adapt to varying water levels (Venter et  al., 2017), 
permanent water bodies are much more susceptible to 
invasion than seasonal ones, likely due to the stabil-
ity they offer (Fig. 6b). Permanent water bodies have 
2–3 times the (log) odds of supporting water hyacinth 
compared to seasonal ones (present for 1–3  months 
of 2013). For example, in the dry Karoo areas of the 
Northern Cape, the limited number of permanent 
water bodies restricts water hyacinth growth despite 
suitable temperatures (Fig. 8a). This insight is useful 
for managers to prioritize high-persistence or per-
manent water bodies for ongoing monitoring, where 
invasions are most likely.

Socio‑economic effects

SHAP can be instrumental in quantifying the dual 
role of human activities within predictive mod-
els, offering insights into how human-driven fac-
tors facilitate or hinder invasive species like water 
hyacinth in a non-linear manner. The presence and 
spread of alien and invasive species are strongly 
linked to human-assisted dispersal and introduction 
(M P Hill, 2003), as well as human-induced distur-
bances facilitating establishment (VonBank et  al., 
2018). Using a global human modification metric 
that integrates data from 13 datasets on human settle-
ment, agriculture, transportation, mining, and energy 
production (Kennedy et  al., 2019), we observe a 
parabolic relationship with the presence of water 
hyacinth (Appendix, Fig.  10d). This parabolic rela-
tionship, where risk peaks around 25% human modi-
fication, can guide managers to focus on areas with 
moderate human disturbance for prevention and 
monitoring. Areas below this threshold can also be 
deprioritized in terms of risk. Higher levels of human 
modification (> 25%) may result in disturbances that 
exceed the tolerance levels of water hyacinth or lead 
to active removal efforts in urban and agricultural 
areas (cultivated subsistence or cultivated orchards, 
Fig.  5). Additionally, poorly functioning wastewa-
ter treatment facilities contribute to eutrophic water 
conditions in South Africa, exacerbating the prob-
lem (Harding, 2015; Oberholster & Ashton, 2008). 
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Overall, SHAP’s role in revealing the nuanced 
relationship between human modification and IAP 
occurrence equips managers with actionable insights, 
enabling them to adapt interventions based on spe-
cific local conditions and modify land-use policies or 
remediation efforts to support IAP management.

Ecological effects

The role of shrub cover in moderating nutrient run-
off illustrates how certain land features can reduce or 
amplify invasion risk depending on temperature and 
rainfall. SHAP interaction effects revealed a temper-
ature-dependent relationship between shrub cover 
and water hyacinth invasion suitability, where shrub 
cover functions as a thermal moderator with oppos-
ing effects across different climatic contexts. Within 
the 2.5 to 4  °C minimum temperature range, high 
shrub cover (> 25%) increases suitability by buffering 
cold winter temperatures and enhancing overwinter-
ing survival (Dugdale et al., 2018), while at all other 
temperatures, shrub cover reduces suitability through 
mechanisms such as nutrient buffering, increased 
shading, or surface water cooling. This context-
dependent reversal demonstrates that the same land-
scape feature can either facilitate or inhibit invasion 
depending on baseline thermal conditions, highlight-
ing the importance of spatially nuanced interpreta-
tions of variable interactions in invasion ecology.

At Roodekoppies Dam, slightly above-average 
rainfall (474  mm vs. the national average 463  mm) 
combined with high shrub cover (> 25%, with 27.8% 
at Roodekoppies Dam), within the 5-km riparian zone 
generally reduces the suitability for water hyacinth. 
This may be due to the buffering effect of riparian 
shrubs, which limit nutrient runoff into water systems 
(Aguiar Jr et  al. 2015; Jiang et  al., 2020). However, 
during periods of high rainfall (575–600  mm) and 
accelerated runoff, the buffering effect diminishes, 
increasing nutrient release into adjacent waters, espe-
cially in nitrogen-saturated agricultural soils (Jiang 
et al., 2020; Sabater et al., 2003; Taylor & Townsend, 
2010). By capturing the impact of fluctuating rainfall 
on IAP risk, SHAP can guide adaptive management 
practices. For example, during periods of high rain-
fall, efforts to mitigate nutrient runoff or establish 
physical barriers might be prioritized for vulnerable 
water bodies near nitrogen-rich agricultural soils.

Interestingly, we also found that shrub cover has 
stronger interaction effects with minimum tempera-
ture, the strongest predictor of water hyacinth occur-
rence, compared to tree or grass cover. This could be 
attributed to various factors such as tree cover dis-
tribution, land use effects, and riparian buffer width 
(Aguiar Jr et  al. 2015; Jiang et  al., 2020; Sabater 
et  al., 2003; Taylor & Townsend, 2010). First, grass 
cover is considered the least important predictor of 
water hyacinth occurrence among the three features; 
this is likely because the shrub and tree cover predic-
tive features both encompass non-agricultural and 
agricultural vegetation— a known contributor to 
high-nutrient runoff. Woody perennial crops under 
5 m tall are included in shrub cover, while those over 
5 m fall under tree cover. Next, shrub cover is likely 
a stronger predictor than tree cover owing to its more 
effective nutrient buffering abilities (Aguiar Jr et  al. 
2015; Cole et al., 2020). Moreover, the Western Cape, 
with more water hyacinth but lower tree cover, sug-
gests that tree cover is not as generalizable a predic-
tor of water hyacinth compared to shrub cover across 
large extents.

Comprehensive satellite or field-based water nutri-
ent level estimates are unavailable for South Africa 
and are challenging to estimate from satellite imagery 
(Schaeffer et  al., 2013; Silberbauer, 2020; Slaughter 
et  al., 2017). Thus, soil nutrients, runoff, and agri-
cultural land cover variables for the 5-km area sur-
rounding a water body were used as a proxy (Shar-
pley et  al., 2003). Eutrophic water conditions drive 
water hyacinth invasions and are expected to increase 
with adjacent soil nutrient runoff (Bick et al., 2020). 
However, contrary to existing research, total riparian 
soil nitrogen had an inconsistent effect on water hya-
cinth occurrence, suggesting it is an inadequate proxy 
for water nitrogen content (Appendix, Fig.  10e). In 
contrast, both agricultural and urban land cover were 
indicative of increased water hyacinth suitability, sug-
gesting their promise as good proxies of water nutri-
ents (Fig. 5). The limited utility of the 5-km riparian 
soil nutrients as proxies for water nutrient levels may 
be due to differences in the biogeochemical processes 
in the actual riparian zone (typically 10–100 m) and 
the 5-km buffer zone around the water body that was 
considered (Bredin & Macfarlane, 2017). There-
fore, future studies should consider multiple buffer 
widths and additional water nitrogen proxies, such 
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as variables that capture the intensity of agriculture 
or the compliance of wastewater treatment facilities. 
From the variables considered in this study, the area 
of the urban class and soil organic carbon showed the 
highest correlation (~ 0.4) with in situ water nitrogen 
data for 2013, making them priority candidates for 
water quality proxies.

Floods are associated with an increased chance of 
water hyacinth occurrence, especially with the pres-
ence of surrounding urban land use (Pérez et  al., 
2011a, 2011b) (Appendix, Fig. 10f). Floods enhance 
dispersal, allow germination of buried seeds in open 
water, and increase nutrient inflow (Neiff et al., 2001; 
Pérez et  al., 2011a, 2011b). They may also reduce 
biocontrol effectiveness as biocontrol agent popula-
tions take longer to recover than their host plant (Cil-
liers, 1991). However, in near-coastal areas, floods 
may force plants into saline conditions intolerable for 
water hyacinth (Coetzee et al., 2017). The results sug-
gest that floods predominantly act as a facilitator of 
water hyacinth invasion, and as a regulator of water 
hyacinth populations at a much smaller subset of sites 
during 2013 (Appendix, Fig.  10f). This knowledge 
aids managers in deprioritizing costly interventions 
in regions where natural salinity or flood-prone zones 
will mitigate spread.

Benefits and drawbacks

Correlative SDMs are valuable for mapping and man-
aging the risk of invasive alien aquatic plant (IAAP) 
species. However, they are often criticized for lacking 
a biological basis (Srivastava et al., 2019). To address 
this, modeling experts incorporate prior knowledge 
of species’ requirements and tolerances to select rel-
evant variables for modeling. Despite these efforts, 
the correlative nature of SDMs, such as those used in 
this study, necessitates cautious interpretation, par-
ticularly when species-environment feedback mecha-
nisms are involved. For instance, floods can flush out 
nuisance water hyacinth populations. Simultaneously, 
water hyacinth mats can increase the risk of floods by 
reducing stream flow (Neiff et al., 2001).

Using EO-derived distribution data offers advan-
tages over presence-background data used in Maxent 
or Ecological Niche Factor Analyses (ENFAs) and 
presence/pseudo-absence data used in other machine 
learning algorithms (Chapman et  al., 2019). EO-
derived data provide reduced uncertainty compared 

to background or pseudo-absence data and are less 
susceptible to sample bias compared to costly field-
collected samples, which can violate the assumption 
of independence among species records (Guillera‐
Arroita, 2017, Chapman et  al., 2019). Consequently, 
the output habitat suitability maps may correspond 
not only to the species’ observed distribution but also 
to the distribution of sampling effort. However, EO-
derived distributions can still suffer from mapping 
errors, including residual spatial autocorrelation, which 
affects the reliability of SDMs. However, by combin-
ing SHAP with a block cross-validation strategy and 
optimizing for the precision metric, we reduced the 
effect of these errors on the models’ interpretation.

In this study, the SDM showed an error of less than 
20% based on the F1-score. This error may be due to 
suitable environmental conditions for water hyacinth 
where it has not yet been introduced, suggesting dispersal 
constraints and a lack of equilibrium with the environ-
ment in South Africa (Normand et al., 2011). Addition-
ally, the spatially varying accuracy of the datasets used 
and the omission of relevant variables such as turbidity, 
water nutrient levels, management history, and water 
depth may contribute to the error (Venter et al., 2017).

Conclusion

This study highlights the geographically variable 
drivers of water hyacinth occurrence, suggesting that 
effective management efforts must be context depend-
ent. Our findings demonstrate that EO-based input 
data coupled with cloud computing (GEE) and recent 
xAI tools represent a low-cost approach to understand-
ing the factors that limit and promote the establish-
ment of water hyacinth in a data-driven manner. This 
information can assist in the pre-selection and prior-
itization of management strategies on a site-by-site 
basis. Owing to the negligible costs of carrying out 
this analysis, in comparison to similar large-scale field 
studies, we encourage the development of EO-derived 
species distribution products that were foundational 
to these analyses. Similar analyses may inform tra-
ditional lab-controlled and artificial outdoor experi-
ments for a variety of IAPs under weed management.
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Appendix

Fig. 9   The cumulative water hyacinth distribution for 2013 across South Africa (adapted from Singh et al., 2020). The area of water 
hyacinth infestation is 417.7 km2 or 0.03% of the total area of South Africa
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Table A1.   Feature descriptions, associated units, tempo-
ral coverages, and data sources of the features considered to 
investigate the likely drivers of water hyacinth occurrence. All 
explanatory variables were downloaded at a 30 m spatial res-

olution. Those variables that were only available at a coarser 
spatial resolution (> 30  m) were automatically resampled to 
30 m using bilinear interpolation within Google Earth Engine

Variable Units Spatial resolution (m) Temporal coverage Source

Number of consecutive nights 
with less than 10 degrees 
Celsius

days 1000 2013 MODIS LST- night

Area of water body m2 30 2013 (Singh et al., 2020)
Median river width at mean 

discharge
m N/A vector 1984–2018 Global River Width from 

Landsat (GRWL) (Allen & 
Pavelsky, 2018)

a Area of aquatic vegetation m2 30 2013 (Singh et al., 2020)
a Minimum Temperature in 

the coldest month between 
1970 and1990

°C 1000 1970–2000 WorldClim

Connectivity- upstream and 
downstream river count

river count N/A vector 2000 WWF hydrosheds (Grill et al., 
2019)

a Surface water persistence- 
number of months water is 
present

month count 30 b 1984–2019 (2013) JRC GSW (Pekel et al., 2016)

*Total precipitation mm 4638.3 b 1958–2021 (2013) TerraClimate
a Distance to nearest coastline m 30 2009 NOAA (https://​ocean​color.​gsfc.​

nasa.​gov/​docs/​distf​romco​ast/)
*Distance to roads m 30 1979–2010 Global Road Infrastructure 

Project (GRIP) (Meijer et al., 
2018)

Elevation m 30 2000 NASADEM
a Continuous Heat Insola-

tion Load Index (0 = cool, 
255 = warm). Surrogate 
for effects of shading and 
topographic insolation

0–255 90 2006–2011 SRTM, (Theobald et al., 2015)

a Global Human Modification 
(1 = high modification)

0—1 1000 2016 (Kennedy et al., 2019)

a Topographic diversity- Sur-
rogate for the variety of 
temperature and moisture 
conditions available to spe-
cies as local habitats

-1323—8.81 270 2006–2011 SRTM, (Theobald et al., 2015)

Frost duration—Median dura-
tion of frost

day count 1700 2007 (Schulze & Maharaj, 2007)

Number of days below 0 °C 
(0–365)

day count 1000 b 2000 – present (2013) MODIS- LST, night tempera-
ture

Number of days below 10 °C 
(0–365)

day count 1000 b 2000 – present (2013) MODIS- LST, night tempera-
ture

a South African National Land 
Cover (73 class)

km2 30 2013–2014 GeoTerraimage

a Mean Annual Runoff mm/year  ~ 1852 2005 Strategic Water Source Areas 
(SWSA)

a Broad (10) class Landcover % (cover fraction) 100 2015 Copernicus Global Land Land-
cover Layers (CGLS-100)
(Buchhorn et al., 2020)

https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
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Table A1.   (continued)

Variable Units Spatial resolution (m) Temporal coverage Source

a Flood hazard with a 10-year 
return period

water depth (m) 1000 2016 Joint Research Commission 
(Dottori et al., 2016)

Riparian soil nitrogen (5 km 
buffer)

g/kg 250 1905–2016 Soil grids (Poggio et al., 2021)

Riparian soil ph (5 km buffer) pH 250 1905–2016 Soil grids (Poggio et al., 2021)
a Riparian soil carbon (5 km 

buffer)
g/kg 250 1905–2016 Soil grids (Poggio et al., 2021)

a Stream Power Index (SPI) -1—1 90 1987–2017 GeoMorpho90 GeoMorpho-
metric layers (Amatulli et al., 
2020)

a Relative wealth index -1—1 2400 2001–2019 Facebook (https://​dataf​orgood.​
fb.​com/​tools/​relat​ive-​wealth-​
index/)

13 iSDA Soil layers (includes 
*total nitrogen, etc.)

various 30 2013–2019 (Hengl et al., 2021)

a Mean wind speed for a 
10-year period

m/s 250 2008–2017 Global wind atlas

a Included in final model, b Multi-temporal data available. The period for the selected data used in this study. 2013 or temporally 
closest data was selected

Table A2.   The drivers of water hyacinth considered as predictive features during modeling and documented associations

Category Driver Documented association (proxy)

Climatic Temperature (Byrne et al., 2010; Miskella & Madsen, 2019; Owens & Madsen, 1995)
Precipitation (Bayu et al., 2024)
Frost (Byrne et al., 2010)
Wind (John R Wilson et al., 2005)
Topo-climatic (Lawrence et al., 2020; Miskella & Madsen, 2019)

Socio- economic Artificial land cover (Essl et al., 2019)
Human modification (M P Hill, 2003; VonBank et al., 2018; Westphal et al., 2008)
Reltive wealth index Development ((Essl et al., 2019)

Ecological Natural land cover Riparian buffer effects (Cole et al., 2020; Jiang et al., 2020)
Interspecies competition (Agami & Reddy, 1990; Gopal, 1987)
Distance to coastline (Bick et al., 2020; Julie A Coetzee et al., 2017; Muramoto et al., 1991)
Runoff Nutrient input (Reddy et al., 1990)
Flood risk (Bick et al., 2020; Julie A Coetzee et al., 2017)
Riparian soil nutrients Water nutrients Riparian soil nutrients (Reddy et al., 1990)

Topographic Elevation (Kriticos & Brunel, 2016; Lawrence et al., 2020)
Hydrologic River connectivity Dispersal (Pérez et al., 2011a, 2011b)

Stream power Dispersal (Pérez et al., 2011a, 2011b)
Water seasonality (Gopal, 1987; Venter et al., 2017; John R Wilson et al., 2005)

https://dataforgood.fb.com/tools/relative-wealth-index/
https://dataforgood.fb.com/tools/relative-wealth-index/
https://dataforgood.fb.com/tools/relative-wealth-index/
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Table A3.   Evaluation 
metrics for 15 candidate 
models calculated based 
on a tenfold block cross-
validation strategy and 
sorted by precision. The 
performance scores of the 
models are reported after 
feature selection but prior 
to hyperparameter tuning. 
The highest score for each 
metric is in bold font (refer 
to Methods section for 
metric descriptions)

Model Recall Prec F1 MCC Balanced accuracy

Random Forest Classifier 0.5823 0.8269 0.6831 0.6621 0.7832
Extra Trees Classifier 0.5827 0.8182 0.6801 0.6580 0.7829
CatBoost Classifier 0.6252 0.7906 0.6981 0.6696 0.8018
Gradient Boosting Classifier 0.4338 0.7737 0.5555 0.5417 0.7086
Extreme Gradient Boosting 0.6100 0.7725 0.6815 0.6511 0.7933
Light Gradient Boosting Machine 0.5762 0.7660 0.6573 0.6276 0.7766
Ridge Classifier 0.1760 0.6941 0.2798 0.3134 0.5828
Ada Boost Classifier 0.4433 0.6757 0.5351 0.5017 0.7077
Logistic Regression 0.3094 0.6272 0.4136 0.3930 0.6426
Decision Tree Classifier 0.6127 0.6009 0.6065 0.5547 0.7798
Linear Discriminant Analysis 0.3869 0.5979 0.4691 0.4286 0.6764
SVM—Linear Kernel 0.4365 0.4695 03901 0.3464 0.6662
K Neighbours Classifier 0.2698 0.4636 0.3409 0.2923 0.6145
Quadratic Discriminant Analysis 0.5887 0.4151 0.4865 0.4148 0.7402
Naive Bayes 0.5244 0.3852 0.4438 0.3643 0.7075



Environ Monit Assess        (2025) 197:1172 	 Page 23 of 30   1172 

Vol.: (0123456789)

Fig. 10   SHAP dependence plots with interaction effects 
for (a) Continuous Heat Insolation Index (CHILI) and (b) 
topographic diversity – a proxy for topo-climate niches and 
micro-climate. Also includes feature interactions indicated by 
the blue-red colour. SHAP dependence plots with interaction 
effects for (c) total precipitation (mm) for 2013, (d) global 
human modification— an index that reflects anthropogenic 

influences and landscape alteration. Also includes feature 
interactions indicated by the blue-red colour.  SHAP depend-
ence plots with interaction effects for (e) Riparian total soil 
nitrogen (–/kg)— a proxy of water nitrogen levels (f) 10-year 
return flood hazard (metres). Also includes feature interactions 
indicated by the blue-red colour. Sites with high urban area are 
associated with a greater risk of water hyacinth



	 Environ Monit Assess        (2025) 197:1172  1172   Page 24 of 30

Vol:. (1234567890)

Fig. 10   (continued)
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Fig. 10   (continued)
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