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Abstract

Recently there has been great development in the field of multi-agent reinforce-
ment learning (MARL). In the cooperative partially observable multi-agent setting
central value functions have been used to perform multi-agent credit assignment
for joint global rewards. The standard solution is the use of centralised training
and decentralised execution where a central critic conditions the polices of the
cooperative agents based on a central observation. Simulated training environments
designed using video games typically only contain exactly the number of agents
required to solve the tasks based on preexisting knowledge of the game dynamics
and human player solutions. In a more general case, there is likely to be a larger
number of agents in an environment than is required to solve the task. These
redundant agents reduce overall performance by enlarging the dimensionality of
the ground truth state if available and increasing the size of the joint policy used
to solve the environment. In the case where no ground truth state is available a
concatenation of all local observations is used which scales in size with the number
of agents and becomes insufficient to condition the centralised critic in large spaces.
We propose leveraging layerwise relevance propagation (LRP) to instead separate
the learning of the joint value function and generation of local reward signals and
create a new MARL algorithm: relevance decomposition network (RDN). We
compare our method to other state of the art MARL algorithms in challenging
StarCraft2 and simpler matrix game environments. We show that decomposition
algorithms’ performance and the usefulness of the state space degrades as the
number of redundant agents increases.

1 Introduction

For most multi-agent tasks in a practical setting we would not know the precise number of agents
required to optimally solve the problem. In a more general case, there is likely to be a larger number
of agents in an environment than is required to solve the task. As the number of independent agents
increases so would the size of a ground truth state space that most problems require. Also, as the
state space increased it would become increasingly difficult to interpret.

In complex environments constructing an accurate ground truth representation becomes difficult. An
example of this is the Piano Movers problem [1] when applied to the robotics setting. The problem
can be described as follows: given a body B and a region bounded by a collection of walls, either find
a continuous motion connecting the two given positions and orientations of B during which B avoids
collisions with walls, or else establish that no such motion exists. When applying a solution to this
task in real life we are limited by the data obtained from sensors and cameras on the robots in use
which is typically noisy and of limited accuracy. This data is the local observations of the independent
agents and is an egocentric local partial observation of the environment from the perspective of each
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agent. A concatenation of these local observations is still only a partial representation of the full state
space and in the centralised training decentralised execution (CTDE) paradigm using this results in
sub-optimal performance for most algorithms [2]. Given the limitation of the observable space in real
or realistic settings it is not reliable to assume that an easily interpreted state approximation can be
made from only these limited local observations. When there is a large number of agents many of
the agents in the group can be redundant for achieving and optimal policy. These redundant agents
increase the previous state space interpretation issue as the ground truth space usually increases to
represent the space of these additional agents. Therefore it is important to develop algorithms that
can effectively separate agents that are essential to solve a task and agents that are redundant to allow
MARL algorithms to be deployed into more realistic and eventually real world challenges.

We consider the idea of a collaborative task with a small margin of error, like the traditional Piano
Movers problem. However we consider the case where only n of m total agents in the environment
are required to effectively complete the task. In the Piano Movers problem consider the case where
an arbitrarily large number of agents are required to re-position the piano with each agent occupying
a fixed amount of space in the environment along with the piano. Realistically with a large number
of agents only a small subgroup n ofm will be required to solve the task under the joint optimal
policy. Ultimately during training the policy will change to minimise the effect of certain agents on
the overall outcome as the joint optimal policy only required that they do not act in a manner that is
destructive to the actions of the smaller group of required agents.

In cooperative MARL the most common methods currently make use of the CTDE paradigm [3].
A centralised critic is used which has access to the central state and is used to condition the local
policies of the agents based on their local observations. A flaw of this method is the reliance on
an easy to interpret and extract ground truth state. When considering complex or high dimensional
environments this may be unavailable or intractable.

In the Qatten [4] paper the idea is put forward that in both the linear and monotonic case value
factorisation algorithms exhibit poor performance in environments with a high number of redundant
agents as it it difficult to assign credit for task completion accurately when a disproportionately high
credit is assigned to only a small number of the total agent set. They come to this conclusion by
analysing the attention weights of their attention based critic network which showed in order to solve
this environment a high reward needed to be assigned to a small subset of the agents which are the
most relevant towards the success of the joint policy.

In this paper we propose the method relevance decomposition network (RDN) which makes use of
layerwise relevance propagation (LRP) [5] as an alternative to learned value decomposition only
using local agent observations. By not using learned decomposition we can separate the learning
of the joint value function from the training of the independent agents. This allows us to make use
of existing methods in the independent deep reinforcement learning (DRL) domain to enhance the
performance of the agents. Additionally we are able to make full use of the relationships between the
local observations of the agents, their identities and their actions at each timestep to decompose the
relationship between the global and local rewards.

We also perform ablative studies to show how abusing the full observation space can inflate the
scores of the learned policies. We use LRP to perform multi-agent credit assignment in a cooperative
MARL environment. Rather than condition the agents’ polices on the central state during training
time we directly calculate the contributions of the observations, actions and identities of each agent
towards the joint value function. In section 2 we cover the background information required for the
paper including decentralised POMDPS (Dec-POMDPS) and LRP, section 3 presents our method
RDN, section 4 covers our experiment methodology and introduces our baseline algorithms, training
environments and architecture choices, section 5 contains the experiment results and interpretations,
section 6 contains the related works and finally section 7 concludes and summarises the findings of
the paper.
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2 Background

2.1 Dec-POMDPs

Fully cooperative multi-agent tasks can be modelled as Dec-POMDPs [6]. Formally a Dec-POMDP
G is given by a tuple:

G = 〈S,U, P, r, Z,O, n, γ〉 (1)
Where s ∈ S describes the true state of the environment. At each timestep, each agent a ∈ A ≡
{1, ...., n} chooses and action ua ∈ U , forming a joint action u ∈ U ≡ Un. This causes a transition
of the environment according to the state transition function P : S ×U→ [0, 1]. All agents share the
same reward function r(s,u) : S × U→ R and γ ∈ [0, 1) is a discount factor.

Each agent draws individual observations z ∈ Z according to observation function O(s, a) : S ×
A → Z. Each agent has an observation history τa ∈ T ≡ (Z × U)∗ on which it conditions a
stochastic policy πa(ua|τa) : T × U → [0, 1]. The joint policy π has a joint action-value function :
Qπ(st,ut) = Est+1:∞,ut+1:∞ [Rt|st,ut], where Rt =

∑∞
i=0 γ

irt+i is the discounted return.

In order to solve Dec-POMDPs we must find a joint policy. This is a set of polices mapped to
individual agents. Additionally as agents are not able to directly observe the global state it is a
requirement to learn a history of observations. Using this history an agent is able to map a local
policy to its local POMDP. A local policy refers to the policy used by an individual agent based on the
limited local observation it obtains from the environment. The local POMDP refers to the Partially
Observable Markov Decision Process used in the decision making process for an individual agent
based on its local observations from the environment and the actions its policy produces. Unlike
single agent systems we cannot usually estimate the hidden state from individual agent observation
histories as it is no longer stationary and becomes dependent on the behaviours of all agents in the
joint system [7].

2.2 Layerwise-Relevance Propagation

Layerwise-Relevance Propagation (LRP) is a method that has been developed to interpret neural
network based machine learning models [5]. It assigns a relevance or importance value to each node
of the neural network (NN) which describes how much it contributed to the final network output. The
relevance values are calculated recursively from the output to the input layer of the NN.

The propagation of values by LRP is subject to a conservative property, where the total relevance
assigned to a neuron is equal to the total relevance assigned to the neurons in the previous layer of
the NN . Formally let j and k be two consecutive layers of the neural network. Propagating relevance
scores Rk at a given layer onto neurons of the previous layer is achieved by applying the rule:

Rj =
∑
k

zjk∑
j zjk

Rk. (2)

Where zjk models the extent to which neuron j has contributed to make the neuron k relevant with
zk = ε +

∑
0,j aj · ρ(wjk) where ε is a small constant to aid numerical stability, ρ is an arbitrary

function applied to the weights of the neurons in the NN layer and a is the output from neuron j in
the earlier layer of the NN to neuron k. Using equation 2 above for all neurons in a network we can
verify the layer-wise conservation property Rj =

∑
k Rk where Rj is a vector of relevance scores

with each neuron k′s relevance scores indexed as Rjk, and by extension the global conservative
property

∑
k Rk = f(x) where f(x) is the output of the NN for some input x.

2.3 Related Work

Value decomposition network (VDN) [8] introduces the first central value decomposition framework
for the multi-agent cooperative setting in Deep Reinforcement Learning (DRL). In this framework
we receive only the global reward which we must then learn to distribute across all independent
agents based on their contributions. This framework makes the assumption of an additive relationship
between agent rewards Qtot ≈

∑n
i=1Qi(o

i, ai) where Qtot is the global reward at the current step
and Qi is the individual rewards for agent i. Essentially the sum of the rewards of each individual
agent is approximately the same as the global reward at any timestep. The assumption of a linear
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relationship has been shown to be restrictive and leads to the formation of sub optimal policies even
in simple gridworlds and again in more difficult scenarios in SMAC. In particular it struggles in the
bane_no_z environment where there is a large number of redundant agents.

Building on the framework of VDN is QMIX [9] which relaxes the additive assumption by forcing
the evaluation of a monotonic function through the use of hypernetworks. This monotonic constraint
allows a more relaxed formation of the relationship between Qtot and each individual Qa. To ensure
monotonicity we use the constraint ∂Qtot

∂Qa
≥ 0,∀a ∈ A where ∂Qtot the gradient of the global reward

and ∂Qa the gradient of each individual agents’ rewards are both monotonic. The weights of the
central value function (CVF) which is the central critic used to factorize the global rewards are
produced using hypernetworks which produce a vector which is then reshaped to the appropriate size.
Hyper networks are neural networks that are used to learn the weights of another neural network.
Each hyper network uses absolute activation functions so that the weights of the CVF are always
non-negative. A limitation of this method is that it is only able to decompose monotonic reward
functions which limits the range of useful environments and to achieve maximum performance on
complex environments it requires the use of a clear representation of the ground truth global state
to accurately decompose the reward function. Much like VDN it also struggles in the case of high
numbers of redundant agents.

The first use of network explainability for MARL is Q value path decomposition (QPD) [10] which
uses integrated gradients to map the contributions of inputs from the independent agents to the
prediction of the global critic. Integrated gradients are a method used to attribute the predictions of
neural networks to their input features and to determine how much influence each component of the
input features have on the output value [11]. Unlike QMIX which used the global state s for central
value decomposition QPD instead uses #»o t which is the joint observation vector of all agents as a
representation of the global state and #»a t = u as a vector representing the joint action of all agents.

3 Relevance Decomposition Network (RDN)

We propose RDN to perform credit assignment between ad-hoc agents in the cooperative multi-agent
setting under the assumption of a linear relationship between the individual local rewards and the
shared global reward. However unlike most central training decentralised execution (CTDE) methods
which uses learned decomposition as an end-to-end system RDN separates learning of the global
reward function from the local Q values of the agents.

The details of the algorithm are shown in Algorithm 1. Lines 2-9 show how the decentralised agents
interact with the environment to gather data where Qi(ot,i,.) is the Q value of independent agent i at
timestep t, hit is the hidden state of agent i at timestep t, ot,i,. is the local observation of agent i at
timestep t,at,i is the action taken by agent i at timestep t and πi(Qi(ot,i,.), ε(e)) is the policy π of
agent i dictated by a Q value function and an ε− greedy exploration strategy.

Lines 11 to 15 calculate the expected total Q value at each timestep using a critic network param-
eterised by θc and a target Q value using a target critic parameterised by θ̃c whose parameters are
copied over from the the critic network every 200 updates. The critic network is updated using loss
L(θc) = E #»o , #»a ,r, #»o ′ [(Qθ

c

tot(o1, ..., on, a1, ..., an)−y)2] where y = r+γ(Qθ
′c

tot(o
′

1, ..., o
′

n, a
′

1, ..., a
′

n))

and θc is the critic’s parameters and θ
′c is the target critic parameters, which are reset every C training

epochs

Lines 16 to 21 update the independent agents’ parameters θi. The total expected Q value for each
timestep is decomposed into independent target Q values θ̃i and the DRQNs [12] which act as
the agent networks are trained using the loss L(θi) = E #»o , #»a ,r, #»o ′ [(Qi,θ

i

(oi, ai) − Q̃i)2] [13] and
Q̃i =

∑
iRin where Q̃i is the Q target for agent i and

∑
iRin is the sum of all relevance values

associated with agent i.

A characteristic of LRP is it maintains a conservative calculation between layers of the neural network
[5]. A such the relevance values from later layers are included completely in the calculation of the
relevance values of the layers closer to the input. Essentially we can assume that the total sum of the
relevance vaues in approximately the same as the output of the NN when LRP is used. therefore we
can equate Qtot to the sum of relevance scores as Qtot ≈ Rin.
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Algorithm 1: Relevance Decomposition Network (RDN)

1 Initialize Critic network θc. target critic θ̃c, DRQN θπ = (θ1, ..., θn)
2 for each training episode e do
3 s0 = initial state, t = 0, hi0 = 0 for each agent i
4 while st 6= terminal and t < T do
5 t = t+ 1 for each agent i do
6 Qi(ot,i,.), h

i
t = DRQN(ot,i, h

i
t−1; θ

i)

7 Sample at,i from πi(Q
i(ot,i,.), ε(e))

8 Execute the joint actions (at,1, at,2, ..., at,n)
9 Receive the global reward rt and next state st+1

10 Add new episode to replay buffer and sample a batch of episodes
11 for b in batch do
12 for t = 1 to T do
13 Calculate targets yt using θ̃c

14 Calculate expected values Qtott using θc

15 Update critic parameters θc with loss L(θc)
16 for b in batch do
17 for t = 1 to T do
18 Calculate independant Q values Qi,θ

i

19 Calculate total Q target from updated critic parameters θc
20 Using Layerwise Relevance Propagation decompose the total Q target into

independent Q targets Q̃i

21 Update DRQN parameters θπ with loss L(θπ)

4 Experiment Methodology

We use two environments to test our algorithm: a simple 2-step matrix game and the Starcraft Multi
Agent Challenge (SMAC). We use the matrix game to show how even in trivial environments methods
like QMIX [9] and VDN [8] which rely on a learned decomposition can learn an inaccurate relation-
ship between global and local variables. SMAC allows the creation of more complex cooperative
environments. We use a preexisting bane_vs_bane which QMIX and VDN have shown difficulty
in achieving consistently high performance [2]. We use this environment to show how increasing
amounts of redundant agents decrease performance of value deposition algorithms. We also design
three additional environments with different numbers of redundant agents.

4.1 Baselines

We consider several algorithms for use as baselines in our experiments. Independent Q learning (IQL)
represents a naive approach solving multi-agent tasks but is still able to show reasonable performance
in certain environments [7]. QMIX is currently the most popular algorithm to our knowledge and
many newer MARL algorithms like ROMA [14] and MAVEN [15] are auxiliary augmentations
to build onto it for more specialised use cases. For our experiments we also test against a version
of QMIX using the same observation space as our agent to show how the concatenation of local
observations is not an effective substitute for the ground truth state. We refer to this as as QMIX_NS.

4.2 Training environments

2-step matrix game

To show the value of using layerwise relevance propagation LRP as a method of direct decomposition
rather than learning decomposition we use a simple 2-step cooperative matrix game with only 2
players.
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Figure 1: 2 player matrix game: player 1 chooses a row and player 2 chooses a column per step for 2
time-steps. The location of the players in the final timestep determines the global reward assigned to
the episode

In step 1 agent 1 chooses a row and agent 2 a column simultaneously. These choices determine the
matrix game to be played. In step 2, agents again choose a row and column within the chosen matrix
game. The agents receive the payoff of the chosen index as a shared global reward as shown in figure
1.

Independent Q learning methods struggle to solve these simple tasks as agents do not have communi-
cation methods to determine the actions of each other [9]. As a result they should favour choosing
game 1 which has the highest average payoff irrespective of the action of the other agent rather than
game 3 which presents a higher potential reward but relies on coordinated decision making.

Starcraft multi agent challenge (SMAC)

Figure 2: Example SC2 gameplay

SMAC uses Starcraft 2 2 in order to create a series of micromanagement tasks using decentralised
controllers [2]. Enemies are controlled by predesigned heuristics. Proper micromanagement is
required to maximise the damage dealt to enemy units and achieve the optimal reward. Units are
required to learn a wide array of skills including focusing fire, kiting and efficient pathing. It has
become a common benchmark for many state-of-the-art (SOTA) MARL algorithms like COMA,
QMIX and QTRAN [16][9][17].

4.3 Network architecture and hyperparameter configurations

For the SMAC environments and the 2-step matrix game we use the same hyper parameters used
in the original SMAC benchmarking paper [2]. The architecture of the agents is a standard deep
recurrent Q network (DRQN) [12] with a gated-recurrent unit (GRU) layer with a 64 cell hidden state
followed by 2 fully connected layers with 32 nodes each and a final fully connected layer with nodes
equal to the size of the action space of an individual agent.

The critic network is a feed forward neural network with 2 dense layers of 64 nodes each and an
output layer of size 1.

We use a γ value of 0.99 in all environments. An ε − greedy exploration strategy is used with an
initial ε value of 1 which is annealed to 0.05 over 50k timesteps for SMAC and 2000 steps for the
matrix game.

To increase learning speed we share parameters across all individual Q networks and use a single
network to represent all agents. A one-hot encoding of the agent type is concatenated into each agent’s
observations. By using the agent type as part of the observation space we can train a single shared
neural network to represent all agents which has been shown to improve learning speed significantly
with minor performance loss [18]. Both the critic and the agent networks are trained using Adam with
a learning rate of 5x10−4. The replay buffer for SMAC contains the most recent 1000 trajectories
and is sampled with a batch size of 32. For the 2-step matrix game we only keep 200 trajectories and
use a batch size of 4. Target networks for the critic are updated every 200 training epochs.
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We test our method every 100 training episodes for SMAC and 10 for the matrix game for 20 test
episodes with exploration disabled. We evaluate performance based off of the percentage of wins
per set of test episodes. We conduct 8 separate training runs in order to gather the date from the
experiments.

Agent networks are given an input consisting of only the most recent observation, previous action
and their identity as a one-hot encoding. The critic for RDN is given a concatenation of all agents’
previous 4 observations, current actions and their one hot encoded identities. For QMIX the critic
takes in the ground truth state and the expected Q values of the independent agents as in the original
QMIX paper [9].

5 Results

2-step matrix game

All methods are quick to come to convergence on this simple environment. However our method is
the only one able to fully converge on the correct solution with no variance as seen in the figure 3.
The independent Q learning method overall converges on the better policy than QMIX as training
progresses. This could indicate that the independent method is able to more effectively perform
exploration due to training of agents not being linked to the central critic. As QMIX agents are reliant
on the factorised signal from the central critic if the critic is performing inaccurate decomposition
then agents are unable to learn an effective policy as they are receiving a poor representation of the
actual reward signal. For independent agents the reward signal is based on the join policy at each
timestep therefore even without value factorisation agents are able to eventually determine a higher
reward policy.

Figure 3: Median reward from 8 training runs on a 2 step grid world where shaded region is the 25th
to 75th percentile range of rewards

Starcraft2

We evaluate our algorithm in scenarios where all agents in the team are of the same unit type
(homogenous) and where different agents of different unit types (heterogenous) must collaborate to
solve the scenario.

The preexisting map from the Starcraft Multi-Agent Challenge (SMAC) we make use of is the
bane_vs_bane map. In this map each side has 20 zerglings and 4 banelings. The most optimal
policy for this environment has the zerglings move out of the way so as to not obstruct the banelings’
movement. We make us of 3 additional variants of the original map. bane_med which only has
15 zerglings, bane_small with has 10 zerglings and bane_no_z with has no zerglings. We use
a diminishing number of redundant agents in order to show how unneeded agents attempting to
form cooperative policies is actually detrimental to the overall policy of the environment. Only
bane_vs_bane is a symmetrical environment meaning the same number of each type of enemy and
ally agent are present. In all other cases we use the original parameter settings from bane_vs _bane
for the number of enemy units spawned while only varying the allied unit composition.

From figure 4a we can see that across all maps RDN outperforms all baselines although the perfor-
mance of VDN improves as the number of redundant agents are reduced. Interestingly QMIX is
outperformed by QMIX_NS in bane_med and in bane _no_z indicating that in cases where there are
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an intermediate number of redundant agents the central state already begins to become uninformative
making accurate multi-agent credit assignment difficult.

From figure 4b QMIX is shown to have significantly higher average variance than all other algorithms
which only use the local inputs. This is likely due to the increasing size of the ground truth state with
respect to the increasing number of agents required to cooperate under the environments. QMIX_NS
obtains low variance in bane _no_z however this is due to achieving poor results overall and therefore
low fluctuations in the rewards achieved. Figures 5a and 5b confirm this as we can see for RDN
and VDN the difference between the 75th and 25th percentile winrates is minor as both algorithms
are unaffected by an increasingly complex state space as the number of redundant agents increases.
Comparatively QMIX displays large variance on all 4 environments as the high number of redundant
agents makes the central state difficult to interpret.

In the case where all redundant agents are removed VDN performs to a similar level to RDN.

(a) Percentage winrates from highest number
of redundant agents (left) to least redundant
agents (right) for all tested algorithms

(b) Variance from highest number of redun-
dant agents (left) to least redundant agents
(right) for all tested algorithms

(a) 75th percentile winrates from highest num-
ber of redundant agents (left) to least redun-
dant agents (right) for all tested algorithms

(b) 25th percentile winrates from highest num-
ber of redundant agents (left) to least redun-
dant agents (right) for all tested algorithms

6 Conclusion

In this paper we show how increasing numbers of redundant agents makes reaching stable convergence
to an optimal joint policy difficult for both monotonic factorisation methods like QMIX and linear
factorisation methods like VDN where only n of m total agents are required for an environment to
be solved. Also we show how these methods converge to suboptimal minima even in simple matrix
games.

We propose RDN as a method that uses LRP in order to perform more optimal credit assignment
in environments with high numbers of redundant agents using only local agent observation. RDN
is able to reach near optimal convergence on all environments used with similar overall winrates
without the use of the ground truth state information. With VDN and QMIX we see a gradual decay
in performance as the number of redundant agents increases.

An ablation was done comparing the use of a fully observable observation space to one with only the
standard space. In the case of explaining relevance directly from inputs fully observable information
is unneeded as it has no influence on the decision making of the local agents. This is further verified
as QMIX is unable to solve the simple matrix game and raises the question of why the central state is
needed for QMIX to operate effectively and if the ground truth state is entirely needed to create high
performing deep MARL agents [19].
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A Appendix

A.1 Effects of observation space

We perform an ablation showing how relevance decomposition network (RDN) is affected by the
the availability of state space information. As most central training decentralised execution (CTDE)
methods use the ground truth state to condition the value function learnt by the critic we show that
state information is not always guaranteed to produce greater performance. For this test we give the
critic access to a fully observable input space which includes data that would normally be unavailable
during training.

In our testing we find minimal utility from using the expanded state observation space. In 3 of 4
maps show in figure 6a Where performance remains similar across environments for both versions
of the RDN.This is likely due to regions of the expanded space being given weight from relevance
calculations but not actually having any effect on the decision making of the agent as the agent only
uses its own observations during runtime. The revealed areas have no effect on decision making and
as such should not be considered relevant.

We also find an increase in the variance of the algorithm when a fully observable space is used as
see in figure 6b. As there is a large amount of data that does not effect the runtime policy of the
agent used in the learning process decomposition of the value function is being done which assigns
relevance to information that does not actually have any correlation with the policy during runtime
which reduces the stability of the learning process.

(a) Percentage winrates from most number
of redundant agents (left) to least redundant
agents (right) for all RDN and RDN_s

(b) Variance from most number of redundant
agents (left) to least redundant agents (right)
for all RDN and RDN_s
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