
Hierarchy Through Composition with Multitask LMDPs

Andrew M. Saxe 1 Adam C. Earle 2 Benjamin Rosman 2 3

Abstract
Hierarchical architectures are critical to the
scalability of reinforcement learning methods.
Most current hierarchical frameworks execute ac-
tions serially, with macro-actions comprising se-
quences of primitive actions. We propose a novel
alternative to these control hierarchies based on
concurrent execution of many actions in parallel.
Our scheme exploits the guaranteed concurrent
compositionality provided by the linearly solvable
Markov decision process (LMDP) framework,
which naturally enables a learning agent to draw
on several macro-actions simultaneously to solve
new tasks. We introduce the Multitask LMDP
module, which maintains a parallel distributed
representation of tasks and may be stacked to form
deep hierarchies abstracted in space and time.

1. Introduction
Real world tasks unfold at a range of spatial and temporal
scales, such that learning solely at the finest scale is likely to
be slow. Hierarchical reinforcement learning (HRL) (Barto
& Madadevan, 2003; Parr & Russell, 1998; Dietterich, 2000)
attempts to remedy this by learning a nested sequence of
ever more detailed plans. Hierarchical schemes have a num-
ber of desirable properties. Firstly, they are intuitive, as
humans seldom plan at the level of raw actions, typically pre-
ferring to reason at a higher level of abstraction (Botvinick
et al., 2009; Ribas-Fernandes et al., 2011; Solway et al.,
2014). Secondly, they constitute one approach to tackling
the curse of dimensionality (Bellman, 1957; Howard, 1960).
In real world MDPs, the number of states typically grows
dramatically in the size of a domain. A similar curse of di-
mensionality afflicts actions, such that a robot with multiple
joints, for instance, must operate in the product space of

1Center for Brain Science, Harvard University 2School of
Computer Science and Applied Mathematics, University of
the Witwatersrand 3Council for Scientific and Industrial Re-
search, South Africa. Correspondence to: Andrew M. Saxe
<asaxe@fas.harvard.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

actions for each joint individually (Mausam & Weld, 2008).
Finally, the ‘tasks’ performed by an agent may come in
great variety, and can also suffer from a curse of dimension-
ality: a robot that learns policies to navigate to each of ten
rooms would need to learn 10 choose 2 policies to navigate
to the closer of each pair of rooms. Transferring learning
across tasks is therefore vital (Taylor & Stone, 2009; Foster
& Dayan, 2002; Drummond, 1998; Fernández & Veloso,
2006; Bonarini et al., 2006; Barreto et al., 2016).

Many HRL schemes rely on a serial call/return procedure,
in which temporally extended macro-actions or ‘options’
can call other (macro-)actions. In this sense, these schemes
draw on a computer metaphor, in which a serial processor
chooses sequential primitive actions, occasionally pushing
or popping new macro-actions onto a stack. The influential
options framework (Sutton et al., 1999), MAXQ method
(Dietterich, 2000; Jonsson & Gómez, 2016) and the hierar-
chy of abstract machines (Parr & Russell, 1998; Burridge
et al., 1999) all share this sequential-execution structure.

Concurrent MDPs (Mausam & Weld, 2008) relax the as-
sumption of serial execution to allow multiple actions to be
executed simultaneously at each time step, at the cost of a
combinatorial increase in the size of the action space. In
this paper, we develop a novel hierarchical scheme with a
parallel and distributed execution structure that overcomes
the combinatorial increase in action space by exploiting the
guaranteed optimal compositionality afforded by the lin-
early solvable Markov decision process (LMDP) framework
(Todorov, 2006; Kappen, 2005).

We present a Multitask LMDP module that executes con-
current blends of previously learned tasks. Here we use
the term ‘concurrent’ or ‘parallel’ to refer to ‘parallel dis-
tributed processing’ or neural network-like methods that
form weighted blends of many simple elements to achieve
their aim. In standard schemes, if a robot arm has acquired
policies to individually reach two points in some space, this
knowledge typically does not aid it in optimally reaching to
either point. However in our scheme, such behaviours can
be expressed as different weighted task blends, such that
an agent can simultaneously draw on several sub-policies
to achieve goals not explicitly represented by any of the
individual behaviours, including tasks the agent has never
performed before.

Hierarchy Through Composition with Multitask LMDPs

Next we show how this Multitask LMDP module can be
stacked, resulting in a hierarchy of more abstract modules
that communicate distributed representations of tasks be-
tween layers. We give a simple theoretical analysis showing
that hierarchy can yield qualitative efficiency improvements
in learning time and memory. Finally, we demonstrate the
operation of the method on a navigation domain, and show
that its multitasking ability can speed learning of new tasks
compared to a traditional options-based agent.

Our scheme builds on a variety of prior work. Like the op-
tions framework (Sutton et al., 1999), we build a hierarchy
in time. Similar to MAXQ Value Decomposition (Diet-
terich, 2000), we decompose a target MDP into a hierarchy
of smaller SMDPs which progressively abstract over states.
From Feudal RL, we draw the idea of a managerial hierar-
chy in which higher layers prescribe goals but not details for
lower layers (Dayan & Hinton, 1993). Most closely related
to our scheme, (Jonsson & Gómez, 2016) develop a MAXQ
decomposition within the LMDP formalism (see Supple-
mentary Material for extended discussion). Our method
differs from all of the above approaches in permitting a
graded, concurrent blend of tasks at each level, and devel-
oping a uniform, stackable module capable of performing a
variety of tasks.

2. The Multitask LMDP: A compositional
action module

Our goal in this paper is to describe a flexible action-
selection module which can be stacked to form a hierar-
chy, such that the full action at any given point in time is
composed of the concurrent composition of sub-actions
within sub-actions. By analogy to perceptual deep net-
works, restricted Boltzmann machines (RBMs) form a com-
ponent module from which a deep belief network can be
constructed by layerwise stacking (Hinton et al., 2006; Hin-
ton & Salakhutdinov, 2006). We seek a similar module in
the context of action or control. This section describes the
module, the Multitask LMDP (MLMDP), before turning to
how it can be stacked. Our formulation relies on the linearly
solvable Markov decision process (LMDP) framework in-
troduced by Todorov (2006) (see also Kappen (2005)). The
LMDP differs from the standard MDP formulation in fun-
damental ways, and enjoys a number of special properties.
We first briefly describe the canonical MDP formulation, in
order to explain what the switch to the LMDP accomplishes
and why it is necessary.

2.1. Canonical MDPs

In its standard formulation, an MDP is a four-tuple M =
〈S,A, P,R〉, where S is a set of states, A is a set of discrete
actions, P is a transition probability distribution P : S ×
A× S → [0, 1], and R is an expected instantaneous reward

function R : S × A → R. The goal is to determine an
optimal policy π : S → A specifying which action to
take in each state. This optimal policy can be computed
from the optimal value function V : S → R, defined as
the expected reward starting in a given state and acting
optimally thereafter. The value function obeys the well-
known Bellman optimality condition

V (s) = max
a∈A

{
R(s, a) +

∑

s′

P (s′|s, a)V (s′)

}
. (1)

This formalism is the basis of most practical and theoretical
studies of decision-making under uncertainty and reinforce-
ment learning (Bellman, 1957; Howard, 1960; Sutton &
Barto, 1998). See, for instance, (Mnih et al., 2015; Lillicrap
et al., 2015; Levine et al., 2016) for recent successes in
challenging domains.

For the purposes of a compositional hierarchy of actions,
this formulation presents two key difficulties.

1. Mutually exclusive sequential actions First, the
agent’s actions are discrete and execute serially. Ex-
actly one (macro-)action operates at any given time
point. Hence there is no way to build up an action at a
single time point out of several ‘subactions’ taken in
parallel. For example, a control signal for a robotic arm
cannot be composed of a control decision for the elbow
joint, a control decision for the shoulder joint, and a
control decision for the gripper, each taken in parallel
and combined into a complete action for a specific time
point.

2. Non-composable optimal policies The maximization
in Eqn. (1) over a discrete set of actions is nonlin-
ear. This means that optimal solutions, in general, do
not compose in a simple way. Consider two standard
MDPs M1 = 〈S,A, P,R1〉 and M2 = 〈S,A, P,R2〉
which have identical state spaces, action sets, and tran-
sition dynamics but differ in their instantaneous re-
wards R1 and R2. These may be solved independently
to yield value functions V1 and V2. But the value func-
tion of the MDP M1+2 = 〈S,A, P,R1 +R2〉, whose
instantaneous rewards are the sum of the first two, is
not V1+2 = V1 + V2. In general, there is no simple
procedure for deriving V1+2 from V1 and V2; it must
be found by solving Eqn. (1) again.

2.2. Linearly Solvable MDPs

The LMDP (Todorov, 2009a; Dvijotham & Todorov, 2010;
Todorov, 2009b; Dvijotham & Todorov, 2010) is defined
by a three-tuple L = 〈S, P,R〉, where S is a set of
states, P is a passive transition probability distribution
P : S × S → [0, 1], and R is an expected instantaneous re-
ward function R : S → R. The LMDP framework replaces

Hierarchy Through Composition with Multitask LMDPs

the traditional discrete set of actions A with a continuous
probability distribution over next states a : S × S → [0, 1].
That is, the ‘control’ or ‘action’ chosen by the agent in state
s is a transition probability distribution over next states,
a(·|s). The controlled transition distribution may be inter-
preted either as directly constituting the agent’s dynamics,
or as a stochastic policy over deterministic actions which
affect state transitions (Todorov, 2006; Jonsson & Gómez,
2016). Swapping a discrete action space for a continuous ac-
tion space is a key change which will allow for concurrently
selected ‘subactions’ and distributed representations.

The LMDP framework additionally posits a specific form
for the cost function to be optimized. The instantaneous
reward for taking action a(·|s) in state s is

R(s, a) = R(s)− λKL (a(·|s)||P (·|s)) , (2)

where the KL term is the Kullback-Leibler divergence be-
tween the selected control transition probability and the
passive dynamics. This term implements a control cost, en-
couraging actions to conform to the natural passive dynam-
ics of a domain. In a cart-pole balancing task, for instance,
the passive dynamics might encode the transition structure
arising from physics in the absence of control input. Any
deviation from these dynamics will require energy input.
In more abstract settings, such as navigation in a 2D grid
world, the passive dynamics might encode a random walk,
expressing the fact that actions cannot transition directly
to a far away goal but only move some limited distance
in a specific direction. Examples of standard benchmark
domains in the LMDP formalism are provided in the Sup-
plementary Material. The parameter λ in Eqn. (2) acts to
trade-off the relative value between the reward of being in a
state and the control cost, and determines the stochasticity
of the resulting policies.

We consider first-exit problems (see Dvijotham & Todorov
(2011) for infinite horizon and other formulations), in which
the state space is divided into a set of absorbing boundary
states B ⊂ S and non-absorbing interior states I ⊂ S, with
S = B ∪ I. In this formulation, an agent acts in a variable
length episode that consists of a series of transitions through
interior states before a final transition to a boundary state
which terminates the episode. The goal is to find the policy
a∗ which maximizes the total expected reward across the
episode,

a∗ = argmaxaE st+1∼a(·|st)
τ=min{t:st∈B}

{
τ−1∑

t=1

R(st, a) +R(sτ)

}
.

(3)

Because of the carefully chosen structure of the reward
R(s, a) and the continuous action space, the Bellman equa-
tion simplifies greatly. In particular define the desirability
function z(s) = eV (s)/λ as the exponentiated cost-to-go

function, and define q(s) = eR(s)/λ to be the exponentiated
instantaneous rewards. Let N be the number of states, and
Ni and Nb be the number of internal and boundary states
respectively. Represent z(s) and q(s) with N -dimensional
column vectors z and q, and the transition dynamics P (s′|s)
with the N -by-Ni matrix P , where column index corre-
sponds to s and row index corresponds to s′. Let zi and zb
denote the partition of z into internal and boundary states,
respectively, and similarly for qi and qb. Finally, let Pi de-
note the Ni-by-Ni submatrix of P containing transitions
between internal states, and Pb denote the Nb-by-Ni sub-
matrix of P containing transitions from internal states to
boundary states.

As shown in Todorov (2009b), the Bellman equation in this
setting reduces to

(I −MiP
T
i)zi =MiP

T
b zb (4)

where Mi = diag(qi) and, because boundary states are
absorbing, zb = qb. The exponentiated Bellman equation
is hence a linear system, the key advantage of the LMDP
framework. A variety of special properties flow from the
linearity of the Bellman equation, which we exploit in the
following.

Solving for zi may be done explicitly as zi = (I −
MiP

T
i)−1MiP

T
b zb or via the z-iteration method (akin to

value iteration),

zi ←MiP
T
i zi +MiP

T
b zb. (5)

Finally, the optimal policy may be computed in closed form
as

a∗(s′|s) = P (s′|s)z(s′)
G[z](s) , (6)

where the normalizing constant G[z](s) =∑
s′ P (s

′|s)z(s′). Detailed derivations of these re-
sults are given in (Todorov, 2009a;b; Dvijotham & Todorov,
2011). Intuitively, the hard maximization of Eqn. (1)
has been replaced by a soft maximization log(

∑
exp(·)),

and the continuous action space enables closed form
computation of the optimal policy.

Compared to the standard MDP formulation, the LMDP has

1. Continuous concurrent actions Actions are ex-
pressed as transition probabilities over next states, such
that these transition probabilities can be influenced by
many subtasks operating in parallel, and in a graded
fashion.

2. Compositional optimal policies In the LMDP, lin-
early blending desirability functions yields the correct
composite desirability function (Todorov, 2009a;b). In
particular, consider two LMDPs L1 = 〈S, P, qi, q1b 〉

Hierarchy Through Composition with Multitask LMDPs

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \2 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

= w1⇥ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

= w1⇥ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

+w2⇥ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

+w2⇥ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

+ · · · + wn⇥ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

+ · · · + wn⇥ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

ep
is

od
e,

82

a
⇤

=
ar

gm
ax

a
E

s
t
+

1
⇠

a
(
·|

s
t
)

⌧
=

m
in

{t
:s

t
2B

}

(
⌧
�

1
X t=

1

R
(s

t
,a

)
+

R
(s

⌧
))

.
(3

)

B
ec

au
se

of
th

e
ca

re
fu

lly
ch

os
en

st
ru

ct
ur

e
of

th
e

re
w

ar
d

R
(s

,a
)

an
d

th
e

co
nt

in
uo

us
ac

tio
n

sp
ac

e,
th

e
83

B
el

lm
an

eq
ua

tio
n

si
m

pl
ifi

es
gr

ea
tly

.I
n

pa
rt

ic
ul

ar
de

fin
e

th
e

de
si

ra
bi

lit
y

fu
nc

tio
n

z
(s

)
=

eV
(s

)/
�

as
84

th
e

ex
po

ne
nt

ia
te

d
co

st
-t

o-
go

fu
nc

tio
n,

an
d

de
fin

e
q(

s)
=

eR
(s

)/
�

to
be

th
e

ex
po

ne
nt

ia
te

d
in

st
an

ta
-

85

ne
ou

s
re

w
ar

ds
.L

et
n

be
th

e
nu

m
be

ro
fs

ta
te

s,
an

d
n

i
an

d
n

b
be

th
e

nu
m

be
ro

fi
nt

er
na

la
nd

bo
un

da
ry

86

st
at

es
re

sp
ec

tiv
el

y.
R

ep
re

se
nt

z
(s

)
an

d
q(

s)
w

ith
n

-d
im

en
si

on
al

co
lu

m
n

ve
ct

or
s

z
an

d
q,

an
d

th
e

87

tr
an

si
tio

n
dy

na
m

ic
s
P

(s
0 |s

)
w

ith
th

e
n

-b
y-

n
i

m
at

ri
x

P
,w

he
re

co
lu

m
n

in
de

x
co

rr
es

po
nd

s
to

s
an

d
88

ro
w

in
de

x
co

rr
es

po
nd

s
to

s0
.L

et
z i

an
d

z b
de

no
te

th
e

pa
rt

iti
on

of
z

in
to

bo
un

da
ry

an
d

in
te

rn
al

st
at

es
,

89

re
sp

ec
tiv

el
y,

an
d

si
m

ila
rl

y
fo

rq
i

an
d

q b
.F

in
al

ly
,l

et
P

i
de

no
te

th
e
n

i-
by

-n
i

su
bm

at
ri

x
of

P
co

nt
ai

ni
ng

90

tr
an

si
tio

ns
be

tw
ee

n
in

te
rn

al
st

at
es

,a
nd

P
b

de
no

te
th

e
n

b
-b

y-
n

i
su

bm
at

ri
x

of
P

co
nt

ai
ni

ng
tr

an
si

tio
ns

91

fr
om

in
te

rn
al

st
at

es
to

bo
un

da
ry

st
at

es
.

92

A
s

sh
ow

n
in

[*
**

],
th

e
B

el
lm

an
eq

ua
tio

n
in

th
is

se
tti

ng
re

du
ce

s
to

93

(I
�

Q
iP

i)
z i

=
Q

iP
b
z b

(4
)

w
he

re
Q

i
=

di
ag

(q
i)

an
d,

be
ca

us
e

bo
un

da
ry

st
at

es
ar

e
ab

so
rb

in
g,

z b
=

q b
.

T
he

ex
po

ne
nt

ia
te

d
94

B
el

lm
an

eq
ua

tio
n

is
he

nc
e

a
lin

ea
rs

ys
te

m
,t

he
ke

y
ad

va
nt

ag
e

of
th

e
L

M
D

P
fr

am
ew

or
k.

A
va

ri
et

y
of

95

sp
ec

ia
lp

ro
pe

rt
ie

s
flo

w
fr

om
th

e
lin

ea
ri

ty
of

th
e

B
el

lm
an

eq
ua

tio
n,

w
hi

ch
w

e
ex

pl
oi

ti
n

th
e

fo
llo

w
in

g.
96

So
lv

in
g

fo
r
z i

m
ay

be
do

ne
ex

pl
ic

itl
y

as
z i

=
(I
�

Q
iP

i)
�

1
Q

iP
b
z b

or
vi

a
th

e
z-

ite
ra

tio
n

m
et

ho
d

97

(a
ki

n
to

va
lu

e
ite

ra
tio

n)
,

98

z i

Q
iP

iz
i
+

Q
iP

b
z b

.
(5

)

Fi
na

lly
,t

he
op

tim
al

po
lic

y
m

ay
be

co
m

pu
te

d
in

cl
os

ed
fo

rm
as

99

a
⇤ (

s0
|s)

=
P

(s
0 |s

)Z
(s

0)
G[

Z
](

s)
,

(6
)

w
he

re
th

e
no

rm
al

iz
in

g
co

ns
ta

nt
G[

Z
](

s)
=

P
s
0
P

(s
0 |s

)Z
(s

0)
.D

et
ai

le
d

de
riv

at
io

ns
of

th
es

e
re

su
lts

10
0

ar
e

gi
ve

n
in

[*
**

].
In

tu
iti

ve
ly

,
th

e
ha

rd
m

ax
im

iz
at

io
n

of
E

qn
.

(1
)

ha
s

be
en

re
pl

ac
ed

by
a

so
ft

10
1

m
ax

im
iz

at
io

n
lo

g
(P

ex
p
(·)

),
an

d
th

e
co

nt
in

uo
us

ac
tio

n
sp

ac
e

en
ab

le
s

cl
os

ed
fo

rm
co

m
pu

ta
tio

n
of

10
2

th
e

op
tim

al
po

lic
y.

10
3

2.
3

C
on

cu
rr

en
ts

ub
ac

tio
ns

an
d

di
st

ri
bu

te
d

re
pr

es
en

ta
tio

ns
of

ta
sk

s
10

4

�
⇡

\ 2
⇡

(7
)

O
ur

hi
er

ar
ch

ic
al

sc
he

m
e

is
bu

ilt
on

tw
o

ke
y

pr
op

er
tie

s
of

th
e

L
M

D
P.

10
5

1.
C

on
tin

uo
us

co
nc

ur
re

nt
ac

tio
ns

10
6

2.
C

om
po

si
tio

na
lo

pt
im

al
po

lic
ie

s
10

7

T
he

sp
ec

ifi
c

fo
rm

of
E

qn
.(

2)
ca

n
se

em
to

lim
it

th
e

ap
pl

ic
ab

ili
ty

of
th

e
L

M
D

P
fr

am
ew

or
k.

Y
et

as
10

8

sh
ow

n
in

a
va

ri
et

y
of

re
ce

nt
w

or
k

[*
**

],
an

d
in

th
e

ex
am

pl
es

gi
ve

n
la

te
r,

m
os

ts
ta

nd
ar

d
do

m
ai

ns
ca

n
10

9

be
tr

an
sl

at
ed

to
th

e
M

D
P

fr
am

ew
or

k;
an

d
th

er
e

ex
is

ts
a

ge
ne

ra
lp

ro
ce

du
re

fo
re

m
be

dd
in

g
tr

ad
iti

on
al

11
0

M
D

Ps
in

th
e

L
M

D
P

fr
am

ew
or

k
?.

11
1

M
or

e
ge

ne
ra

lly
,w

e
su

gg
es

tt
ha

tm
os

td
om

ai
ns

of
in

te
re

st
ha

ve
so

m
e

no
tio

n
of

‘e
ffi

ci
en

t’
ac

tio
ns

,
11

2

m
ak

in
g

a
co

nt
ro

lc
os

ta
re

as
on

ab
ly

na
tu

ra
la

nd
un

iv
er

sa
lp

he
no

m
en

on
.

In
de

ed
,i

ti
s

po
ss

ib
le

th
at

11
3

th
e

st
an

da
rd

M
D

P
fo

rm
ul

at
io

n
is

ov
er

ly
ge

ne
ra

l,
di

sc
ar

di
ng

us
ef

ul
st

ru
ct

ur
e

in
m

os
t

re
al

w
or

ld
11

4

do
m

ai
ns

–n
am

el
y,

a
pr

ef
er

en
ce

fo
re

ffi
ci

en
ta

ct
io

ns
.S

ta
nd

ar
d

M
D

P
fo

rm
ul

at
io

ns
co

m
m

on
ly

pl
ac

e
11

5

sm
al

ln
eg

at
iv

e
re

w
ar

ds
on

ea
ch

ac
tio

n
to

in
st

an
tia

te
th

is
ef

fic
ie

nc
y

go
al

,b
ut

th
ey

re
ta

in
th

e
fle

xi
bi

lit
y

11
6

to
,

fo
r

in
st

an
ce

,
pr

ef
er

en
er

ge
tic

al
ly

in
ef

fic
ie

nt
tr

aj
ec

to
ri

es
by

pl
ac

in
g

po
si

tiv
e

re
w

ar
ds

on
ea

ch
11

7

ac
tio

n.
T

he
dr

aw
ba

ck
of

th
is

fle
xi

bi
lit

y
is

th
e

un
st

ru
ct

ur
ed

m
ax

im
iz

at
io

n
of

E
qn

.(
1)

,w
hi

ch
pr

ev
en

ts
11

8

co
m

po
si

tio
na

lit
y.

11
9

T
he

12
0

3

ep
is

od
e,

82

a
⇤

=
ar

gm
ax

a
E

s
t
+

1
⇠

a
(
·|

s
t
)

⌧
=

m
in

{t
:s

t
2B

}

(
⌧
�

1
X t=

1

R
(s

t
,a

)
+

R
(s

⌧
))

.
(3

)

B
ec

au
se

of
th

e
ca

re
fu

lly
ch

os
en

st
ru

ct
ur

e
of

th
e

re
w

ar
d

R
(s

,a
)

an
d

th
e

co
nt

in
uo

us
ac

tio
n

sp
ac

e,
th

e
83

B
el

lm
an

eq
ua

tio
n

si
m

pl
ifi

es
gr

ea
tly

.I
n

pa
rt

ic
ul

ar
de

fin
e

th
e

de
si

ra
bi

lit
y

fu
nc

tio
n

z
(s

)
=

eV
(s

)/
�

as
84

th
e

ex
po

ne
nt

ia
te

d
co

st
-t

o-
go

fu
nc

tio
n,

an
d

de
fin

e
q(

s)
=

eR
(s

)/
�

to
be

th
e

ex
po

ne
nt

ia
te

d
in

st
an

ta
-

85

ne
ou

s
re

w
ar

ds
.L

et
n

be
th

e
nu

m
be

ro
fs

ta
te

s,
an

d
n

i
an

d
n

b
be

th
e

nu
m

be
ro

fi
nt

er
na

la
nd

bo
un

da
ry

86

st
at

es
re

sp
ec

tiv
el

y.
R

ep
re

se
nt

z
(s

)
an

d
q(

s)
w

ith
n

-d
im

en
si

on
al

co
lu

m
n

ve
ct

or
s

z
an

d
q,

an
d

th
e

87

tr
an

si
tio

n
dy

na
m

ic
s
P

(s
0 |s

)
w

ith
th

e
n

-b
y-

n
i

m
at

ri
x

P
,w

he
re

co
lu

m
n

in
de

x
co

rr
es

po
nd

s
to

s
an

d
88

ro
w

in
de

x
co

rr
es

po
nd

s
to

s0
.L

et
z i

an
d

z b
de

no
te

th
e

pa
rt

iti
on

of
z

in
to

bo
un

da
ry

an
d

in
te

rn
al

st
at

es
,

89

re
sp

ec
tiv

el
y,

an
d

si
m

ila
rl

y
fo

rq
i

an
d

q b
.F

in
al

ly
,l

et
P

i
de

no
te

th
e
n

i-
by

-n
i

su
bm

at
ri

x
of

P
co

nt
ai

ni
ng

90

tr
an

si
tio

ns
be

tw
ee

n
in

te
rn

al
st

at
es

,a
nd

P
b

de
no

te
th

e
n

b
-b

y-
n

i
su

bm
at

ri
x

of
P

co
nt

ai
ni

ng
tr

an
si

tio
ns

91

fr
om

in
te

rn
al

st
at

es
to

bo
un

da
ry

st
at

es
.

92

A
s

sh
ow

n
in

[*
**

],
th

e
B

el
lm

an
eq

ua
tio

n
in

th
is

se
tti

ng
re

du
ce

s
to

93

(I
�

Q
iP

i)
z i

=
Q

iP
b
z b

(4
)

w
he

re
Q

i
=

di
ag

(q
i)

an
d,

be
ca

us
e

bo
un

da
ry

st
at

es
ar

e
ab

so
rb

in
g,

z b
=

q b
.

T
he

ex
po

ne
nt

ia
te

d
94

B
el

lm
an

eq
ua

tio
n

is
he

nc
e

a
lin

ea
rs

ys
te

m
,t

he
ke

y
ad

va
nt

ag
e

of
th

e
L

M
D

P
fr

am
ew

or
k.

A
va

ri
et

y
of

95

sp
ec

ia
lp

ro
pe

rt
ie

s
flo

w
fr

om
th

e
lin

ea
ri

ty
of

th
e

B
el

lm
an

eq
ua

tio
n,

w
hi

ch
w

e
ex

pl
oi

ti
n

th
e

fo
llo

w
in

g.
96

So
lv

in
g

fo
r
z i

m
ay

be
do

ne
ex

pl
ic

itl
y

as
z i

=
(I
�

Q
iP

i)
�

1
Q

iP
b
z b

or
vi

a
th

e
z-

ite
ra

tio
n

m
et

ho
d

97

(a
ki

n
to

va
lu

e
ite

ra
tio

n)
,

98

z i

Q
iP

iz
i
+

Q
iP

b
z b

.
(5

)

Fi
na

lly
,t

he
op

tim
al

po
lic

y
m

ay
be

co
m

pu
te

d
in

cl
os

ed
fo

rm
as

99

a
⇤ (

s0
|s)

=
P

(s
0 |s

)Z
(s

0)
G[

Z
](

s)
,

(6
)

w
he

re
th

e
no

rm
al

iz
in

g
co

ns
ta

nt
G[

Z
](

s)
=

P
s
0
P

(s
0 |s

)Z
(s

0)
.D

et
ai

le
d

de
riv

at
io

ns
of

th
es

e
re

su
lts

10
0

ar
e

gi
ve

n
in

[*
**

].
In

tu
iti

ve
ly

,
th

e
ha

rd
m

ax
im

iz
at

io
n

of
E

qn
.

(1
)

ha
s

be
en

re
pl

ac
ed

by
a

so
ft

10
1

m
ax

im
iz

at
io

n
lo

g
(P

ex
p
(·)

),
an

d
th

e
co

nt
in

uo
us

ac
tio

n
sp

ac
e

en
ab

le
s

cl
os

ed
fo

rm
co

m
pu

ta
tio

n
of

10
2

th
e

op
tim

al
po

lic
y.

10
3

2.
3

C
on

cu
rr

en
ts

ub
ac

tio
ns

an
d

di
st

ri
bu

te
d

re
pr

es
en

ta
tio

ns
of

ta
sk

s
10

4

�
⇡

\ 2
⇡

(7
)

O
ur

hi
er

ar
ch

ic
al

sc
he

m
e

is
bu

ilt
on

tw
o

ke
y

pr
op

er
tie

s
of

th
e

L
M

D
P.

10
5

1.
C

on
tin

uo
us

co
nc

ur
re

nt
ac

tio
ns

10
6

2.
C

om
po

si
tio

na
lo

pt
im

al
po

lic
ie

s
10

7

T
he

sp
ec

ifi
c

fo
rm

of
E

qn
.(

2)
ca

n
se

em
to

lim
it

th
e

ap
pl

ic
ab

ili
ty

of
th

e
L

M
D

P
fr

am
ew

or
k.

Y
et

as
10

8

sh
ow

n
in

a
va

ri
et

y
of

re
ce

nt
w

or
k

[*
**

],
an

d
in

th
e

ex
am

pl
es

gi
ve

n
la

te
r,

m
os

ts
ta

nd
ar

d
do

m
ai

ns
ca

n
10

9

be
tr

an
sl

at
ed

to
th

e
M

D
P

fr
am

ew
or

k;
an

d
th

er
e

ex
is

ts
a

ge
ne

ra
lp

ro
ce

du
re

fo
re

m
be

dd
in

g
tr

ad
iti

on
al

11
0

M
D

Ps
in

th
e

L
M

D
P

fr
am

ew
or

k
?.

11
1

M
or

e
ge

ne
ra

lly
,w

e
su

gg
es

tt
ha

tm
os

td
om

ai
ns

of
in

te
re

st
ha

ve
so

m
e

no
tio

n
of

‘e
ffi

ci
en

t’
ac

tio
ns

,
11

2

m
ak

in
g

a
co

nt
ro

lc
os

ta
re

as
on

ab
ly

na
tu

ra
la

nd
un

iv
er

sa
lp

he
no

m
en

on
.

In
de

ed
,i

ti
s

po
ss

ib
le

th
at

11
3

th
e

st
an

da
rd

M
D

P
fo

rm
ul

at
io

n
is

ov
er

ly
ge

ne
ra

l,
di

sc
ar

di
ng

us
ef

ul
st

ru
ct

ur
e

in
m

os
t

re
al

w
or

ld
11

4

do
m

ai
ns

–n
am

el
y,

a
pr

ef
er

en
ce

fo
re

ffi
ci

en
ta

ct
io

ns
.S

ta
nd

ar
d

M
D

P
fo

rm
ul

at
io

ns
co

m
m

on
ly

pl
ac

e
11

5

sm
al

ln
eg

at
iv

e
re

w
ar

ds
on

ea
ch

ac
tio

n
to

in
st

an
tia

te
th

is
ef

fic
ie

nc
y

go
al

,b
ut

th
ey

re
ta

in
th

e
fle

xi
bi

lit
y

11
6

to
,

fo
r

in
st

an
ce

,
pr

ef
er

en
er

ge
tic

al
ly

in
ef

fic
ie

nt
tr

aj
ec

to
ri

es
by

pl
ac

in
g

po
si

tiv
e

re
w

ar
ds

on
ea

ch
11

7

ac
tio

n.
T

he
dr

aw
ba

ck
of

th
is

fle
xi

bi
lit

y
is

th
e

un
st

ru
ct

ur
ed

m
ax

im
iz

at
io

n
of

E
qn

.(
1)

,w
hi

ch
pr

ev
en

ts
11

8

co
m

po
si

tio
na

lit
y.

11
9

T
he

12
0

3

In
st
an
ta
ne

ou
s	

re
w
ar
d	
q b

De
sir
ab
lii
ty

fu
nc
tio

n	
z i

episode,82

a⇤ = argmaxaE st+1⇠a(·|st)

⌧=min{t:st2B}

(
⌧�1X

t=1

R(st, a) + R(s⌧)

)
. (3)

Because of the carefully chosen structure of the reward R(s, a) and the continuous action space, the83

Bellman equation simplifies greatly. In particular define the desirability function z(s) = eV (s)/� as84

the exponentiated cost-to-go function, and define q(s) = eR(s)/� to be the exponentiated instanta-85

neous rewards. Let n be the number of states, and ni and nb be the number of internal and boundary86

states respectively. Represent z(s) and q(s) with n-dimensional column vectors z and q, and the87

transition dynamics P (s0|s) with the n-by-ni matrix P , where column index corresponds to s and88

row index corresponds to s0. Let zi and zb denote the partition of z into boundary and internal states,89

respectively, and similarly for qi and qb. Finally, let Pi denote the ni-by-ni submatrix of P containing90

transitions between internal states, and Pb denote the nb-by-ni submatrix of P containing transitions91

from internal states to boundary states.92

As shown in [***], the Bellman equation in this setting reduces to93

(I �QiPi)zi = QiPbzb (4)

where Qi = diag(qi) and, because boundary states are absorbing, zb = qb. The exponentiated94

Bellman equation is hence a linear system, the key advantage of the LMDP framework. A variety of95

special properties flow from the linearity of the Bellman equation, which we exploit in the following.96

Solving for zi may be done explicitly as zi = (I � QiPi)
�1QiPbzb or via the z-iteration method97

(akin to value iteration),98

zi QiPizi + QiPbzb. (5)

Finally, the optimal policy may be computed in closed form as99

a⇤(s0|s) =
P (s0|s)Z(s0)

G[Z](s)
, (6)

where the normalizing constant G[Z](s) =
P

s0 P (s0|s)Z(s0). Detailed derivations of these results100

are given in [***]. Intuitively, the hard maximization of Eqn. (1) has been replaced by a soft101

maximization log(
P

exp(·)), and the continuous action space enables closed form computation of102

the optimal policy.103

2.3 Concurrent subactions and distributed representations of tasks104

�⇡ \1 ⇡ (7)

Our hierarchical scheme is built on two key properties of the LMDP.105

1. Continuous concurrent actions106

2. Compositional optimal policies107

The specific form of Eqn. (2) can seem to limit the applicability of the LMDP framework. Yet as108

shown in a variety of recent work [***], and in the examples given later, most standard domains can109

be translated to the MDP framework; and there exists a general procedure for embedding traditional110

MDPs in the LMDP framework ?.111

More generally, we suggest that most domains of interest have some notion of ‘efficient’ actions,112

making a control cost a reasonably natural and universal phenomenon. Indeed, it is possible that113

the standard MDP formulation is overly general, discarding useful structure in most real world114

domains–namely, a preference for efficient actions. Standard MDP formulations commonly place115

small negative rewards on each action to instantiate this efficiency goal, but they retain the flexibility116

to, for instance, prefer energetically inefficient trajectories by placing positive rewards on each117

action. The drawback of this flexibility is the unstructured maximization of Eqn. (1), which prevents118

compositionality.119

The120

3

=

=
Sa
m
pl
e

tr
aj
ec
to
rie

s

(c) (d) (e) (f) (g)(a)

(b)

End
Start

Figure 1. Distributed task representations with the Multitask LMDP. (a) Example 2DOF arm constrained to the plane with state space
consisting of shoulder and elbow joint angles 6 1, 6 2 ∈ [−π, π] respectively. (b) A novel task is specified as an instantaneous reward
function over terminal states. In this example, the task “reach to the black rectangle” is encoded by rewarding any terminal state with the
end effector in black rectangle (all successful configurations shown). (c-g) Solutions via the LMDP. Top row: Instantaneous rewards in
the space of joint angles. Middle row: Optimal desirability function with sample trajectories starting at green circles, finishing at red
circles. Bottom row: Strobe plot of sample trajectories in Cartesian space. Trajectories start at green circle, end at red circle. Column (c):
The linear Bellman equation is solved for this particular instantaneous boundary reward structure to obtain the optimal value function.
Columns (d-g): Solution via compositional Multitask LMDP. The instantaneous reward structure is expressed as a weighted combination
of previously-learned subtasks (d-f), here chosen to be navigation to specific points in state space. (g) Because of the linearity of the
Bellman equation, the resulting combined value function is optimal, and the system can act instantly despite no explicit training on the
reach-to-rectangle task. The same fixed basis set can be used to express a wide variety of tasks (reach to a cross; reach to a circle; etc).

and L2 = 〈S, P, qi, q2b 〉 which have identical state
spaces, transition dynamics, and internal reward struc-
tures, but differ in their exponentiated boundary re-
wards q1b and q2b . These may be solved independently to
yield desirability functions z1 and z2. The desirability
function of the LMDP L1+2 = 〈S, P, qi, αq1b + βq2b 〉,
whose instantaneous rewards are a weighted sum of
the first two, is simply z1+2 = αz1 + βz2. This prop-
erty follows from the linearity of Eqn. 4, and is the
foundation of our hierarchical scheme.

2.3. The Multitask LMDP

To build a multitask action module, we exploit this com-
positionality to build a basis set of tasks (Foster & Dayan,
2002; Ruvolo & Eaton, 2013; Schaul et al., 2015; Pan et al.,
2015; Borsa et al., 2016). Suppose that we learn a set of
LMDPs Lt = 〈S, P, qi, qtb〉, t = 1, · · · , Nt which all share
the same state space, passive dynamics, and internal rewards,
but differ in their instantaneous exponentiated boundary re-
ward structure qtb, t = 1, · · · , Nt. Each of these LMDPs
corresponds to a different task, defined by its boundary re-
ward structure, in the same overall state space (see Taylor
& Stone (2009) for an overview of this and other notions
of transfer and multitask learning). We denote the Mul-
titask LMDP module M formed from these Nt LMDPs
as M = 〈S, P, qi, Qb〉. Here the Nb-by-Nt task basis ma-
trix Qb =

[
q1b q

2
b · · · qNt

b

]
encodes a library of component

tasks in the MLMDP. Solving each component LMDP yields

the corresponding desirability functions zti , t = 1, · · · , Nt
for each task, which can also be formed into the Ni-by-
Nt desirability basis matrix Zi =

[
z1i z

2
i · · · zNt

i

]
for the

multitask module.

When we encounter a new task defined by a novel instan-
taneous exponentiated reward structure q, if we can ex-
press it as a linear combination of previously learned tasks,
q = Qbw, where w ∈ RNt is a vector of task blend weights,
then we can instantaneously derive its optimal desirability
function as zi = Ziw. This immediately yields the optimal
action through Eqn. 6. Hence an MLMDP agent can act
optimally even in never-before-seen tasks, provided that
the new task lies in the subspace spanned by previously
learned tasks. This approach is an off-policy variant on
the successor representation method of Dayan (1993). It
differs by yielding the optimal value function, rather than
the value function under a particular policy π; and allows
arbitrary boundary rewards for the component tasks (the
SR implicitly takes these to be a positive reward on just
one state). Also related is the successor feature approach of
Barreto et al. (2016), which permits performance guarantees
for transfer to new tasks. With successor features, new tasks
must have rewards that are close in Euclidean distance to
prior tasks, whereas here we require only that they lie in the
span of prior tasks.

More generally, if the target task q is not an exact linear
combination of previously learned tasks, an approximate

Hierarchy Through Composition with Multitask LMDPs

task weighting w can be found as

argminw ‖q −Qbw‖ subject to Qbw ≥ 0. (7)

The technical requirement Qbw ≥ 0 is due to the relation-
ship q = exp(r/λ), such that negative values of q are not
possible. In practice this can be approximately solved as
w = Q†bq, where † denotes the pseudoinverse, and negative
elements of w are projected back to zero.

Here the coefficients of the task blend w constitute a dis-
tributed representation of the current task to be performed.
Although the set of basis tasks Qb is fixed and finite, they
permit an infinite space of tasks to be performed through
their concurrent linear composition. Figure 2.2 demon-
strates this ability of the Multitask LMDP module in the
context of a 2D robot arm reaching task. From knowledge
of how to reach individual points in space, the module can
instantly act optimally to reach to a rectangular region.

3. Stacking the module: Concurrent
Hierarchical LMDPs

To build a hierarchy out of this Multitask LMDP module, we
construct a stack of MLMDPs in which higher levels select
the instantaneous reward structure that defines the current
task for lower levels. To take a navigation example, a high
level module might specify that the lower level module
should reach room A but not B by placing instantaneous
rewards in room A but no rewards in room B. Crucially,
the fine details of achieving this subgoal can be left to the
low-level module. Critical to the success of this hierarchical
scheme is the flexible, optimal composition afforded by
the Multitask LMDP module: the specific reward structure
commanded by the higher layer will often be novel for the
lower level, but will still be performed optimally provided it
lies in the basis of learned tasks.

3.1. Constructing a hierarchy of MLMDPs

We start with the MLMDP M1 =
〈
S1, P 1, q1i , Q

1
b

〉
that we

must solve, where here the superscript denotes the hierarchy
level (Fig. 2). This serves as the base case for our recursive
scheme for generating a hierarchy. For the inductive step,
given an MLMDP M l =

〈
Sl, P l, qli, Q

l
b

〉
at level l, we aug-

ment the state space S̃l = Sl ∪ Slt with a set of Nt terminal
boundary states Slt that we call subtask states. Semantically,
entering one of these states will correspond to a decision by
the layer l MLMDP to access the next level of the hierarchy.
The transitions to subtask states are governed by a new N l

t -
by-N l

i passive dynamics matrix P lt , which is chosen by the
designer to encode the structure of the domain. Choosing
fewer subtask states than interior states will yield a higher
level which operates in a smaller state space, yielding state
abstraction. In the augmented MLMDP, the passive dynam-

M1

M2

M3

M4

States

(a)

(a)

(b)

(c)

(b)

(c)

Figure 2. Stacking Multitask LMDPs. Top: Deep hierarchy for
navigation through a 1D corridor. Lower-level MLMDPs are ab-
stracted to form higher-level MLMDPs by choosing a set of ‘sub-
task’ states which can be accessed by the lower level (grey lines
between levels depict passive subtask transitions P l

t). Lower levels
access these subtask states to indicate completion of a subgoal
and to request more information from higher levels; higher levels
communicate new subtask state instantaneous rewards, and hence
the concurrent task blend, to the lower levels. Red lines indicate
higher level access points for one sample trajectory starting from
leftmost state and terminating at rightmost state. Bottom: Pan-
els (a-c) depict distributed task blends arising from accessing the
hierarchy at points denoted in left panel. The higher layer states
accessed are indicated by filled circles. (a) Just the second layer
of hierarchy is accessed, resulting in higher weight on the task to
achieve the next subgoal and zero weights on already achieved
subgoals. (b) The second and third levels are accessed, yielding
new task blends for both. (c) All levels are accessed yielding task
blends at a range of scales.

ics become P̃ l = N (
[
P li ; P

l
b ; P

l
t

]
) where the operation

N (·) renormalizes each column to sum to one.

It remains to specify the matrix of subtask-state instanta-
neous rewardsRlt for this augmented MLMDP. Often hierar-
chical schemes require designing a pseudoreward function
to encourage successful completion of a subtask. Here
we also pick a set of reward functions over subtask states;
however, the performance of our scheme is only weakly
dependent on this choice: we require only that our chosen
reward functions form a good basis for the set of subtasks
that the higher layer will command. Any set of tasks which
can linearly express the required space of reward structures
specified by the higher level is suitable. In our experiments,
we define N l

t tasks, one for each subtask state, and set each
instantaneous reward to negative values on all but a sin-
gle ‘goal’ subtask state. Then the augmented MLMDP is

Hierarchy Through Composition with Multitask LMDPs

M̃ l =
〈
S̃l, P̃ l, qli,

[
Qlb 0; 0 Q

l
t

]〉
.

The higher level is itself an MLMDP M l+1 =〈
Slt, P

l+1, ql+1
i , Ql+1

b

〉
, defined not over the entire state

space but just over the N l
t subtask states of the layer be-

low. To construct this, we must compute an appropriate
passive dynamics and reward structure. A natural definition
for the passive dynamics is the probability of starting at one
subtask state and terminating at another under the lower
layer’s passive dynamics,

P l+1
i = P̃ lt (I − P̃ li)−1P̃ l

T

t , (8)

P l+1
b = P̃ lb(I − P̃ li)−1P̃ l

T

t . (9)

In this way, the higher-level LMDP will incorporate the
transition constraints from the layer below. The interior-
state reward structure can be similarly defined, as the reward
accrued under the passive dynamics from the layer below.
However for simplicity in our implementation, we simply
set small negative rewards on all internal states.

Hence, from a base MLMDP M l and subtask transi-
tion matrix P lt , the above construction yields an aug-
mented MLDMP M̃ l at the same layer and unaugmented
MLDMP M l+1 at the next higher layer. This proce-
dure may be iterated to form a deep stack of MLMDPs{
M̃1, M̃2, · · · , M̃D−1,MD

}
, where all but the highest is

augmented with subtask states. The key choice for the de-
signer is P lt , the transition structure from internal states to
subtask states for each layer. Through Eqns. (8)-(9), this
matrix specifies the state abstraction used in the next higher
layer. Fig. 2 illustrates this scheme for an example of navi-
gation through a 1D corridor.

3.2. Instantaneous rewards and task blends:
Communication between layers

Bidirectional communication between layers happens via
subtask states and their instantaneous rewards. The higher
layer sets the instantaneous boundary rewards over subtask
states for the lower layer; and the lower layer signals that it
has completed a subtask and needs new guidance from the
higher layer by transitioning to a subtask state.

In particular, suppose we have solved a higher-level
MLMDP using any method we like, yielding the optimal
action al+1. This will make transitions to some states more
likely than they would be under the passive dynamics, indi-
cating that they are more attractive than usual for the current
task. It will make other transitions less likely than the pas-
sive dynamics, indicating that transitions to these states
should be avoided. We therefore define the instantaneous
rewards for the subtask states at level l to be proportional to
the difference between controlled and passive dynamics at

the higher level l + 1,

rlt ∝ al+1
i (·|s)− pl+1

i (·|s). (10)

This effectively inpaints extra rewards for the lower layer,
indicating which subtask states are desirable from the per-
spective of the higher layer.

The lower layer MLMDP then uses its basis of tasks to de-
termine a task weighting wl which will optimally achieve
the reward structure rlt specified by the higher layer by solv-
ing (7). The reward structure specified by the higher layer
may not correspond to any one task learned by the lower
layer, but it will nonetheless be performed well by forming
a concurrent blend of many different tasks and leveraging
the compositionality afforded by the LMDP framework.
This scheme may also be interpreted as implementing a
parametrized option, but with performance guarantees for
any parameter setting (Masson et al., 2016).

We now describe the execution model (see Supplementary
Material for pseudocode listing). The true state of the agent
is represented in the base level M̃1, and next states are
drawn from the controlled transition distribution. If the next
state is an interior state, one unit of time passes and the state
is updated as usual. If the next state is a subtask state, the
next layer of the hierarchy is accessed at its corresponding
state; no ‘real’ time passes during this transition. The higher
level then draws its next state, and in so doing can access
the next level of hierarchy by transitioning to one of its
subtask states, and so on. At some point, a level will elect
not to access a subtask state; it then transmits its desired
rewards from Eqn. (10) to the layer below it. The lower
layer then solves its multitask LMDP problem to compute
its own optimal actions, and the process continues down
to the lowest layer M̃1 which, after updating its optimal
actions, again draws a transition. Lastly, if the next state is
a terminal boundary state, the layer terminates itself. This
corresponds to a level of the hierarchy determining that it
no longer has useful information to convey. Terminating
a layer disallows future transitions from the lower layer
to its subtask states, and corresponds to inpainting infinite
negative rewards onto the lower level subtask states.

4. Computational complexity advantages of
hierarchical decomposition

To concretely illustrate the value of hierarchy, consider nav-
igation through a 1D ring of N states, where the agent must
perform N different tasks corresponding to navigating to
each particular state. We take the passive dynamics to be
local (a nonzero probability of transitioning just to adjacent
states in the ring, or remaining still). In one step of Z itera-
tion (Eqn. 5), the optimal value function progresses at best
O(1) states per iteration because of the local passive dy-
namics (see Precup et al. (1998) for a similar argument). It

Hierarchy Through Composition with Multitask LMDPs

therefore requires O(N) iterations in a flat implementation
for a useful value function signal to arrive at the furthest
point in the ring for each task. As there are N tasks, the
flat implementation requires O(N2) iterations to learn all
of them.

Instead suppose that we construct a hierarchy by placing a
subtask every M = logN states, and do this recursively to
form D layers. The recursion terminates when N/MD ≈ 1,
yielding D ≈ logM N . With the correct higher level policy
sequencing subtasks, each policy at a given layer only needs
to learn to navigate between adjacent subtasks, which are
no more than M states apart. Hence Z iteration can be
terminated after O(M) iterations. At level l = 1, 2, · · · , D
of the hierarchy, there are N/M l subtasks, and N/M l−1

boundary reward tasks to learn. Overall this yields

D∑

l=1

M

(
N

M l
+

N

M l−1

)
≈ O(N logN)

total iterations (see Supplementary Material for derivation
and numerical verification). A similar analysis shows that
this advantage holds for memory requirements as well. The
flat scheme requires O(N2) nonzero elements of Z to en-
code all tasks, while the hierarchical scheme requires only
O(N logN). Hence hierarchical decomposition can yield
qualitatively more efficient solutions and resource require-
ments, reminiscent of theoretical results obtained for percep-
tual deep learning (Bengio, 2009; Bengio & LeCun, 2007).
We note that this advantage only occurs in the multitask
setting: the flat scheme can learn one specific task in time
O(N). Hence hierarchy is beneficial when performing an
ensemble of tasks, due to the reuse of component policies
across many tasks (see also Solway et al. (2014)).

5. Experiments
5.1. Conceptual Demonstration

To illustrate the operation of our scheme, we apply it to a
2D grid-world ‘rooms’ domain (Fig. 3(a)). The agent is
required to navigate through an environment consisting of
four rooms with obstacles to a goal location in one of the
rooms. The agent can move in the four cardinal directions or
remain still. To build a hierarchy, we place six higher layer
subtask goal locations throughout the domain (Fig. 3(a), red
dots). The inferred passive dynamics for the higher layer
MLMDP is shown in Fig. 3(a) as weighted lines between
these subtask states. The higher layer passive dynamics con-
form to the structure of the problem, with the probability of
transition between higher layer states roughly proportional
to the distance between those states at the lower layer.

As a basic demonstration that the hierarchy conveys useful
information, Fig. 3(b) shows Z-learning curves for the base
layer policy with and without an omniscient hierarchy (i.e.,

T
ra

je
c
to

ry
 le

n
g

th

Epochs

Steps

T
a
s
k
 b

le
n
d
 w

e
ig

h
ts

A

B

C

D

E

F

B

(a) (b)

(c) (d)

0 100

0

200

FLAT

HIERARCHICAL

Figure 3. Rooms domain. (a) Four room domain with subtask loca-
tions marked as red dots, free space in white and obstacles in black,
and derived higher-level passive dynamics shown as weighted links
between subtasks. (b) Convergence as trajectory length over learn-
ing epochs with and without the help of the hierarchy. (c) Sample
trajectory (gray line) from upper left to goal location in bottom
right. (d) Evolution of distributed task weights on each subtask
location over the course of the trajectory in panel (c).

one preinitialized using Z-iteration). From the start of learn-
ing, the hierarchy is able to drive the agent to the vicinity
of the goal. Fig. 3(c-d) illustrates the evolving distributed
task representation commanded by the higher layer to the
lower layer over the course of a trajectory. At each time
point, several subtasks have nonzero weight, highlighting
the concurrent execution in the system.

(a)

(b)

Figure 4. Desirability functions. (a) Desirability function over
states as agent moves through environment, showing the effect
of reward inpainting from the hierarchy. (b) Desirability function
over states as goal location moves. Higher layers inpaint rewards
into subtasks that will move the agent nearer the goal.

Fig. 4(a) shows the composite desirability function resulting
from the concurrent task blend for different agent locations.
Fig. 4(b) highlights the multitasking ability of the system,

Hierarchy Through Composition with Multitask LMDPs

showing the composite desirability function as the goal
location is moved. The leftmost panel, for instance, shows
that rewards are painted concurrently into the upper left and
bottom right rooms, as these are both equidistant to the goal.

5.2. Quantitative Comparison

In order to quantitatively demonstrate the performance im-
provements possible with our method we consider the prob-
lem of a mobile robot navigating through an office block in
search of a charging station. This domain is shown in Fig. 5,
and is taken from previous experiments in transfer learning
(Fernández & Veloso, 2006).

Although the agent again moves in one of the four cardinal
directions at each time step, the agent is additionally pro-
vided with a policy to navigate to each room in the office
block, with goal locations marked by an ‘S’ in Fig. 5. The
goal of the agent is to learn a policy to navigate to the near-
est charging station from any location in the office block,
given that there are a number of different charging stations
available (one per room, but only in some of the rooms).
This corresponds to an ‘OR’ navigation problem: navigating
to location A OR B, while knowing separately a policy to
get to A, and a policy to get to B. Concretely, the problem is
to navigate to the nearest of two unknown subtask locations.
The agent is randomly initialized at interior states, and the
trajectory lengths are capped at 500 steps.

Figure 5. The office building domain. Each ‘subtask’ or ‘option’
policy navigates the agent to one of the rooms.

We compare a one-layer deep implementation of our method
to a simple implementation of the options framework (Sut-
ton et al., 1999). In the options framework the agent’s action
space is augmented with the full set of option policies. The
initialization set for these options is the full state space, so
that any option may be executed at any time. The termi-
nation condition is defined such that the option terminates
only when it reaches its goal state. To minimize the action
space for the options agent, we remove the primitive ac-
tions, reducing the learning problem to simply choosing the
single correct option from each state. The options learning
problem is solved using Q-learning with sigmoidal learning
rate decrease and ε-greedy exploitation. These parameters
were optimized on a coarse grid to yield the fastest learning
curves. Results are averaged over 20 runs.

Tr
aj

ec
to

ry
 L

en
gt

h

Epochs

Options

Our Method

Figure 6. Learning rates. Our method jump-starts performance
in the OR task, while the options agent must learn a state-action
mapping.

Fig. 6 shows that our agent receives a significant jump-start
in learning. By leveraging the distributed representation
provided by our scheme, the agent is required only to learn
when to request information from the higher layer. Al-
though the task is novel, the higher layer can express it as a
combination of prior tasks. Conversely, the options agent
must learn a unique mapping between all states and actions.
This issue is exacerbated as the number of available options
grows (Rosman & Ramamoorthy, 2012).

6. Conclusion
The Multitask LMDP module provides a novel approach
to control hierarchies, based on a distributed representa-
tion of tasks and parallel execution. Rather than learn to
perform one task or a fixed library of tasks, it exploits the
compositionality provided by linearly solvable Markov de-
cision processes to perform an infinite space of task blends
optimally. Stacking the module yields a deep hierarchy
abstracted in state space and time, with the potential for
qualitative efficiency improvements.

Experimentally, we have shown that the distributed repre-
sentation provided by our framework can speed up learning
in a simple navigation task, by representing a new task as a
combination of prior tasks.

While a variety of sophisticated reinforcement learning
methods have made use of deep networks as capable func-
tion approximators (Mnih et al., 2015; Lillicrap et al., 2015;
Levine et al., 2016), in this work we have sought to trans-
fer some of the underlying intuitions, such as parallel dis-
tributed representations and stackable modules, to the con-
trol setting. In the future this may allow other elements
of the deep learning toolkit to be brought to bear in this
setting, most notably gradient-based learning of the subtask
structure itself.

Hierarchy Through Composition with Multitask LMDPs

Acknowledgements
We thank our reviewers for thoughtful comments. AMS
acknowledges support from the Swartz Program in Theo-
retical Neuroscience at Harvard. AE and BR acknowledge
support from the National Research Foundation of South
Africa.

References
Barreto, A., Munos, R., Schaul, T., and Silver, D. Successor

Features for Transfer in Reinforcement Learning. arXiv, 2016.

Barto, A.G. and Madadevan, S. Recent Advances in Hierarchical
Reinforcement Learning. Discrete Event Dynamic Systems:
Theory and Applications, (13):41–77, 2003.

Bellman, R.E. Dynamic Programming. Princeton University Press,
Princeton, NJ, 1957.

Bengio, Y. Learning Deep Architectures for AI. Foundations and
Trends in Machine Learning, 2(1):1–127, 2009.

Bengio, Y. and LeCun, Y. Scaling learning algorithms towards AI.
In Bottou, L., Chapelle, O., DeCoste, D., and Weston, J. (eds.),
Large-Scale Kernel Machines. MIT Press, 2007.

Bonarini, A., Lazaric, A., and Restelli, M. Incremental Skill
Acquisition for Self-motivated Learning Animats. In Nolfi,
S., Baldassare, G., Calabretta, R., Hallam, J., Marocco, D.,
Miglino, O., Meyer, J.-A., and Parisi, D. (eds.), Proceedings of
the Ninth International Conference on Simulation of Adaptive
Behavior (SAB-06), volume 4095, pp. 357–368, Heidelberg,
2006. Springer Berlin.

Borsa, D., Graepel, T., and Shawe-Taylor, J. Learning Shared
Representations in Multi-task Reinforcement Learning. arXiv,
2016.

Botvinick, M.M., Niv, Y., and Barto, A.C. Hierarchically organized
behavior and its neural foundations: a reinforcement learning
perspective. Cognition, 113(3):262–80, 12 2009.

Burridge, R. R., Rizzi, A. A., and Koditschek, D.E. Sequential
Composition of Dynamically Dexterous Robot Behaviors. The
International Journal of Robotics Research, 18(6):534–555, 6
1999.

Dayan, P. Improving Generalization for Temporal Difference
Learning: The Successor Representation. Neural Computation,
5(4):613–624, 7 1993.

Dayan, P. and Hinton, G. Feudal Reinforcement Learning. In
NIPS, 1993.

Dietterich, T.G. Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition. Journal of Artificial
Intelligence Research, 13:227–303, 2000.

Drummond, C. Composing functions to speed up reinforcement
learning in a changing world. In Nédellec, C. and Rouveirol, C.
(eds.), Machine Learning: ECML-98., pp. 370–381, Heidelberg,
1998. Springer Berlin.

Dvijotham, K. and Todorov, E. Inverse Optimal Control with
Linearly-Solvable MDPs. In ICML, 2010.

Dvijotham, K. and Todorov, E. A unified theory of linearly solvable
optimal control. Uncertainty in Artificial Intelligence, 2011.

Fernández, F. and Veloso, M. Probabilistic policy reuse in a rein-
forcement learning agent. Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems,
pp. 720, 2006.

Foster, D. and Dayan, P. Structure in the Space of Value Functions.
Machine Learning, (49):325–346, 2002.

Hinton, G.E. and Salakhutdinov, R.R. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–7, 7
2006.

Hinton, G.E., Osindero, S., and Teh, Y.-W. A Fast Learning
Algorithm for Deep Belief Nets. Neural Computation, 18:1527–
1554, 2006.

Howard, R.A. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.

Jonsson, A. and Gómez, V. Hierarchical Linearly-Solvable Markov
Decision Problems. In ICAPS, 2016.

Kappen, H.J. Linear Theory for Control of Nonlinear Stochastic
Systems. Physical Review Letters, 95(20):200201, 11 2005.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-End
Training of Deep Visuomotor Policies. Journal of Machine
Learning Research, 17:1–40, 2016.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., and Wierstra, D. Continuous control with deep
reinforcement learning. arXiv, 2015.

Masson, W., Ranchod, P., and Konidaris, G.D. Reinforcement
Learning with Parameterized Actions. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pp. 1934–
1940, 9 2016.

Mausam and Weld, D.S. Planning with Durative Actions in
Stochastic Domains. Journal of Artificial Intelligence Research,
31:33–82, 2008.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis,
D. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Pan, Y., Theodorou, E.A., and Kontitsis, M. Sample Efficient Path
Integral Control under Uncertainty. In NIPS, 2015.

Parr, R. and Russell, S. Reinforcement learning with hierarchies
of machines. In NIPS, 1998.

Precup, D., Sutton, R., and Singh, S. Theoretical results on rein-
forcement learning with temporally abstract options. In ECML,
1998.

Ribas-Fernandes, J.J.F., Solway, A., Diuk, C., McGuire, J.T., Barto,
A.G., Niv, Y., and Botvinick, M.M. A neural signature of
hierarchical reinforcement learning. Neuron, 71(2):370–9, 7
2011.

Hierarchy Through Composition with Multitask LMDPs

Rosman, B. and Ramamoorthy, S. What good are actions? Ac-
celerating learning using learned action priors. In 2012 IEEE
International Conference on Development and Learning and
Epigenetic Robotics (ICDL), number November. IEEE, 11 2012.

Ruvolo, P. and Eaton, E. ELLA: An efficient lifelong learning
algorithm. Proceedings of the 30th International Conference
on Machine Learning, 28(1):507–515, 2013.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal Value
Function Approximators. Proceedings of The 32nd Interna-
tional Conference on Machine Learning, pp. 1312–1320, 2015.

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A.G., Niv, Y.,
and Botvinick, M.M. Optimal Behavioral Hierarchy. PLoS
Computational Biology, 10(8):e1003779, 8 2014.

Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Intro-
duction. The MIT Press, 1998.

Sutton, R.S., Precup, D., and Singh, S. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1-2):181–211, 8 1999.

Taylor, M.E. and Stone, P. Transfer Learning for Reinforcement
Learning Domains: A Survey. Journal of Machine Learning
Research, 10:1633–1685, 2009.

Todorov, E. Linearly-solvable Markov decision problems. In NIPS,
2006.

Todorov, E. Efficient computation of optimal actions. Proceedings
of the National Academy of Sciences, 106(28):11478–11483, 7
2009a.

Todorov, E. Compositionality of optimal control laws. In NIPS,
2009b.

