
Noname manuscript No.
(will be inserted by the editor)

Bayesian Policy Reuse

Benjamin Rosman · Majd Hawasly? ·
Subramanian Ramamoorthy

the date of receipt and acceptance should be inserted later

Abstract A long-lived autonomous agent should be able to respond online to
novel instances of tasks from a familiar domain. Acting online requires ‘fast’ re-
sponses, in terms of rapid convergence, especially when the task instance has a
short duration such as in applications involving interactions with humans. These
requirements can be problematic for many established methods for learning to act.
In domains where the agent knows that the task instance is drawn from a family
of related tasks, albeit without access to the label of any given instance, it can
choose to act through a process of policy reuse from a library in contrast to policy
learning. In policy reuse, the agent has prior experience from the class of tasks
in the form of a library of policies that were learnt from sample task instances
during an offline training phase. We formalise the problem of policy reuse and
present an algorithm for efficiently responding to a novel task instance by reusing
a policy from this library of existing policies, where the choice is based on ob-
served ‘signals’ which correlate to policy performance. We achieve this by posing
the problem as a Bayesian choice problem with a corresponding notion of an opti-
mal response, but the computation of that response is in many cases intractable.
Therefore, to reduce the computation cost of the posterior, we follow a Bayesian
optimisation approach and define a set of policy selection functions, which balance
exploration in the policy library against exploitation of previously tried policies,
together with a model of expected performance of the policy library on their corre-
sponding task instances. We validate our method in several simulated domains of
interactive, short-duration episodic tasks, showing rapid convergence in unknown
task variations.

? The first two authors contributed equally to this paper.

Benjamin Rosman
Mobile Intelligent Autonomous Systems (MIAS), Council for Scientific and Industrial Research
(CSIR), South Africa, and the School of Computer Science and Applied Mathematics, Univer-
sity of the Witwatersrand, South Africa. E-mail: BRosman@csir.co.za.

Majd Hawasly
School of Informatics, University of Edinburgh, UK. E-mail: M.Hawasly@ed.ac.uk.

Subramanian Ramamoorthy
School of Informatics, University of Edinburgh, UK. E-mail: S.Ramamoorthy@ed.ac.uk.

ar
X

iv
:1

50
5.

00
28

4v
2

 [
cs

.A
I]

 1
4

D
ec

 2
01

5

2 Rosman, Hawasly & Ramamoorthy

Keywords Policy Reuse · Reinforcement Learning · Online Learning · Online
Bandits · Transfer Learning · Bayesian Optimisation · Bayesian Decision Theory.

1 Introduction

As robots and software agents are becoming more ubiquitous in many applications
involving human interactions, greater numbers of scenarios require new forms of
decision making that allow fast responses to situations that may drift or change
from their nominal descriptions.

For example, online personalisation (Mahmud et al., 2014) is becoming a core
concept in human-computer interaction (HCI), driven largely by a proliferation of
new sensors and input devices which allow for a more natural means of communi-
cating with hardware. Consider, for example, an interactive interface in a public
space like a museum that aims to provide information or services to users through
normal interaction means such as natural speech or body gestures. The difficulty
in this setting is that the same device may be expected to interact with a wide
and diverse pool of users, who differ both at the low level of interaction speeds and
faculties, and at the higher level of which expressions or gestures seem appropriate
for particular commands. The device should autonomously calibrate itself to the
class of user, and a mismatch in that could result in a failed interaction. On the
other hand, taking too long to calibrate is likely to frustrate the user (Rosman
et al., 2014), who may then abandon the interaction.

This problem, characterised as a short-term interactive adaptation to a new
situation (the user), also appears in interactive situations other than HCI. As
an example, consider a system for localising and monitoring poachers in a large
wildlife reserve1 that comprises an intelligent base station which can deploy light-
weight airborne drones to scan particular locations in the reserve for unusual
activity. While the tactics followed by the poachers in every trial would be different,
the possible number of drone deployments in a single instance of this adversarial
problem is limited, as the poachers can be expected to spend a limited time stalking
their target before leaving.

In this paper, we formalise and propose a solution to the general problem in-
spired by these real world examples. To this end, we present a number of simulated
scenarios to investigate different facets of this problem, and contrast the proposed
solution with related approaches from the literature.

The key component of this problem is the need for efficient decision making, in
the sense that the agent is required to adapt or respond to scenarios which exist
only for short durations. As a result, solution methods are required to have both
low convergence time and low regret. To this end, the key intuition we employ is that
nearly-optimal solutions computed within a small computational and time budget
are preferred to those that are optimal but unbounded in time and computation.
Building on this, the question we address in this paper is how to act well (not
necessarily optimally) in an efficient manner (for short duration tasks) in a large
space of qualitatively-similar tasks.

While it is unreasonable to expect that an arbitrary task instance could be
solved from scratch in a short duration task (where, in general, the interaction

1 Poaching of large mammals such as rhinoceroses is a major problem throughout Africa
and Asia (Amin et al., 2006).

Bayesian Policy Reuse 3

length is unknown), it is plausible to consider seeding the process with a set of
policies of previously solved, related task instances, in what can be seen as a
strategy for transfer learning (Taylor and Stone, 2009). In this sense, we prefer to
quickly select a nearly-optimal pre-learnt policy, rather than learn an optimal one
for each new task. For our previous examples, the interactive interface may ship
with a set of different classes of user profiles which have been acquired offline, and
the monitoring system may be equipped with a collection of pre-learnt behaviours
to navigate the reserve when a warning is issued.

We term this problem of short-lived sequential policy selection for a new in-
stance the policy reuse problem, which differs slightly from other uses of that term
(see Section 1.1), and we define it as follows.

Definition 1 (Policy Reuse Problem) Let an agent be a decision making entity in

a specific domain, equipped with a policy library Π for some tasks in that domain. The

agent is presented with an unknown task which must be solved within a limited, and

small, number of trials. At the beginning of each trial episode, the agent can select one

policy from Π to execute for the full episode. The goal of the agent is thus to

select policies for the new task from Π to minimise the total regret, with respect

to the performance of the best alternative from Π in hindsight, incurred in the

limited task duration.

The online choice from a set of alternatives for minimal regret could be posed
as a multi-armed bandit problem. Here, each arm corresponds to a pre-learnt pol-
icy, and our problem becomes that of a sequential, finite-horizon, optimal selection
from a fixed set of policies. Solving this problem in general is difficult as it maps
into the intractable finite-horizon online bandit problem (Niño-Mora, 2011). On
the other hand, traditional approaches to solve the multi-armed bandit problem
involve testing each available arm on the new task in order to gauge its perfor-
mance, which may be a very costly procedure from a convergence rate point of
view.

Instead, one can exploit knowledge which has been acquired offline to improve
online response times. These more informed approaches to the multi-armed ban-
dit problem exploit background domain information (e.g. contexts in contextual
bandits (Strehl et al., 2006; Langford and Zhang, 2008)) or analytical forms of
reward (e.g. correlated bandits (Pandey et al., 2007)) to share the credit of pulling
an arm between many possible arms. This however requires prior knowledge of the
domain and its metrics, how possible domain instances relate to the arms, and in
some cases to be able to determine this side information for any new instance.

We propose a solution for policy reuse that neither requires complete knowl-
edge of the space of possible task instances nor a metric in that space, but rather
builds a surrogate model of this space from offline-captured correlations between
the policies when tested under canonical operating scenarios. Our solution then
maintains a Bayesian belief over the nature of the new task instance in relation to
the previously-solved ones. Then, executing a policy provides the agent with infor-
mation which, when combined with the model, is not only useful to evaluate the
policy chosen but also to gauge the suitability of other policies. This information
updates the belief, which facilitates choosing the next policy to execute.

We treat the policy selection in the policy reuse problem as one of optimisation

of the response surface of the new task instance, although over a finite library

4 Rosman, Hawasly & Ramamoorthy

of policies. Because we are dealing with tasks which we assume are of limited
duration and which do not allow extensive experimenting, and in order to use in-
formation from previous trials to maintain belief distributions over the task space,
we draw inspiration from the Bayesian optimisation/efficient global optimisation
literature (Brochu et al., 2010) for an approach to this problem that is efficient
in the number of policy executions, corresponding to function evaluations in the
classical optimisation setting.

1.1 Other Definitions of Policy Reuse

A version of the policy reuse problem was described by Mahmud et al. (2013),
where it is used to test a set of landmark policies retrieved through clustering in the
space of MDPs. Additionally, the term ‘policy reuse’ has been used by Fernández
and Veloso (2006) in a different context. There, a learning agent is equipped with a
library of previous policies to aid in exploration, as they enable the agent to collect
relevant information quickly to accelerate learning. In our case, we do not expect to
have enough time to learn a full policy, and so instead rely on aggressive knowledge
transfer using our proposed policy reuse framework to achieve the objective of the
agent.

1.2 Contributions and Paper Organisation

The primary contributions made in this paper are as follows:

1. We introduce Bayesian Policy Reuse (BPR) as a general Bayesian framework
for solving the policy reuse problem as defined in Definition 1 (Section 2).

2. We present several specific instantiations of BPR using different policy selec-
tion mechanisms (Section 3.1), and compare them on an online personalisation
domain (Section 4.2) as well as a domain modelling a surveillance problem
(Section 4.3).

3. We provide an empirical analysis of the components of our model, considering
different classes of observation signal, and the trade-off between library size
and convergence rate.

2 Bayesian Policy Reuse

We now pose the policy reuse transfer problem within a Bayesian framework.
Bayesian Policy Reuse (BPR) builds on the intuition that, in many cases, perfor-
mance of a specific policy is better, relative to the other policies in the library, in
tasks within some neighbourhood of the task for which it is known to be optimal.
Thus, a model that measures the similarity between a new task and other known
tasks may provide indications as to which policies may be the best to reuse. We
learn such a model from offline experience, and then use it online as a Bayesian
prior over the task space, which is updated with new observations from the current
task. Note that in this work we consider the general case where we do not have
a parametrisation of the task space that allows constructing that model explicitly

Bayesian Policy Reuse 5

(e.g. da Silva et al. (2012)). This may be the case where aspects of the model may
vary qualitatively (e.g. different personality types), or where the agent has not
been exposed to enough variations of the task to learn the underlying parametric
model sufficiently.

2.1 Notation

Let the space of task instances be X , and let a task instance x ∈ X be specified by a
Markov Decision Process (MDP). An MDP is defined as a tuple µ = (S,A, T,R, γ),
where S is a finite set of states; A is a finite set of actions which can be taken by
the agent; T : S × A × S → [0, 1] is the state transition function where T (s, a, s′)
gives the probability of transitioning from state s to state s′ after taking action a;
R : S×A×S → R is the reward function, where R(s, a, s′) is the reward received by
the agent when transitioning from state s to s′ with action a; and finally, γ ∈ [0, 1]
is a discounting factor. As T is a probability function,

∑
s′∈S T (s, a, s′) = 1,∀a ∈

A,∀s ∈ S. Denote the space of all MDPs M. We will consider episodic tasks, i.e.
tasks that have a bounded time horizon.

A policy π : S × A → [0, 1] for an MDP is a distribution over states and
actions, defining the probability of taking any action from a state. The return, or
utility, generated from running the policy π in an episode of a task instance is the
accumulated discounted reward, Uπ =

∑k
i=0 γ

iri, with k being the length of the
episode and ri being the reward received at step i. We refer to Uπ generated from
a policy π in a task instance simply as the policy’s performance. Solving an MDP
µ is to acquire an optimal policy π∗ = arg maxπ U

π which maximises the total
expected return of µ. For a reinforcement learning agent, T and R are typically
unknown. We denote a collection of policies possessed by the agent by Π, and refer
to it as the policy library.

We complete the discussion of the formulation of a task with the definition of
signals. The aim of signals is to provide the agent with auxiliary information that
hints toward identifying the nature of the new task instance in the context of the
previously-solved instances.

Definition 2 (Signal) A signal σ ∈ Σ is any information which is correlated with

the performance of a policy and which is provided to the agent in an online execution

of the policy on a task.

The most straightforward signal is the performance itself, unless this is not directly
observable (e.g. in cases where the payoff may only be known after some time
horizon). The information content and richness of a signal determines how easily
an agent can identify the type of the new task with respect to the previously-solved
types. This is discussed in more detail in Section 2.8.

Throughout the discussion, we adopt the following notational convention: P(·)
refers to a probability, E[·] refers to an expectation, H(·) refers to entropy, and
∆(·) is a distribution.

2.2 Overview

For a set of previously-solved tasks X and a set of policies Π, Bayesian Policy
Reuse involves two key probability models:

6 Rosman, Hawasly & Ramamoorthy

– The first, P(U |X , Π), where U ∈ R is utility, is the performance model ; a
probability model over performance of the library of policies Π on the set
of previously-solved tasks X . This information is available in an offline phase.

– The second key component is the observation model, defined as a probability
distribution P(Σ|X , Π) over Σ, the space of possible observation signals. Any
kind of information that can be observed online and that is correlated with
the performance can be a used as an observation signal. When performance
information is directly observable online (e.g., not delayed), performance can
be used as the signal, and in this case the observation and the performance
models can be the same.

A caricature of the BPR problem for a one-dimensional task space is shown
in Figure 1, where, given a new task x∗ ∈ X , the agent is required to select the
best policy π∗ ∈ Π in as few trials as possible, whilst minimising the accumulated
regret in the interim. As shown in this example, the agent has prior knowledge in
the form of performance models for each policy in Π on a set of tasks from X .
The agent additionally has observation models of the signals generated by each
task-policy pair, but these are not depicted in Figure 1).

Fig. 1 A simplified depiction of the Bayesian Policy Reuse problem. The agent has access to
a library of policies (π1, π2 and π3), and has previously experienced a set of task instances
(τ1, τ2, τ3, τ4), as well as samples of the utilities of the library policies on these instances (the
black dots indicate the means of these estimates, while the agent maintains distributions of the
utility as illustrated by P(U |τ1, π3) in grey). The agent is presented with a new unknown task
instance (x∗), and it is asked to select the best policy from the library (optimising between
the red hollow points) without having to try every individual option (in less than 3 trials
in this example). The agent has no knowledge about the complete curves, where the task
instances occur in the problem space, or where the new task is located in comparison to
previous tasks. This is inferred from utility similarity. For clarity, only performance is shown
while the observation models are not depicted.

Bayesian Policy Reuse 7

2.3 General Algorithm

Applying a specific policy on a new task instance generates sample observation
signals, which are used along with the observation model to update a ‘similarity’
measure over the previously-solved tasks (which is a distribution we call the belief).
This belief informs the selection of a policy at the next trial in an attempt to
optimise expected performance. This is the core step in the operation of Bayesian
Policy Reuse.

We present the general form of Bayesian Policy Reuse (BPR) in Algorithm 1.
The policy selection step (line 3) is described in detail in Section 3, the models
of observation signals (line 5) are described in Section 2.7, and the belief update
(line 6) is discussed further in Section 2.9.

Algorithm 1 Bayesian Policy Reuse (BPR)

Require: Problem space X , Policy library Π, observation space Σ, prior over the problem
space P(X), observation model P(Σ|X , Π), performance model P(U |X , Π), number of
episodes K.

1: Initialise beliefs: β0(X)←− P(X).
2: for episodes t = 1 . . .K do
3: Select a policy πt ∈ Π using the current belief βt−1 and the performance model

P(U |X , πt).
4: Apply πt on the task instance.
5: Obtain an observation signal σt from the environment.
6: Update the belief βt(X) ∝ P(σt|X , πt)βt−1(X).
7: end for

2.4 Regret

In order to evaluate the performance of our approach, we define regret as the
criterion for policy selection to be optimised by Bayesian Policy Reuse.

Definition 3 (Library Regret) For a library of policies Π and for a policy selection

algorithm ξ : X ′ → Π that selects a policy for the new task instance x∗ ∈ X ′, the library
regret of ξ is defined as

RΠ(ξ, x∗) = Uπ
∗

x∗ − U
ξ(x∗)
x∗ ,

where Uπx is the utility of policy π when applied to task x, and π∗ = arg maxπ∈Π Uπx∗ ,

is the best policy in hindsight in the library for the task instance x∗.

Definition 4 (Average Library Regret) For a library of policies Π and for a pol-

icy selection algorithm ξ : X ′ → Π, the average library regret of ξ over K trials is

defined as the average of the library regrets for the individual trials,

RKΠ (ξ) =
1

K

K∑
t=1

RΠ(ξ, xt),

for a sequence of task instances x1, x2, . . . , xK ∈ X ′.

8 Rosman, Hawasly & Ramamoorthy

The metric we minimise in BPR is the average library regret RKΠ (.) for K trials.
That is, the goal of BPR is to not only find the right solution at the end of the K
trials, possibly through expensive exploration, but also to optimise performance
even when exploring in the small number of trials of the task. We will refer to this
metric simply as ‘regret’ throughout the rest of the paper.

2.5 Types

When the problem space of BPR is a large task space M, modelling the true be-
lief distribution over the complete space would typically require a large number of
samples (point estimates), which would hence be expensive to maintain and use
computationally. In many applications, there is a natural notion of clustering inM
whereby many tasks, modelled as MDPs, are similar with only minor variations
in transition dynamics or reward structures. In the context of MDPs, previous
work has regarded classes of MDPs as probability distributions over task parame-
ters (Wilson et al., 2007). A more recent work explored explicitly discovering the
clustering in a space of tasks (Mahmud et al., 2013). Similar intuitions have been
developed in the multi-armed bandits literature, by examining ways of clustering
bandit machines in order to allow for faster convergence and better credit assign-
ment, e.g. Pandey et al. (2007); Bui et al. (2012); Maillard and Mannor (2014).
In this work we do not explicitly investigate methods of task clustering, but the
algorithms presented herein are most efficient when such a cluster-based structure
exists in the task space.

We encode the concept of task clustering by introducing a notion of task types

as ε-balls in the space of tasks, where the tasks are clustered with respect to the
performance of a collection of policies executed on them.

Definition 5 (Type) A type τ is a subset of tasks such that for any two tasks µi, µj
from a single type τ , and for all policies π in a set of policies Π, the difference in utility

is upper-bounded by some ε ∈ R:

µi, µj ∈ τ ⇔ |Uπi − U
π
j | ≤ ε, ∀π ∈ Π,

where Uπi ∈ R is the utility from executing policy π on task µi. Then, µi and µj are

ε-equivalent under the policies Π.

This definition of types is similar to the concept of similarity-based contextual
bandits (Slivkins, 2014), where a distance function can be defined in the joint
space of contexts and arms given by an upper bound of reward differences. In our
setting, we cluster the instances (contexts) that are less than ε-different under all
the policies in the library (arms). We do not however assume any prior knowledge
of the metrics in the task or policy spaces.

Figure 1 depicted four example types, where each accounts for an ε-ball in
performance space (only explicitly shown for τ1). Note that the definition does
not assume that the types need to be disjoint, i.e. there may exist tasks that
belong to multiple types. We denote the space of types with T .

In the case of disjoint types, the type space T can be used as the problem space
of BPR, inducing a hierarchical structure in the space M. The environment can
then be represented with the generative model shown in Figure 2(a) where a type

Bayesian Policy Reuse 9

Fig. 2 Problem space abstraction model under disjoint types. (a) Tasks µ are related by
types τ , with a generating distribution G0 over them. (b) A simplification of the hierarchical
structure under ε-equivalence. The tasks of each type are represented by a single task µτ .

τ is drawn from a hyperprior τ ∼ G0, and then a task is drawn from that type
µ ∼ ∆τ (µ), where ∆τ (.) is some probability distribution over the tasks of type τ .

By definition, the set of MDPs generated by a single type are ε-equivalent under
Π, hence BPR regret cannot be more than ε if we represent all the MDPs in τ with
any one of them. Let that chosen MDP be a landmark MDP of type τ , and denote
this by µτ . This reduces the hierarchical structure into the simpler model shown in
Figure 2(b), where the prior acts immediately on a set of landmark MDPs µτ , τ ∈
T . The benefit of this for BPR is that each alternative is representative for a region
in the original task space, as defined by a maximum loss of ε. Maintaining only
this reduced set of landmarks removes near-duplicate tasks from consideration,
thereby reducing the cost of maintaining the belief.

For the remainder of this paper, we use the type space T as the problem space,
although we note that the methods proposed herein do not prevent the alternative
use of the full task space M.

2.6 Performance Model

One of the key components of BPR is the performance model of policies on
previously-solved task instances, which describes the distribution of returns from
each policy on the previously-solved tasks. A performance model represents the
variability in return under the various tasks in a type.

Definition 6 (Performance Model) For a policy π and a type τ , the performance
model P(U |τ, π) is a probability distribution over the utility of π when applied to all

tasks µ ∈ τ .

Figure 1 depicts the performance profile for π3 on type τ1 in the form of a
Gaussian distribution. Recall that for a single type, and each policy, the domain
of the performance model would be at most of size ε. The agent maintains perfor-
mance models for all the policies it has in the library Π and for all the types it
has experienced.

10 Rosman, Hawasly & Ramamoorthy

2.7 Observation Model

In order to facilitate the task identification process, the agent learns a model of
how types, policies and signals relate during the offline phase.

Definition 7 (Observation Model) For a policy π and type τ and for a choice of

signal space Σ, the observation model Fτπ (σ) = P(σ|τ, π) is a probability distribution

over the signals σ ∈ Σ that may result by applying the policy π to the type τ .

We consider the following offline procedure to learn the signal models for a policy
library Π:

1. The type label τ is announced.
2. A set of tasks are generated from the type τ .
3. The agent runs all the policies from the library Π on all the instances of τ ,

and observes the resultant sampled signals σ̃ ∈ Σ.
4. Empirical distributions Fτπ = ∆(σ̃) are fitted to the data, for each type τ and

policy π.

The benefit of these models is that they provide a connection between the
observable online information and the latent type label, the identification of which
leads to better reuse from the policy library.

2.8 Candidate Signals for Observation Models

The BPR algorithm requires that some signal information is generated from policy
execution on a task, although the form of this signal remains unspecified. Here we
describe the three most typical examples of information that can be used as signals
in BPR, but note that this list is not exhaustive.

2.8.1 State-Action-State Tuples

The most detailed information signal which could be accrued by the agent is the
history of all (s, a, s′) tuples encountered during the execution of a policy. Thus, the
observation model in this case is an empirical estimate of the expected transition
function of the MDPs under the type τ .

The expressiveness of this signal does have a drawback, in that it is expensive
to learn and maintain these models for every possible type. Additionally, this may
not generalise well, in cases with sparse sampling. On the other hand, this form of
signal is useful in cases where some environmental factors may affect the behaviour
of the agent in a way that does not directly relate to attaining an episodic goal.
As an example, consider an aerial agent which may employ different navigation
strategies under different wind conditions.

2.8.2 Instantaneous Rewards

Another form of information is the instantaneous reward r ∈ R received during
the execution of a policy for some state-action pair. Then, the observation model
is an empirical estimate of the expected reward function for the MDPs in the type.

Bayesian Policy Reuse 11

Although this is a more abstract signal than the state-action-state tuples, it
may still provide a relatively fine-grained knowledge on the behaviour of the task
when intermediate rewards are informative. It is likely to be useful in scenarios
where the task has a number of subcomponents which individually contribute to
overall performance, for example in assembly tasks.

2.8.3 Episodic Returns

An example of a sparser kind of signal is the total utility Uπτ ∈ R accrued over
the full episode of using a policy in a task. The observation model of such a scalar
signal is much more compact, and thereby easier to learn and reason with, than
the previous two proposals. We also note that for our envisioned applications, the
execution of a policy cannot be terminated prematurely, meaning that an episodic
return signal is always available to the agent before selecting a new policy.

This signal is useful for problems of delayed reward, where intermediate states
cannot be valued easily, but the extent to which the task was successfully com-
pleted defines the return. In our framework, using episodic returns as signals has
the additional advantage that this information is already captured in the perfor-
mance model, which relieves the agent from maintaining two separate models, as
in this case P(U |τ, π) = Fτπ (U) for all π and τ .

2.9 Belief over Types

Definition 8 (Type Belief) For a set of previously-solved types T and a new in-

stance x∗, the Type Belief β(.) is a probability distribution over T that measures the

extent to which x∗ matches the types of T in their observation signals.

The type belief, or belief for short, is a surrogate measure of similarity in
type space. It approximates where a new instance may be located in relation to
the known types which act as a basis of the unknown type space. The belief is
initialised with the prior probability over the types, labelled G0 in Figure 2.

In episode t, the environment provides an observation signal σt for executing
a policy πt on the new task instance. This signal is used to update β (line 6 in
Algorithm 1). The posterior over the task space is computed using Bayes’ rule:

βt(τ) =
P(σt|τ, πt)βt−1(τ)∑

τ ′∈T P(σt|τ ′, πt)βt−1(τ ′)
(1)

= ηFτπt(σt)βt−1(τ), ∀τ ∈ T , (2)

where βt−1 is the belief after episode t− 1 and η is a normalisation constant. We
use β to refer to βt whenever this is not ambiguous. Note how the belief is updated
using the observation model.

3 Policy Selection for BPR

The selection of a policy for each episode (line 3 in Algorithm 1) is a critical step
in BPR. Given the current type belief, the agent is required to choose a policy

12 Rosman, Hawasly & Ramamoorthy

for the next episode to fulfil two concurrent purposes: acquire useful information
about the new (current) task instance, and at the same time avoid accumulating
additional regret.

At the core of this policy selection problem is the trade-off between exploration
and exploitation. When a policy is executed at some time t, the agent receives both
some utility as well as information about the true type of the new task (the signal).
The agent is required to gain as much information about the task as possible,
so as to choose policies optimally in the future, but at the same time minimise
performance losses arising from sub-optimal policy choices2.

Our problem can be mapped to a finite-horizon total-reward multi-armed ban-
dits setting in which the arms represent the policies, the finite horizon is defined by
the limited number of episodes, and the metric to optimise is the total reward. For
this kind of setting Lai and Robbins (1985) show that index-based methods achieve
optimal performance asymptotically. In our case, however, we are interested in the
cumulative performance over a small number of episodes.

Clearly, a purely greedy policy selection mechanism would fail to choose ex-
ploratory options to elicit what is needed for the belief to converge to the closest
type, and may result in the agent becoming trapped in a local maximum of the
utility function. On the other hand, a purely exploratory policy selection mech-
anism could be designed to ensure that all the possible information is elicited in
expectation, but this would not make an effort to improve performance instantly
and thereby incur additional regret. We thus require a mechanism to explore as
well as exploit; find a better policy to maximise asymptotic utility, and exploit the
current estimates of which are good policies to maximise myopic utility.

Multiple proposals have been widely considered in the multi-armed bandits
(MAB) literature for these heuristics, ranging from early examples like the Git-
tins index for infinite horizon problems (Gittins and Jones, 1974) to more recent
methods such as the knowledge gradient (Powell, 2010). Here we describe several
approximate policy selection mechanisms that we use for dealing with the policy
reuse problem.

– A first approach is through ε-greedy exploration, where with probability 1 − ε
we select the policy which maximises the expected utility under the belief β,

π̂ = arg max
π∈Π

∑
τ∈T

β(τ)

∫
U∈R

U P(U |τ, π)dU

= arg max
π∈Π

∑
τ∈T

β(τ) E[U |τ, π],

and with probability ε we select a policy from the policy library uniformly at
random. This additional random exploration component perturbs the belief
from local minima.

– A second approach is through sampling the belief β. This involves sampling
a type according to its probability in the belief τ̂ ∼ β, and playing the best
response to that type from the policy library,

π̂ = arg max
π∈Π

E[U |τ̂ , π].

2 Note that we denote by optimal policy the best policy in the library for a specific instance,
as we are considering policy reuse problems in which learning the actual optimal policy is not
feasible.

Bayesian Policy Reuse 13

In this case, the sampled type acts as an approximation of the true unknown
type, and exploration is achieved through the sampling process.

– The third approach is through employing what we call exploration heuristics,
which are functions that estimate a value for each policy which measures the
extent to which it balances exploitation with a limited degree of look-ahead
for exploration.
This is the prevalent approach in Bayesian optimisation, where, instead of
directly maximising the objective function itself (here, utility), a surrogate
function that takes into account both the expected utility and a notion of the
utility variance (uncertainty) is maximised (see, e.g., Brochu et al. (2010)).
independent of other policies.

3.1 Bayesian Policy Reuse with Exploration Heuristics

By incorporating the notion of an exploration heuristic that computes an index
νπ for a policy π into Algorithm 1, we obtain the proto-algorithm Bayesian Policy
Reuse with Exploration Heuristics (BPR-EH) described in Algorithm 2.

Algorithm 2 Bayesian Policy Reuse with Exploration Heuristics (BPR-EH)

Require: Type space T , Policy library Π, observation space Σ, prior over the type space
G0, observation model P(Σ|T , Π), performance model P(U |T , Π), number of episodes K,
exploration heuristic V.

1: Initialise beliefs: β0 ←− G0.
2: for episodes t = 1 . . .K do
3: Compute νπ = V(π, βt−1) for all π ∈ Π.
4: πt ←− arg maxπ∈Π νπ .
5: Apply πt to the task instance.
6: Obtain the observation signal σt from the environment.
7: Update the belief βt using σt by Equation (1).
8: end for

Note that we are now using G0, the hyper-prior, as the prior in line 1 because
we are using T as the problem space. We now define the exploration heuristics V
that are used in line 3, and to this end we define four variants of the BPR-EH
algorithm, as

– BPR-PI using probability of improvement (Section 3.1.1),
– BPR-EI using expected improvement (Section 3.1.1),
– BPR-BE using belief entropy (Section 3.1.2), and
– BPR-KG using knowledge gradient (Section 3.1.3).

3.1.1 Probability of Improvement and Expected Improvement

The first heuristic for policy selection utilises the probability with which a specific
policy can achieve a hypothesised increase in performance. Assume that U+ ∈ R is
some utility which is larger than the best estimate under the current belief, U+ >

Ū = maxπ∈Π
∑
τ∈T β(τ)E[U |τ, π]. The probability of improvement (PI) principle

14 Rosman, Hawasly & Ramamoorthy

chooses the policy that maximises the term,

π̂ = arg max
π∈Π

∑
τ∈T

β(τ)P(U+|τ, π),

thereby selecting the policy most likely to achieve the utility U+.
The choice of U+ is not straightforward, and this choice is the primary fac-

tor affecting the performance of this exploration principle. One approach to ad-
dressing this choice, is through the related idea of expected improvement (EI).
This exploration heuristic integrates over all the possible values of improvement
Ū < U+ < Umax, and the policy is chosen with respect to the best potential. That
is,

π̂ = arg max
π∈Π

∫ Umax

Ū

∑
τ∈T

β(τ)P(U+|τ, π)dU+

= arg max
π∈Π

∑
τ∈T

β(τ)

∫ Umax

Ū

P(U+|τ, π)dU+

= arg max
π∈Π

∑
τ∈T

β(τ)(1− F(Ū |τ, π))

= arg min
π∈Π

∑
τ∈T

β(τ)F(Ū |τ, π),

where F(U |τ, π) =
∫ U
−∞ P(u|τ, π)du is the cumulative distribution function of

U for π and τ . This heuristic therefore selects the policy most likely to result in
any improvement to the expected utility.

3.1.2 Belief Entropy

Both PI and EI principles select a policy which has the potential to achieve higher
utility. An alternate approach is to select the policy which will have the greatest
effect in reducing the uncertainty over the type space.

The belief entropy (BE) exploration heuristic seeks to estimate the effect of
each policy in reducing uncertainty over type space, represented by the entropy of
the belief. For each policy π ∈ Π, estimate the expected entropy of the belief after
executing π as

H(β|π) = −βπ log βπ,

where βπ is the updated belief after seeing the signal expected from running π,
given as

βπ(τ) = Eσ∈Σ [ηFτπ (σ)β(τ)] (3)

=

∫
σ∈Σ

Fβπ (σ) [ηFτπ (σ)β(τ)] dσ, (4)

where Fβπ (σ) is the probability of observing σ under the current belief β when
using π, and η is the normalisation constant as before.

Bayesian Policy Reuse 15

Then, selecting the policy

π̂ = arg min
π∈Π

H(β|π)

reduces the most uncertainty in the belief in expectation. This is however a purely
exploratory policy. To incorporate exploitation of the current state of knowledge,
we rather select

π̂ = arg max
π∈Π

(
Ũ(π)− κH(β|π)

)
,

where κ ∈ R is a positive constant controlling the exploration-exploitation trade-
off, and Ũ(π) is the expected utility of π under the current belief,

Ũ(π) =
∑
τ∈T

β(τ)E[U |π, τ]. (5)

3.1.3 Knowledge Gradient

The final exploration heuristic we describe is the knowledge gradient (Powell, 2010),
which aims to balance exploration and exploitation through optimising myopic re-
turn whilst maintaining asymptotic optimality. The principle behind this approach
is to estimate a one step look-ahead, and select the policy which maximises utility
over both the current time step and the next in terms of the information gained.

To select a policy using the knowledge gradient, we choose the policy which
maximises the online knowledge gradient at time t

π̂ = arg max
π∈Π

(
Ũ(π) + (K − t)νtπ

)
,

trading-off between the expected utility Ũ(π), given in Equation 5, and νtπ, the
offline knowledge gradient of π for a horizon of K trials, weighted by the remaining
number of trials. The offline knowledge gradient essentially measures the perfor-
mance of a one-step look-ahead in the process, given as

νtπ = Eβ

[
max
π′

Ũπ(π′)−max
π′′

Ũ(π′′)

]
, (6)

where Ũ(π) is the expected utility of π under the current belief (Equation 5),

Ũπ(π′) =
∑
τ∈T

βπ(τ) E[U |τ, π′], (7)

and βπ is the expected updated belief after playing policy π and receiving a suitable
signal, as defined in Equation 4. That is, the offline knowledge gradient is the
difference in expectation, with respect to β, of the best performance of any policy
at t+ 1 if π was played at t, compared to that of the best policy at t (which may
be different from π).

16 Rosman, Hawasly & Ramamoorthy

4 Experiments

4.1 Golf Club Selection

As an initial, illustrative simulated experiment we consider the problem of a robot
golfer taking a shot with one of four golf clubs on an unknown golf course, where
it is not possible to reliably estimate the distance to the hole, as for this example
we are considering a robot with weak sensors that are not in themselves sufficient
to reliably measure distance. The robot is only allowed to take K = 3 shots, which
is less than the number of available clubs, from a fixed position from the hole.
The task is evaluated by the stopping distance of the ball to the hole. The robot
can choose any of the available clubs, and we assume that the robot uses a fixed,
canonical stroke with each club.

In this setting, we consider the type space T to be a set of different golfing
experiences the robot had before, each defined for simplicity by how far the target
was (other factors, e.g. weather conditions, could be factored into this as well).
The performance of a club for some hole is defined as the negative of the absolute
distance of the end location of the ball from the hole, such that this quantity must
be maximised.

Then, the choice of a club corresponds to a choice of a policy. For each, the
robot has a performance profile (distribution over final distance of the ball from
the hole) for the different courses that the robot experienced. We assume a small
selection of four clubs, with properties shown in Table 1 for the robot canonical
stroke. The distances shown in this table are the ground truth values, and are not
explicitly known to the robot.

Club Average Yardage Standard Deviation of Yardage
π1 = 3-wood 215 8.0
π2 = 3-iron 180 7.2
π3 = 6-iron 150 6.0
π4 = 9-iron 115 4.4

Table 1 Statistics of the ranges (yardage) of the four clubs used in the golf club selection
experiment. We choose to model the performance of each club by a Gaussian distribution. We
assume the robot is competent with each club, and so the standard deviation is small, but
related to the distance hit.

Owing to the difficulty of the outdoor perception problem over large distances,
the robot cannot measure exact distances in the field, but for a feedback signal,
it can crudely estimate a qualitative description of the result of a shot as falling
into one of several broad categories (corresponding to concepts such as quite near

and very far), which define the observation space, as shown in Figure 3.

Note that this is not the performance itself, but a weaker observation corre-
lated with performance. The distributions over these qualitative categories (the
observation models) are known to the robot for each club on each of the training
types it has encountered. For this example, we assume the robot has extensive
training on four particular holes, with distances τ110 = 110yds, τ150 = 150yds,
τ170 = 170yds and τ220 = 220yds. The observation models are shown in Figure 4.

Bayesian Policy Reuse 17

Fig. 3 The distance ranges used to provide observation signals. The robot is only able to
identify which of these bins corresponds to the end location of the ball after a swing.

Fig. 4 Performance-correlated signal models for the four golf clubs in Table 1 on four training
holes with distances 110yds, 150yds, 170yds and 220yds. The models capture the probabilities
of the ball landing in the corresponding distance categories. The width of each category bin
has been scaled to reflect the distance range it signifies. The x-axis is the distance to the hole,
such that negative values indicate under-shooting, and positive distances over-shooting the
hole.

When the robot faces a new hole, BPR allows the robot to overcome its inability
to judge the distance to the hole by using the feedback from an arbitrary shot as a
signal. The feedback signal updates an estimate of the most similar previous task
(the belief), using the distributions in Figure 4. This belief enables the robot to
choose the club/clubs which would have been the best choice for the most similar
previous task/tasks.

For a worked example, consider a hole 179 yards away. If a coarse estimate
of the distance is feasible, it can be incorporated as a prior over T . Otherwise,
an uniformed prior is used. Assume the robot is using greedy policy selection,
and assume that it selects π1 for the first shot due to a uniform prior, and that
this resulted in an over-shot by 35 yards. The robot cannot gauge this error more
accurately than that it falls into the category corresponding to ‘over-shooting in
the range of 20 to 50 yards’. This signal will update the belief of the robot over the
four types, and by Figure 4, the closest type to produce such a behaviour would

18 Rosman, Hawasly & Ramamoorthy

be τ170 = 170 yards. The new belief dictates that the best club to use for anything
like τ170 is π2. Using π2, the hole is over-shot by 13 yards, corresponding to the
category with the ‘range 5 to 20 yards’. Using the same calculation, the most
similar previous type is again τ170, keeping the best club as π2, and allowing belief
to converge. Indeed, given the ground truth in Table 1, this is the best choice for
the 179 yard task. Table 2 describes this process over the course of 8 consecutive
shots taken by the robot.

Shot 1 2 3 4 5 6 7 8
Club 1 2 2 2 2 2 2 2
Error 35.3657 13.1603 4.2821 6.7768 2.0744 11.0469 8.1516 2.4527
Signal 20–50 5–20 -5–5 5–20 -5–5 5–20 5–20 -5–5
β entropy 1.3863 0.2237 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2 The 179 yard example. For each of 8 consecutive shots: the choice of club, the true
error in distance to the hole (in yards), the coarse category within which this error lies (the
signal received by the agent), and the entropy of the belief. This shows convergence after the
third shot, although the correct club was used from the second shot onwards. The oscillating
error is a result of the variance in the club yardage. Although the task length was K = 3
strokes, we show these results for longer to illustrate convergence.

Figure 5 shows the performance of BPR with greedy policy selection in the
golf club selection task averaged over 100 unknown golf course holes, with ranges
randomly selected between 120 and 220 yards. This shows that on average, by the
second shot, the robot will have selected a club capable of bringing the ball within
10–15 yards of the hole.

Fig. 5 Performance of BPR on the golf club example, with results averaged over 100 unknown
holes, showing the decrease in entropy of the belief β and average distance to the hole (lower
is better). Performance of the pure four clubs (average performance of each single club over all
100 holes), as well as the best club for each hole in retrospect, is shown for regret comparison.
Although the task length is K = 3 strokes, we show these results for longer to illustrate conver-
gence. Shaded regions denote one standard deviation. Error bars on the individual clubs have
been omitted for clarity, but their average standard deviations are 26.85m, 15.37m, 20.89m,
and 27.66m respectively.

Bayesian Policy Reuse 19

4.2 Online Personalisation

In this next experiment, we demonstrate the use of different observation signals
to update beliefs, as described in Section 2.8.

Consider an automated phone service of a bank, where the bank tries to im-
prove the speed of answering telephonic queries using human operators by a per-
sonalised model for understanding the speech of the user and responding with a
synthesised voice personalised according to that user’s preferences. In a traditional
speech recognition system, the user may have time to train the system to her own
voice, but this is not possible in this scenario. As a result, the phone service may
have a number of different pre-trained language models and responses, and over
the course of many interactions with the same user, tries to estimate the best such
model to use.

Let a user i be defined by a preference model of language, λi ∈ {1, . . . , L},
where L is the number of such models. The policy π executed by the telephonic
agent also corresponds to a choice of language model, i.e. π ∈ {1, . . . , L}. The goal
of the agent is to identify the user preference λi, whilst minimising frustration to
the user.

Assume that each telephonic interaction proceeds using the transition system
through the six states given in Figure 6. In every state, there is only one action
which can be taken by the system, being to use the chosen language model. At
the beginning of the call, the user is in the start state. We assume the system can
identify the user by caller ID, and selects a language model. If, at any point, the
system can deal with the user’s request, the call ends successfully. If not, we assume
the user becomes gradually more irritated with the system, passing through states
frustrated and annoyed. If the user reaches state angry and still has an unresolved
request, she is transferred to a human operator. This counts as an unsuccessful
interaction. Alternatively, at any point the user may hang up the call, which also
terminates the interaction unsuccessfully.

The transition dynamics of this problem depend on a parameter ρ = 1− |π−λi|
L

which describes how well the selected language model π can be understood by a
user of type λi, such that ρ = 1 if the chosen model matches the user’s, and it is
0 if it is the worst possible choice. An additional parameter η governs the trade-
off between the user becoming gradually more frustrated and simply hanging up
when the system does not respond as expected. In our experiments, we fix η = 0.3,
except when π = λi where we set η = 0.

To allow the use of different observation signals in this example the domain
was designed in a way such that the transition dynamics and the rewards of this
domain, shown in Figure 6, allow only two total utility values for any instance:
U = 10 for a successful completion of the task, and U = −3 otherwise. Similarly,
any state that transitions to the unsuccessful outcome angry receives the same
reward for a transition to the unsuccessful outcome hang up. Finally, all transition
probabilities between the states start, frustrated, annoyed, and angry are indepen-
dent of ρ, and thus, of the type. This set up mirrors the fact that in general the
state sequence given by the signal (s, a, s′) is more informative than the reward

20 Rosman, Hawasly & Ramamoorthy

Fig. 6 Transition system describing the online telephonic personalisation example. Circles are
states, thick bordered circles are terminal states, small black edge labels in square brackets
are the transition rewards, and large blue edge labels are transition probabilities. See text for
a description of the parameters ρ and η.

sequence (s, a, r), which is in turn more informative than the total utility signal U
alternative 3.

The results shown in Figure 7 were generated from 1,000 call interactions which
proceeded according to the model in Figure 6. In this experiment, the correct lan-
guage model for each user was randomly drawn from a set of 20 language models.
Figure 7 shows comparative performance of BPR with sampling the belief selection
mechanism when the three kinds of signals are used. As expected, the lowest re-
gret (and variance in regret) is achieved using the most-informative (s, a, s′) signal,
followed by the (s, a, r) signal, and finally the total performance signal U . We do
note, however, that all three signals eventually converge to zero regret if given
enough time.

4.3 Surveillance Domain

The surveillance domain models the monitoring problem laid out in the introduc-
tion. Assume a base station is tasked with monitoring a wildlife reserve spread
out over some large geographical region. The reserve suffers from poaching and
so the base station is required to detect and respond to poachers on the ground.
The base station has a fixed location, and so it monitors the region by deploying
a low-flying, light-weight autonomous drone to complete particular surveillance
tasks using different strategies. The episodic commands issued by the base station
may be to deploy to a specific location, scan for unusual activity in the targeted
area and then report back. After completing each episode, the drone communicates

3 We note that in many applications U might be the only of these signals available to the
agent. For example, in the current scenario, it may not be easy or feasible to accurately gauge
the frustration of the caller, making the states and the immediate rewards unobservable.

Bayesian Policy Reuse 21

Fig. 7 Regret, showing comparative performance of BPR on the telephone banking domain,
using (s, a, s′), (s, a, r), and U as signals.

with the base some information of whether or not there was any suspicious activity
in the designated region. The base station is required to use that information to
better decide on the next strategy for the drone.

Concretely, we consider a 26× 26 cell grid world, which represents the wildlife
reserve, and the base station is situated at a fixed location in one corner. We assume
that there are 68 target locations of interest, being areas with a particularly high
concentration of wildlife. These areas are arranged around four ‘hills’, the tops of
which provide better vantage points. Figure 8 depicts this setting.

Fig. 8 Example of the surveillance domain. The red cell in the lower corner is the location of
the base station, green cells correspond to surveillance locations, and blue cells are hill tops.
Visibility between locations is indicated with a green edge. The base station is tasked with
deploying drones to find poachers who may infiltrate at one of the surveillance locations.

At each episode, the base station deploys the drone to one of the 68 locations.
The interpretation of this in BPR is that these 68 target locations each correspond
to a different poacher type, or task. For each type, we assume that there is a pre-

22 Rosman, Hawasly & Ramamoorthy

learnt policy for reaching and surveying that area while dealing with local wind
perturbations and avoiding obstacles such as trees.

The observation signal that the base station receives after each drone deploy-
ment is noise-corrupted information related to the success in identifying an in-
truder at the target location or somewhere nearby (in a diagonally adjacent cell).
One exception is when surveying the hill centres which, by corresponding to a
high vantage point, provide a weak signal stating that the intruder is in the larger
area around the hill. For a distance d between the region surveyed and the region
occupied by the poachers, the signal R received by the agent is

R ←−

200− 30d+ ψ if agent surveys a hilltop and d ≤ 15

200− 20d+ ψ if agent surveys any another location and d ≤ 3

ψ otherwise,

where ψ ∼ N(10, 20) is Gaussian noise. A higher signal indicates more confidence
in having observed a poacher in the region surrounding the target surveillance
point.

Figure 9 presents a comparison between six variants of the BPR algorithm.
Four use the exploration heuristics proposed in Section 3, namely BPR-KG, BPR-
BE, BPR-PI, BPR-EI, in addition to sampling the belief β, and ε-greedy selection
with ε = 0.3. These six variants were run on the domain and averaged over 10
random tasks, with standard deviations of the regret shown in Table 3.

Fig. 9 Comparison of the six policy selection heuristics on the 68-task surveillance domain,
averaged over 10 random tasks. (a) The entropy of the belief after each episode. (b) The regret
after each episode. Error bars are omitted for clarity, but standard deviations of the regret are
shown in Table 3.

Bayesian Policy Reuse 23

episode ε-greedy sampling BPR-KG BPR-BE BPR-PI BPR-EI
5 72.193 103.07 76.577 96.529 15.695 27.801
10 97.999 86.469 75.268 91.288 62.4 33.112
20 83.21 18.834 7.1152 17.74 72.173 16.011
50 86.172 10.897 18.489 13.813 101.69 11.142

Table 3 Standard deviations of the regret for the six BPR variants shown in Figure 9, after
episodes 5, 10, 20 and 50.

Note in Figure 9(a) that BPR-BE, BPR-KG, and BPR with sampling the belief

all converge in about 15 episodes, which is approximately a quarter the number
that would be required by a brute force strategy which involved testing every
policy in turn. Both BPR-PI and BPR with ε-greedy selection fail to converge
within the allotted 50 episodes. BPR-EI shows the most rapid convergence.

We now compare the performance of BPR to other approaches from the liter-
ature. We choose two frameworks, multi-armed bandits for which we use UCB1
(Auer et al., 2002), and Bayesian optimisation where we use GP-UCB (Srinivas
et al., 2009). We note upfront that although these frameworks share many elements
with our own framework in terms of the problems they solve, the assumptions they
place on the problem space are different, and thus so is the information they use.

The results of comparing performance of these approaches are presented in
Figure 10 on the surveillance domain, averaged over 50 tasks. We use BPR-EI in
this experiment as it was the best performing BPR variant as seen in Figure 9.

Fig. 10 Comparison of the episodic regret with time, averaged over 50 random tasks, of BPR-
EI, a multi-arm bandits approach (UCB1), and a Bayesian optimisation approach (GP-UCB)
on the 68 task surveillance domain. Shaded regions represent one standard deviation.

For UCB1, we treat each existing policy in the library as a different arm of the
bandit. ‘Pulling’ an arm corresponds to executing that policy, and the appropriate

24 Rosman, Hawasly & Ramamoorthy

reward is obtained. We additionally provide UCB1 with a prior in the form of
expected performance of each policy given the task distribution G0(τ), which we
assumed to be uniform in this case. This alleviates UCB1 from having to test each
arm first on the new task (which would require 68 episodes) before it can begin the
decision making process. It is still slower to converge than BPR, as information
from each episode only allows UCB1 to update the performance estimate of a
single policy, whereas BPR can make global updates over the policy space.

On the other hand, an optimisation-based approach such as GP-UCB is bet-
ter suited to this problem, as it operates with the same requirement as BPR of
maintaining low sample complexity. This algorithm treats the set of policies as
an input space, and is required to select the point in this space which achieves
the best performance on the current task. However, unlike BPR, this approach
requires a metric in policy space. This information is not known in this problem,
but we approximate this from performance in the training tasks. As a result of this
approximation, sampling a single point in GP-UCB (corresponding to executing
a policy) again only provides information about a local neighbourhood in policy
space, whereas selecting the same action would allow BPR to update beliefs over
the entire task space.

Further discussion of the differences between BPR and both bandits and opti-
misation approaches is provided in Sections 5.2 and 5.3.1 respectively.

Finally, we explore the trade-off between library size and sample complexity
with respect to the regret of BPR-EI, BPR-PI, BPR-BE, and BPR-KG. This is
shown in Figure 11 where, for each method, the horizontal axis shows the ratio of
the library size to the full task space size, the vertical axis shows the number of
episodes allowed for each new instance, and regret is represented by colour. For
each combination of a library size and a sample complexity, we average the regret
results over 200 trials. In each of these trials, a random subset of the full task
space is used as the offline policy library and the online task is drawn from the
full task space. That is, tasks in the online phase include both previously-solved
and new tasks.

As can be seen from the figure, regret can be decreased by either increasing the
library size or the time allocated (in terms of number of episodes) to complete the
new task. Usually, the task specification dictates the maximum allowed number
of episodes, and hence, this suggests a suitable library size to be acquired in the
offline phase to attain a specific regret rate. This figure also confirms the previous
findings that BPR-EI is able to exceed the other variants in terms of performance.

5 Discussion and Related Work

5.1 Transfer Learning

The optimal selection from a set of provided policies for a new task is in essence
a transfer learning problem (see the detailed review by Taylor and Stone (2009)).
Specifically, Bayesian Policy Reuse aims to select a policy in a library Π for trans-
ferring to a new, initially unknown, instance. The criterion for this choice is that
it is the best policy for the type most similar to the type of the new instance. One
transfer approach that considers the similarity between source and target tasks
is by Lazaric (2008), where generated (s, a, r, s′) samples from the target task are

Bayesian Policy Reuse 25

Fig. 11 Average episodic regret for running BPR-EI, BPR-PI, BPR-BE, and BPR-KG on
the 68 task surveillance domain, with different library sizes (as a proportion of the full task
space size) and number of episodes (sample complexity), averaged over 200 random tasks.

used to estimate similarity to source tasks, which is measured by the average
probability of the generated transitions happening under the source task. Then,
samples from the more similar source tasks are used to seed the learning of the
target task, while less similar tasks are avoided, escaping negative transfer. More
recently, Brunskill and Li (2013) consider using the (s, a, r, s′) similarity to com-
pute confidence intervals of where, in a collection of MDP classes, a new instance
best fits. The classes are acquired from experience by clumping together MDPs
that do not differ in their transition dynamics or rewards more than a certain
level. Once the class is determined, the previous knowledge of that class, in form
of dynamics are rewards, is borrowed to inform the process of planning. Bayesian
Policy Reuse does not assume learning is feasible, but relies on transferring a use-
ful policy immediately. Also, we use a Bayesian measure of task similarity which
allows exploiting prior knowledge of the task space, quickly incorporating observed
signals for a faster response, and also, by maintaining beliefs, keeping open the
possibility of new MDPs that do not cleanly fit in any of the discovered classes.

5.2 Correlated and Contextual Bandits

Using a one-off signal per episode relates BPR to Correlated Bandits. In this
setting, the decision-making agent is required to pull an arm from a collection of
arms, and use its return to update estimates of the arm values of not only the
arm that was pulled as in traditional bandits, but of a larger subset of all the

26 Rosman, Hawasly & Ramamoorthy

arms. In our problem setting, the arms correspond to policies, and the new task
instance corresponds to the new bandit ‘machine’ that generates utilities per arm
pull (policy execution).

In the Correlated Bandits literature, the form of correlation between the arms
is known to the agent. Usually, this happens to be the functional form of the
reward curve. The agent’s task is then to identify the parameters of that curve,
so that the hypothesis of the best arm moves in the reward curve’s parameter
space. For example, in Response Surface Bandits (Ginebra and Clayton, 1995),
there is a known prior over the parameters of the reward curve and the metric on
the policy space is known. More recently, Mersereau et al. (2009) present a greedy
policy which takes advantage of the correlation between the arms in their reward
functions, assuming a linear form with one parameter, with a known prior. In our
work, we approach a space of tasks from a sampling point of view, where an agent
experiences sample tasks and uses these to build the models of the domain. Thus
we do not assume any functional form for the response surface, and we do not
require the metric on the policy space to be known.

In our framework, we only assert assumptions on the continuity and smoothness
of the surface. We treat the known types as a set of learnt bandit machines with
known behaviour for each of the different arms. These behaviours define local
‘kernels’ on the response surface, which we then approximate by a sparse kernel
machine. We track a hypothesis of the best arm using that space. This is to some
extent similar to the Gaussian process framework, but in our case the lack of
a metric on the policy space prevents the definition of the covariance functions
needed there. This point is elaborated further in Section 5.3.1.

In another thread, Dependent Bandits (Pandey et al., 2007) assume that the
arms in a multi-armed bandit can be clustered into different groups, such that
the members of each have correlated reward distribution parameters. Then, each
cluster is represented with one representative arm, and the algorithm proceeds
in two steps: a cluster is first chosen by a variant of UCB1 (Auer et al., 2002)
applied to the set of representative arms, and then the same method is used again
to choose between the arms of the chosen cluster. We assume in our work that the
set of previously-solved tasks span and represent the space well, but we do not
dwell on how this set of tasks can be selected. Clustering is one good candidate
for that, and one particular example of identifying the important types in a task
space can be seen in the work of Mahmud et al. (2013).

In Contextual Bandits (Strehl et al., 2006; Langford and Zhang, 2008), the
agent is able to observe side information (or context labels) that are related to
the nature of the bandit machine, and the question becomes one of selecting the
best arm for each possible context. Mapping this setting to our problem, a context
represents the type, whereas the arms represent the policies. The difference is that
in our case the context information (the type label) is latent, and the space of types
is not fully known, meaning that the construction of a bounded set of hypotheses of
policy correlation under types is not possible. In addition, our setting has that the
response of the arms to contexts is only captured through limited offline sampling,
but the agent is able to engage with the same context for multiple rounds.

Another related treatment is that of latent bandits (Maillard and Mannor,
2014) where, in the single-cluster arrival case, the experienced bandit machine is
drawn from a single cluster with known reward distributions, and in the agnostic
case the instances are drawn from many unknown clusters with unknown reward

Bayesian Policy Reuse 27

distributions. Our setting fits in between these two extremes, as the instances are
drawn from a single, but unknown, cluster with an unknown reward distribution.

5.3 Relation to Bayesian Approaches

5.3.1 Bayesian Optimisation

If the problem of Bayesian Policy Reuse is treated as an instance of Bayesian
optimisation, we consider the objective

π∗ = arg max
π∈Π

E[U |x∗, π], (8)

where x∗ ∈ X is the unknown process with which the agent is interacting, and
E[U |x∗, π] is the expected performance when playing π on x∗. This optimisation
involves a selection from a discrete set of alternative policies (π ∈ Π), corre-
sponding to sampling from the performance function at a discrete set of locations.
However, sampling from this function is expensive (corresponding to executing a
policy for an episode), and as a result the performance function must be optimised
in as few samples as possible.

A Bayesian optimisation solution requires the target function to be modelled
as a Gaussian Process (GP). There are two issues here:

1. Observations in BPR need not be the performance itself (see Section 2.8), while
the GP model is appropriate only where these two are the same.

2. BPR does not assume knowledge of the metric in policy space. This is however
required for Bayesian optimisation, so as to define a kernel function for the
Gaussian process. An exception is in the case where policies all belong to a
parametrised family of behaviours, placing the metric in parameter space as a
proxy for policy space.

Still, we assume smoothness and continuity of the response surface for similar
tasks and policies, which is also a standard assumption in Gaussian process regres-
sion. Bayesian Policy Reuse uses a belief that tracks the most similar previously-
solved type, and then reuses the best policy for that type. This belief can be
understood as the mixing coefficient in a mixture model that represents the re-
sponse surface.

To see this, consider Figure 12 which shows an example 2D response surface.
Each type is represented by a ‘band’ on that surface; a set of curves only pre-
cisely known (in terms of means and variances) at their intersections with a small
collection of known policies. Projecting these intersections of some type into per-
formance space results in a probabilistic description of the performance of the
different policies on that type (the Gaussian processes in the figure), the kind of
function that we are trying to optimise in Equation 8. Each of these projections
would be a component of the mixture model that represents the response surface,
and would be the type’s contribution to it.

Any new task instance corresponds to an unknown curve on the surface, and
correspondingly to a probabilistic model in performance space. Given that the only
knowledge possessed by the agent from the surface are these Gaussian processes for
each known type, Bayesian Policy Reuse implicitly assumes that they act as a basis

28 Rosman, Hawasly & Ramamoorthy

Fig. 12 An example 2D response surface. The ‘bands’ on the curve show two types, and the
lines that run through the curve from left to right are policy performances for all types. The
agent only has access to the intersection of types’ bands with policy curves (the black dots).
Shown on the left are the performance curves of the two types τ1 and τ2 under all policies.
These are represented as Gaussian processes in the Policies-Performance plane. Note that Fig.
1 is a projection of this response surface.

that span the space of possible curves, so that the performance under any new task
can be represented as a weighted average of the responses of the previously-solved
types4. To this extent, the performance for the new task instance is approximately
identified by a vector of weights, which in our treatment of BPR we refer to as the
type belief. Thus, the BPR algorithm is one that fits a probabilistic model to an
unknown performance curve (Equation 8) through sampling and weight adjusting
in an approximate mixture of Gaussian processes.

5.3.2 Bayesian Reinforcement Learning

Bayesian Reinforcement Learning (BRL) is a paradigm of Reinforcement Learning
that handles the uncertainty in an unknown MDP in a Bayesian manner by main-
taining a probability distribution over the space of possible MDPs, and updating
that distribution using the observations generated from the MDP as the interaction
continues (Dearden et al., 1999). In work by Wilson et al. (2007), the problem of
Multi-task Reinforcement Learning of a possibly-infinite stream of MDPs is han-
dled in a Bayesian framework. The authors model the MDP generative process
using a hierarchical infinite mixture model, in which any MDP is assumed to be
generated from one of a set of initially-unknown classes, and a hyper-prior controls
the distribution of the classes.

Bayesian Policy Reuse can be regarded as an special instance of Bayesian Multi-
task Reinforcement Learning with the following construction. Assume a Markov
Decision Process that has a chain of K identical states (representing the trials)

4 Note that this will create a bias in the agent’s estimated model of the type space toward
the types that have been seen more often before. We assume that the environment is benign
and that the offline phase is long enough to experience the necessary types.

Bayesian Policy Reuse 29

and a collection of viable actions that connect each state to the next in the chain.
The set of actions is given by Π, the policy library. The processes are parametrised
with their type label τ . For each decision step, the agent takes an action (a policy
π ∈ Π) and the process returns with a performance signal, Uπτ . The task of the
agent is to infer the best ‘policy’ for this process (a permutation of K policies from
Π; π0, . . . , πK−1) that achieves the fastest convergence of values U , and thus low
convergence time and low regret. The performance/observation models act as the
Bayesian prior over rewards required in Bayesian reinforcement learning.

5.3.3 Other Bayesian Approaches

Engel and Ghavamzadeh (2007) introduce a Bayesian treatment to the Policy
Gradient method in reinforcement learning. The gradient of some parametrised
policy space is modelled as a Gaussian process, and paths sampled from the MDP
(completed episodes) are used to compute the posteriors and to optimise the policy
by moving in the direction of the performance gradient. The use of Gaussian
processes in policy space is similar to the interpretation of our approach, but their
use is to model the gradient rather than the performance itself.

When no gradient information is available to guide the search, Wingate et al.
(2011) propose to use MCMC to search in the space of policies which is endowed
with a prior. Various kinds of hierarchical priors that can be used to bias the search
are discussed. In our work, we choose the policies using exploration heuristics based
on offline-acquired performance profiles rather than using kernels and policy priors.
Furthermore, we have access only to a small set of policies to search through in
order to optimise the time of response.

5.4 Storage Complexity

As described in Section 2.8, the use of different signals entail different observation
models and hence different storage complexities. Assume that |S| is the size of
the state space, |A| is the size of the action space, |Π| is the size of the policy
library, N is the number of previously-solved types, |R| is the size of the reward
space, T is the duration of an episode, and B is the number of bits needed to
store one probability value. For the performance signal, the storage complexity
of the observation model is upper bounded by SCU = |Π|N |R|B for the average

reward case, and SCU,γ = |Π|N 1−γT

1−γ |R|B for the discounted reward case. For the
state-action-state signals, we have SCs′ = |Π|N |R| |S| |A|B, and for the immediate
reward signal we have SCr = |Π|N |S|2 |A|B. In applications where |R| > |S| we
obtain the ordering SCU < SCr < SCs′ .

6 Conclusion

In this paper we address the policy reuse problem, which involves responding to an
unknown task instance by selecting between a number of policies available to the
agent so as to minimise regret, with respect to the best policy in the set, within a
short number of episodes. This problem is motivated by many application domains

30 Rosman, Hawasly & Ramamoorthy

where tasks have short durations such as human interaction and personalisation
or monitoring tasks.

We introduce Bayesian Policy Reuse, a Bayesian framework for solving this
problem. The algorithm tracks a probability distribution (belief) over a set of
known tasks capturing their similarity to the new instance that the agent is solving.
The belief is updated with the aid of side information (signals) available to the
agent: observation signals acquired online for the new instance, and signal models
acquired offline for each policy. To balance the trade-off between exploration and
exploitation, several mechanisms for selecting policies from the belief (exploration
heuristics) are also described, giving rise to different variants of the core algorithm.

This approach is empirically evaluated in three simulated domains where we
compare the different variants of BPR, and contrast performance with related
approaches. In particular, we compare the performance of BPR with a multi-
armed bandit algorithm (UCB1) and a Bayesian optimisation method (GP-UCB).
We also show the effect of using different kinds of observation signals on the
convergence of the belief, and we illustrate the trade-off between library size and
sample complexity required to achieve a required level of performance in a task.

The problem of policy reuse as defined in this paper has many connections with
related settings from the literature, especially in the multi-armed bandit research.
However, it also has certain features that does not allow it to be reduced exactly to
any one of them. The contributed problem definition and the proposed Bayesian
approach are first steps toward a practical solution that can be applied to real
world scenarios where traditional learning approaches are not feasible.

Acknowledgements This work has taken place in the Robust Autonomy and Decisions
group within the School of Informatics, University of Edinburgh. This research has benefitted
from support by the UK Engineering and Physical Sciences Research Council (grant number
EP/H012338/1) and the European Commission (TOMSY and SmartSociety grants).

References

R. Amin, K. Thomas, R.H. Emslie, T.J. Foose, and N. Strien. An overview of the
conservation status of and threats to rhinoceros species in the wild. International

Zoo Yearbook, 40(1):96–117, 2006.
P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47(2):235–256, 2002.
Eric Brochu, Vlad M. Cora, and Nando De Freitas. A tutorial on bayesian opti-

mization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement
learning. In Proceedings of The 29th Conference on Uncertainty in Artificial Intel-

ligence (UAI), 2013.
Loc Bui, Ramesh Johari, and Shie Mannor. Clustered bandits. CoRR,

abs/1206.4169, 2012.
B.C. da Silva, G.D. Konidaris, and A.G. Barto. Learning parameterized skills.

In Proceedings of the Twenty Ninth International Conference on Machine Learning,
June 2012.

Bayesian Policy Reuse 31

R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration.
In Proceedings of the fifteenth Conference on Uncertainty in Artificial Intelligence,
pages 150–159. Morgan Kaufmann Publishers Inc., 1999.

Yaakov Engel and Mohammad Ghavamzadeh. Bayesian policy gradient algo-
rithms. In Advances in Neural Information Processing Systems 19: Proceedings

of the 2006 Conference, volume 19, page 457. MIT Press, 2007.
F. Fernández and M. Veloso. Probabilistic policy reuse in a reinforcement learning

agent. In Proceedings of the fifth international joint conference on Autonomous

agents and multiagent systems, pages 720–727. ACM, 2006.
Josep Ginebra and Murray K. Clayton. Response surface bandits. Journal of the

Royal Statistical Society. Series B (Methodological), pages 771–784, 1995.
J. C. Gittins and D. Jones. A dynamic allocation index for the discounted multi-

armed bandit problem. Progress in Statistics, pages 241–266, 1974.
Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation

rules. Advances in applied mathematics, 6(1):4–22, 1985.
John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed

bandits with side information. In J.C. Platt, D. Koller, Y. Singer, and S.T.
Roweis, editors, Advances in Neural Information Processing Systems 20, pages 817–
824. Curran Associates, Inc., 2008.

Alessandro Lazaric. Knowledge transfer in reinforcement learning. PhD thesis, PhD
thesis, Politecnico di Milano, 2008.

M. M. Hassan Mahmud, Majd Hawasly, Benjamin Rosman, and Subramanian Ra-
mamoorthy. Clustering markov decision processes for continual transfer. arXiv

preprint arXiv:1311.3959, 2013.
M. M. Hassan Mahmud, Benjamin Rosman, Subramanian Ramamoorthy, and

Pushmeet Kohli. Adapting interaction environments to diverse users through
online action set selection. In AAAI 2014 Workshop on Machine Learning for

Interactive Systems, 2014.
Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In Proceedings of The

31st International Conference on Machine Learning, pages 136–144, 2014.
Adam J. Mersereau, Paat Rusmevichientong, and John N. Tsitsiklis. A structured

multiarmed bandit problem and the greedy policy. Automatic Control, IEEE

Transactions on, 54(12):2787–2802, 2009.
José Niño-Mora. Computing a classic index for finite-horizon bandits. INFORMS

Journal on Computing, 23(2):254–267, 2011.
Sandeep Pandey, Deepayan Chakrabarti, and Deepak Agarwal. Multi-armed ban-

dit problems with dependent arms. In Proceedings of the 24th international con-

ference on Machine learning, pages 721–728. ACM, 2007.
Warren B. Powell. The knowledge gradient for optimal learning. Wiley Encyclopedia

of Operations Research and Management Science, 2010.
Benjamin Rosman, Subramanian Ramamoorthy, M. M. Hassan Mahmud, and

Pushmeet Kohli. On user behaviour adaptation under interface change. In
International Conference on Intelligent User Interfaces, 2014.

Aleksandrs Slivkins. Contextual bandits with similarity information. The Journal

of Machine Learning Research, 15(1):2533–2568, 2014.
Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaus-

sian process optimization in the bandit setting: No regret and experimental
design. arXiv preprint arXiv:0912.3995, 2009.

32 Rosman, Hawasly & Ramamoorthy

Alexander L Strehl, Chris Mesterharm, Michael L Littman, and Haym Hirsh.
Experience-efficient learning in associative bandit problems. In Proceedings of

the 23rd international conference on Machine learning, pages 889–896. ACM, 2006.
M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains:

A survey. The Journal of Machine Learning Research, 10:1633–1685, 2009.
A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: a

hierarchical bayesian approach. In Proceedings of the 24th international conference

on Machine learning, pages 1015–1022. ACM, 2007.
David Wingate, Noah D. Goodman, Daniel M. Roy, Leslie P. Kaelbling, and

Joshua B. Tenenbaum. Bayesian policy search with policy priors. In Proceedings

of the Twenty-Second international joint conference on Artificial Intelligence-Volume

Volume Two, pages 1565–1570. AAAI Press, 2011.

	1 Introduction
	2 Bayesian Policy Reuse
	3 Policy Selection for BPR
	4 Experiments
	5 Discussion and Related Work
	6 Conclusion

