
1

Action Priors for Learning Domain Invariances
Benjamin Rosman, Member, IEEE, and Subramanian Ramamoorthy Member, IEEE

Abstract—An agent tasked with solving a number of different
decision making problems in similar environments has an op-
portunity to learn over a longer timescale than each individual
task. Through examining solutions to different tasks, it can
uncover behavioural invariances in the domain, by identifying
actions to be prioritised in local contexts, invariant to task
details. This information has the effect of greatly increasing
the speed of solving new problems. We formalise this notion
as action priors, defined as distributions over the action space,
conditioned on environment state, and show how these can be
learnt from a set of value functions. We apply action priors in
the setting of reinforcement learning, to bias action selection
during exploration. Aggressive use of action priors performs
context based pruning of the available actions, thus reducing
the complexity of lookahead during search. We additionally
define action priors over observation features, rather than states,
which provides further flexibility and generalisability, with the
additional benefit of enabling feature selection. Action priors are
demonstrated in experiments in a simulated factory environment
and a large random graph domain, and show significant speed
ups in learning new tasks. Furthermore, we argue that this
mechanism is cognitively plausible, and is compatible with
findings from cognitive psychology.

Index Terms—Search pruning, action selection, action order-
ing, transfer learning, reinforcement learning

I. INTRODUCTION

Consider some learning agent, such as a robot, operating
in a building for a prolonged period of time. This robot
is required to perform multiple tasks in this domain, for
example couriering different items to different people around
the building, monitoring access to certain areas, etc. The
difficulty with this setting is that not only are these tasks
varied, but their specifications are also not completely known
a priori, e.g. goal states may differ between tasks.

It is clear that this robot would need to learn to perform a
number of different tasks. However, we wish to accelerate this
learning via transferring knowledge. When approaching a new
task, the robot should be able to reuse knowledge from having
experienced other tasks. The challenge here is how to manage
this experience, and how to organise it so as not just to store
vast numbers of behaviours which are tailor-learnt to specific
tasks. Instead, we desire some mechanism for generalisation.

Although the agent may be learning different tasks, the
fact that they exist within the same environment means there
is some underlying structure common to them all. It is this
structure we wish to exploit to facilitate faster learning through
forming better abstractions of the domain. Hence, we are
interested in building agents capable of learning domain invari-
ances. Invariances in this sense act as a form of common sense

B. Rosman is with Mobile Intelligent Autonomous Systems, Council for
Scientific and Industrial Research (CSIR), South Africa.

S. Ramamoorthy is in the School of Informatics, University of Edinburgh,
UK.

knowledge of the domain: these are constraints of preferences
which are common to a large class of behaviours. This form
of knowledge can provide insights into learning what not to
do in particular situations, e.g. learning to avoid behaviours in
a simulator which may not be realisable in reality [1]. In this
way, we are interested in a form of model learning, where the
model consists of the commonalities between a set of tasks,
rather than the reward structure for any individual task.

Learning new behaviours, e.g. through reinforcement learn-
ing, is typically slow in that it necessarily requires extensive
exploration of the space of possibilities. This is particularly
the case when the specification of the task (given by the exact
reward structure) is difficult to obtain, such as in the case of
delayed reward reinforcement learning. In addition, learning
safely is an important consideration for an agent which has to
deal with the typical exploration-exploitation trade-off: while
exploration must occur to discover optimal behaviour, this
cannot be done at the cost of damage to the agent (particularly
if it is embodied, such a robot). Our goal is thus to be
able to inject weak knowledge into the problem, which is a
prior of sensible behaviours in the domain, and can be learnt
autonomously from previous tasks. To this end we introduce
the notion of action priors, being localised distributions over
the action sets of a learning agent, which are used to bias
learning of new behaviours, and ensure safe exploration.

Learning action priors equates to finding invariances in the
domain, across policies. These invariances are the aspects of
the domain with which interaction of the agent remains the
same, independent of the task. For instance, when one is
driving a car the “rules of the road”, techniques for driving the
car, and interaction protocols with other vehicles remain un-
changed regardless of the destination. Learning these domain
invariances is useful in a lifelong sense, as it simplifies the
problem of learning to perform a new task, by factoring out
those elements which remain unchanged across task specifica-
tions. We thus regard this as a form of transfer learning [2], [3]
where the agent is required to learn to generalise knowledge
gained from solving some tasks, to apply to others.

The key assumption leveraged in this work is that there is
certain structure in a domain in which an agent is required
to perform multiple tasks over a long period of time. This is
in the form of local contexts in which, regardless of the task,
certain actions may be commonly selected, while others should
always be avoided as they are either detrimental, or at best
do not contribute towards completing any task. This induces
local sparsity in the action selection process. By learning this
structure, and posed with a new task, an agent can focus
exploratory behaviour away from actions which are seldom
useful in the current situation, and so boost performance
in expectation. Extracting this structure thus provides weak
constraints similar to manifold learning [4].

2

Action priors thus allow a decision making agent to bias
exploratory behaviour towards actions that have been useful
in the past in similar situations, but different tasks. This
formalism also provides a platform which can be used to inject
external information into the agent, in the form of teaching.

We pose this framework in a reinforcement learning context,
but note it is applicable to other decision making paradigms.
Indeed, we argue in Section V that this resembles techniques
which humans are believed to invoke in order to facilitate
decision making under large sets of options [5]. Our approach
is generally applicable to domains with two properties:
• The domain must support multiple tasks, with related

structure (described further in Section II).
• The action set of the agent must be large, for prioritising

actions to provide benefit (see experiments in Section IV).

A. Contributions

The problem addressed in this paper is that an agent learning
to perform a range of tasks in the same domain is essentially
relearning everything about the domain for every new task,
and thus learning is slow. We seek a middle ground between
model-based and model-free learning, where a model of the
regularities in behaviours within a domain can be acquired.

Our approach to tackling this problem is to extract the
invariances in the domain from the set of tasks that the agent
has already solved. This is related to the notion of extracting
affordances from the domain, discussed further in Section VI.
These invariances are termed action priors, and provide the
agent with a form of prior knowledge which can be injected
into the learning process for new tasks.

Additionally, we show
• an alternative version of the action priors which is suitable

for changing domains and partial observability,
• a method for selecting domain features so as to maximise

the effect of these priors,
• that action priors are based on mechanisms which are

cognitively plausible in humans.

B. Paper Structure

This paper is structured as follows. We introduce our core
innovation, action priors, in Section II. We then discuss how
action priors can be used in scenarios where the structure of
the domain changes, and use this reformulation to perform
feature selection in Section III. We demonstrate our methods
in experiments in Section IV, and discuss the relation of our
approach to psychological findings in human behaviour in
Section V. Finally, we present related work in Section VI.

II. ACTION PRIORS

A. Preliminaries

In keeping with the standard formalism of reinforcement
learning, let an environment be specified by a Markov Decision
Process (MDP). An MDP is defined as a tuple (S,A, T,R, γ),
where S is a finite set of states, A is a finite set of actions
which can be taken by the agent, T : S×A×S → [0, 1] is the
state transition function where T (s, a, s′) gives the probability

of transitioning from state s to state s′ after taking action a,
R : S × A → R is the reward function, where R(s, a) is the
reward received by the agent when transitioning from state s
with action a, and γ ∈ [0, 1] is a discount factor.

A Markovian policy π : S × A → [0, 1] for an MDP is
a distribution over state-action space. The return, generated
from an episode of running the policy π is the accumulated
discounted reward R̄π =

∑
k γ

krk, for rk being the reward
received at step k. The goal of a reinforcement learning
agent is to learn an optimal policy π∗ = arg maxπ R̄

π

which maximises the total expected return of the MDP, where
typically T and R are unknown.

Many approaches to learning an optimal policy involve
learning the value function Qπ(s, a), giving the expected re-
turn from selecting action a in state s and thereafter following
the policy π [6]. Q is typically learnt by iteratively updating
values using the rewards obtained by simulating trajectories
through state space, e.g. Q-learning [7]. A greedy policy can
be obtained from a value function defined over S × A, by
selecting the action with the highest value for any given state.

B. State Based Action Priors

We define a domain by the tuple D = (S,A, T, γ), and a
task as the MDP τ = (D,R). In this way we factorise the
environment such that the state set, action set and transition
functions are fixed for the whole domain, and each task varies
only in the reward function. Given an arbitrary set of tasks
T = {τ} and their corresponding optimal policies Π = {π∗τ},
we wish to learn for each state s ∈ S its action priors θs(A): a
distribution over the action set, representing the probability of
each action in A being used in an optimal policy in the state s,
aggregated over tasks. This is then, in subsequent tasks, used
to prioritise the actions in each state.

The idea is that by considering a set of policies, each se-
lecting actions in a state s according to different distributions,
one can gain insights into properties of s. These insights are
in terms of the “usefulness” of different actions in that state1.
For example, if one action is favoured by all policies when
in s, then that action could be considered as very useful in
s, and should be favoured during exploration in subsequent
tasks. Conversely, if an action is not selected by any policy in
s, then that action is likely to have negative consequences, and
should be avoided. This notion thus informs weak constraints
on policies at s, in that an action not selected by previous
policies should not be prioritised in solving future tasks.

To provide further intuition, we say that an action a1 is
preferable to an action a2 in a state s, if a1 is used in s by
a larger number of optimal policies than a2. The setting in
which we study the phenomenon of accelerated learning in a
lifelong sense is that the tasks seen so far are sampled from
a distribution of all possible tasks, and are representative of
that task space. By examining the optimal policies that arise
from multiple tasks in the same domain, we aim to learn about
the structure of the underlying domain, in terms of identifying
local behaviours which are invariant across tasks.

1This “usefulness” is defined in terms of the utility of that action over a
bank of different tasks. This is formalised in Equation (3).

3

1) Combining Policies to Learn Priors: Consider the set-
ting in which the agent has prolonged experience in the domain
D. This means the agent has solved a set of tasks in D, and we
use the resulting set of optimal policies to extract the action
priors as a form of structural information about the domain.

For each state s ∈ S, we model the action priors θs(A) as
a distribution over the action set A, describing the usefulness
of each action in optimally solving the tasks in T using the
policies Π. To do so, we first define the utility of an action a
in a state s under a policy π as a boolean variable describing
whether or not a was optimal in s using π. Formally,

Uπs (a) = δ(π(s, a),max
a′∈A

π(s, a′)), (1)

where δ(·, ·) is the Kronecker delta function: δ(a, b) = 1 if
a = b, and δ(a, b) = 0 otherwise. As a result Uπs (a) = 1 if
and only if a is the best (or tied best) action in s under π. This
formulation of a utility function is used rather than Q(s, a), as
the values stored in Q(s, a) relate to the rewards allocated for
the task that π solves. These values are thus relative, unlike
those of Uπs which provide a point-estimate of the value of an
action in a state, and as such are comparable across policies
for very different tasks a reward scales.

Now consider the utility UΠ
s (a) of an action a in a state s

under a policy library Π. This value is the weighted sum,

UΠ
s (a) =

∑
π∈Π

w(π)Uπs (a), (2)

where w(π) ∈ R is a weight for the policy π ∈ Π. This
weight factor allows us to include suboptimal policies in the
formulation, by giving them lower weights.

The fact that θs(A) is constructed from the policies solving
a set of tasks T raises the possibility that T is not actually
representative of the complete set of possible tasks in D.
We counteract this by forming an augmented policy set Π+,
defined as Π+ = Π ∪ π0, where π0 is the uniform policy:
π0(s, a) = 1

‖A‖ , ∀s ∈ S, a ∈ A. The utility of this policy is
then Uπ0

s (a) = 1, ∀s ∈ S, a ∈ A. In this case, the weight
w(π0) is representative of the likelihood of encountering a
new task which has not been previously solved.

In the limit of increasing task variance, the probability of an
action under the action priors tends to the true probability of
being optimal in any task. This encapsulates the structure of
the domain in terms of the probability of reaching an arbitrary
goal from the current state. Then, if the agent is acting with
no extra knowledge of the task, this distribution represents the
best course of action which should be taken in any state.

Given a state s, for each action a the utility of that
action UΠ+

s (a) provides an estimate of the value of the
state-action pair (s, a) in D under the augmented policy
set. We thus choose actions according to these values. To
select an action, we sample from a probability distribution
θs(A) = f(UΠ+

s (A)), such that a ∼ θs(A). There are many
ways in which f may be defined, e.g.,

1) as a proportion:

f(UΠ+

s (A)) = fp =
UΠ+

s (a)∑
a′∈A U

Π+
s (a′)

,
2) as a Boltzmann softmax distribution:

f(UΠ+

s (A)) = fs =
exp{UΠ+

s (a)}∑
a′∈A exp{UΠ+

s (a′)}
,

3) as a draw from a Dirichlet distribution:
f(UΠ+

s (A)) = fd ∼ Dir(UΠ+

s (a)).

Throughout the remainder of this paper, we choose to model
f as a Dirichlet distribution, although these all remain valid
choices. We base this choice on the fact that as the conjugate
prior of the multinomial distribution over the action set, the
Dirichlet distribution can be interpreted as the belief in the
probabilities of rival actions, given some prior observations
of their occurrences. Furthermore, the mean of the Dirichlet
distribution is its normalised parameters, which is exactly the
proportion fp, although the use of hyperpriors controls against
overfitting. We also prefer both fp and fd to the softmax fs as
we hypothesise that in situations where a large number of prior
policies have been encountered, small discrepancies in action
counts could explode under the exponential term, and so some
viable options would be explored considerably less than the
prior advocates. Additionally, any ‘max’ function is unlikely
to provide the same exploration convergence guarantees2.

We note that these particular choices of distributions are
intended for discrete action sets. If the action space is
continuous, for instance if an action is parametrised by a
continuous parameter, then other distributions should be used3.
Alternatively, the continuous space could be discretised into
intervals of a desired granularity, and the method described in
the rest of the paper then applies.

2) Action Priors as a Dirichlet Distribution: For each state
s, draw the action priors θs(A) from a Dirichlet distribution
conditioned on s. The Dirichlet distribution is parametrised by
concentration parameters (α(a1), α(a2), . . . , α(a‖A‖))

T and
so for each state s, we maintain a count αs(a) for each action
a ∈ A. The initial values of αs(a) = α0

s(a) are known as
the pseudocounts, and can be initialised to any value by the
system designer to reflect prior knowledge. If these counts are
the same for each action in a state, i.e. αs(a) = k, ∀a ∈ A
this returns a uniform prior, which results in each action being
equally favourable in the absence of further information.

The pseudocounts α0
s(a) are a hyperprior which model prior

knowledge of the tasks being performed by the agent. If the
variance in the tasks is expected to be small, or alternatively
a large number of training tasks are provided, then this
hyperprior is set to a smaller value. However, if there is great
diversity in the tasks, and the agent will not be expected to
sample them thoroughly, then a larger hyperprior will prevent
the action priors from over-generalising from too little data4.

We wish these counts to describe the number of times an
action a was considered optimal in a state s, across a set of

2Empirical validation of this choice has been omitted for space reasons [8].
3As an example, one could use a Normal-gamma distribution (as a con-

jugate prior to a Gaussian distribution) in the same way we use a Dirichlet
distribution: by specifying a hyperprior, and then using the optimal parameter
values from the training tasks to update the model parameters. Online, draw
a (µ, σ) from this distribution, and use that Gaussian to draw an action
parameter value. Depending on the range of these parameter values, they
may need to be transformed with a logit function.

4It can be shown that the convergence guarantees of Q-learning can be
maintained by using the action priors with a non-zero hyperprior [8].

4

Fig. 1: Example action priors learned for 5× 5 maze worlds,
from 50 random optimal Q-functions. Indicated directions in
each cell have a non-zero probability mass, but in every cell
the agent can execute any of four directional movements. Grey
cells are obstacles, and white cells are free space.

policies Π. We thus set

αs(a) = UΠ+

s (a) =
∑
π∈Π+

w(π)Uπs (a) (3)

=
∑
π∈Π

w(π)Uπs (a) + α0
s(a). (4)

This provides a natural intuition for the counts as the weighted
utility of Π, and the hyperprior is then α0

s(a) = w(π0).
Typically, one would not want to maintain a full library of

policies. The α counts can alternatively be learnt by the agent
in an online manner as it learns the solutions to new tasks. In
this way, when the agent solves some task τ t+1, the counts for
each state-action pair can be updated by the values in πt+1.
This provides an online update rule for Equation (3) as

αt+1
s (a)←−

αts(a) + w(πt+1) if πt+1(s, a) =

maxa′∈A π
t+1(s, a′)

αts(a) otherwise.
(5)

To obtain the action priors θs(A), sample from the Dirichlet
distribution: θs(A) ∼ Dir(αs). Note that θs(A) is a probabil-
ity distribution over A, and so

∑
a θs(a) = 1, ∀s ∈ S.

Note that in Equation (5) we increment the α counts by
w(πt+1), rather than the probability πt+1(s, a). This enumer-
ates the actions used by the different policies, rather than
simply averaging the effects of the actions taken by the
individual policies, which could result in the agent being
drawn towards a local optimum in state space, by one policy
dominating others. Instead we weight each action by the
number of independent tasks which require the selection of
that particular action, which is then used as a prior probability
of that action choice in that state over all tasks in the domain.

Figure 1 demonstrates the result of using our method on 5×
5 maze worlds, extracted from policies which were the optimal
solutions to 50 random navigation tasks. An arrow in a cell
is drawn in a direction only if any mass was allocated to that
direction by any policy. Note that this results in the “useful”
actions of the domain, being the actions that do not cause
collisions with obstacles. Action priors effectively reduce the
set of actions from four in each cell to the subset which were
used in the training tasks (55.26% and 63.16% of the full
action sets respectively in the examples shown in Figure 1).

3) Using the Action Priors: An action prior provides the
agent with knowledge about which actions are sensible in
situations in which the agent has several choices to explore.
As such, they are useful for seeding search in a policy
learning process. Although this applies to any algorithm which
takes exploration steps as is typical in reinforcement learning,
we demonstrate this modified exploration process with an
adaptation of traditional Q-learning [6], called ε-greedy Q-
learning with State-based Action Priors (ε-QSAP) [9], shown
in Algorithm 1. Note, in this algorithm, αQ ∈ [0, 1] denotes
the learning rate, and should not be confused with the Dirichlet
distribution counts αs(a). The parameter ε ∈ [0, 1] controls the
trade-off between exploration and exploitation. Both αQ and
ε are typically annealed after each episode.

Algorithm 1 ε-greedy Q-learning with State-based Action
Priors (ε-QSAP)
Require: action prior θs(a)

1: Initialise Q(s, a) arbitrarily
2: for every episode k = 1 . . .K do
3: Choose initial state s
4: repeat

5: a←−

{
arg maxaQ(s, a), w.p. 1− ε
a ∈ A, w.p. εθs(a)

6: Take action a, observe r, s′

7: Q(s, a) ←− Q(s, a) + αQ[r + γmaxa′ Q(s′, a′) −
Q(s, a)]

8: s←− s′
9: until s is terminal

10: end for
11: return Q(s, a)

The difference between this and standard ε-greedy Q-
learning can be seen on line 5. This is the action selection step,
consisting of two cases. The first case deals with exploiting
the current policy stored in Q(s, a) with probability 1 − ε,
and the second case with exploring other actions a ∈ A with
probability ε. The exploration case is typically handled by
choosing the action uniformly from A, but instead we choose
with probability based on the prior θs(A) to shape the action
selection based on what were sensible choices in the past.

The effect is that the agent exploits the current estimate of
the optimal policy with high probability, but also explores, and
does so with each action proportional to the number of times
that action was favoured in previous tasks. This highlights the
assumption that there is inherent structure in the domain which
can be identified across multiple tasks.

We emphasise here that although this paper utilises action
priors as an exploration policy within the context of Q-
learning, this idea applies to a broader range of algorithms. In
the general case, action priors may instead be used to provide
an initial seed policy for a learning algorithm, or instead as a
filter for selecting or ranking actions during learning.

III. PRIORS FROM OBSERVATIONS

In Section II-B, action priors were defined as distributions
over actions, conditioned on the current state. In this section

5

we extend these definitions such that the action priors are
instead conditioned on observations. There are several reasons
for this representation change. The first is that the transition
function T or even the state space S may not be task indepen-
dent, and may instead differ between task instances. This may
be the case, for example, when an agent is exploring buildings,
and the layout of each differs. It is not sensible to condition
action priors on states, if the connectivity of those states
changes between task instances. Instead, the agent should
condition action priors on observable features of the states
– features which persist across tasks, even if state identities
do not. This representation change therefore allows the action
priors to generalise further, to tasks in related environments.

Alternatively, one may not always have full observability
of the state, and so different states cannot be uniquely distin-
guished. This is the case in partially observable reinforcement
learning problems [10] which typically require the solution
of partially observable Markov decision processes (POMDPs).
Full state information is not always accessible. Similarly, there
may be states which have not been explored during training
time, and so no action prior would be available for these states,
which may be required at test time. In both these scenarios,
it is again sensible to instead base the action priors on the
observable features of the state. The observation based action
priors thus transfer to unseen state and action combinations.

Basing action priors on observations rather than states
changes the dependence of θ from s ∈ S to φ : S −→ O,
where φ is the mapping from state space S to the observation
space O. The observed features of s are thus described by
φ(s). The state based priors can now be considered as a special
case of observation based priors, with φ(s) = s.

Note that we are not solving a partially observable problem,
but are instead informing exploration based on some partial
information signals. Using observations rather than exact state
descriptions allows for more general priors, as the priors are
applicable to different states with the same observations. This
also enables pooling of the experience collected from different
states with similar observations, to learn more accurate action
priors. There is, however, a trade-off between this generality,
and the usefulness of the priors. This trade-off depends on
the observation features, and the amount of action information
captured by these features. These, in turn, depend on properties
of the task and domain. The more general the observation
features, the less informative the action priors will be. On the
other hand, the more specific these features are (up to exact
state identification), the less portable they are to new states.

Both state and observation based action priors have their
uses. For example, maze-like environments stand to benefit
from a state based approach, where entire wings of the maze
could be pruned as dead-ends, which is not possible based on
observations alone. Alternatively, in a rich environment with
repeated structure, training policies are less likely to have suffi-
ciently explored the entire space, and so one may pool together
priors from different states with the same observations.

A. Using the Observation Based Priors
Changing the variables on which the action priors are

conditioned from states to observations replaces s with φ(s)

in Algorithm 1. When learning the action priors, Equations (5)
and (3) are also still valid, by again replacing s with φ(s).

Similarly, the α counts are learnt by the agent online from
the previous optimal policies, and updated for each (φ(s), a)
pair whenever a new policy πt+1 is available:

αt+1
φ(s)(a)←

αtφ(s)(a) + w(πt+1) if πt+1(s, a) =

maxa′ π
t+1(s, a′)

αtφ(s)(a) otherwise.
(6)

Thus αφ(s)(a) is the number of times a was considered a good
choice of action in any state s with observations φ(s) in any
policy, added to the pseudocounts α0

φ(s)(a). The corresponding
closed form of Equation (6) given a set of policies Π is then:

αφ(s)(a) =
∑
s∈[s]φ

∑
π∈Π

w(π)Uπφ(s)(a) + α0
φ(s)(a), (7)

where Uπφ(s)(a) = δ(π(φ(s), a),maxa′∈A π(φ(s), a′)), and
[s]φ = {s′ ∈ S|φ(s) = φ(s′)} represents the equivalence class
of all states with the same observation features as state s. This
additional summation occurs because in the general case, the
priors from multiple states will map to the same observation
based action priors.

To obtain the action priors θφ(s)(A), again sample from the
Dirichlet distribution: θφ(s)(A) ∼ Dir(αφ(s)).

B. Feature Selection

The choice of the set of observational features is an open
question, depending on the capabilities of the agent. Indeed,
feature learning in general is an open and difficult question,
which has been considered in many contexts, e.g. [11], [12].
The possible features include the state label (as discussed
previously), as well as any sensory information the agent
may receive from the environment. Furthermore, these features
can include aspects of the task description, or recent rewards
received from the environment.

As a result, in many domains, there could be a large set of
observational features. The size of Φ, the space of possible
mappings, is exponential in the number of features. Given a
feature space Φ, we are interested in identifying the optimal
feature set φ∗ ∈ Φ, which provides abstraction and dimen-
sionality reduction, with a minimal loss of information in the
action prior. Finding such a φ∗ allows for the decomposition of
the domain into a set of capabilities [13], being recognisable
and repeated observational contexts, with minimal uncertainty
in the optimal behavioural responses, over the full set of tasks.

Let a feature fi be a mapping from a state to a set of values
f1
i · · · f

Ki
i . Let φ be a set of these features. We abuse notation

slightly and for a particular feature set φi we enumerate the
possible settings of all its constituent features, such that φi =
φji means that the features in φi are set to configuration j,
where these configurations are uniquely ordered such that j ∈
[1,Kφi], where Kφi =

∏
qKq is the total number of possible

feature configurations, q runs over the features of φi, and Kq

is the number of settings for feature q.
Our goal is to find the feature set which can prescribe

actions with the most certainty. To this end, define the average

6

entropy of an action a under a particular feature set φ as

H̄φ(a) =

Kφ∑
j=1

P (φj)H[P (a|φj)], (8)

where P (a|φj) = θφj (a) is the value of the action prior for a
particular set of feature values, P (φj) is the prior probability
of that set of feature values, estimated empirically from data as∑

a αφj (a)∑
i

∑
a αφj (a) , and H[p] = −p log2 p is the standard entropy.

The prior P (φj) weights each component distribution by the
probability of that feature combination arising in the data.

By summing the average entropy for each action, we define
the entropy of the action set A under a feature set φ as

Hφ =
∑
a∈A

H̄φ(a) (9)

The optimal feature set is that which minimises the action
set entropy. This is thus analogous to the information invari-
ance which is present in the observations of the agent [14].
There is however a caveat with this simple minimisation. The
more features are included in the feature set, the sparser the
number of examples for each configuration of feature values.
We therefore regularise the minimisation, by optimising for
smaller feature sets through the application of a penalty based
on the number of included features. Finding the optimal fea-
ture set φ∗ is thus posed as solving the optimisation problem

φ∗ = arg min
φ∈Φ

[Hφ + c‖φ‖] (10)

where ‖φ‖ is the number of features in φ, and c is a parameter
which controls for the weight of the regularisation term.

The major problem is that the number of possible feature
sets is exponential in the number of features, and so we instead
focus on an approximation for selecting the best set of features.
This is shown in Algorithm 2, which returns the approximate
minimal feature mapping φ̃∗ ' φ∗. The key assumption is that
each feature f affects the entropy of θφ(A) independently. For
each feature f from the full feature set φfull, we marginalise
over that feature and compute the entropy of the remaining
feature set. Each of these ‖φfull‖ individual entropy values
is compared to the entropy of the full set Hφfull . The greater
the increase in entropy resulting from the removal of feature
f , the more important f is as a distinguishing feature in the
action prior, as the addition of that feature reduces the overall
entropy of the action prior distribution. The feature set chosen
is then the set of all features which result in an entropy increase
greater than some threshold ω.

This independence assumption implies that it is not the case
that the importance of some features are conditional on the
values of others. This assumption is more likely to hold when
the features are already the result of processing, rather than
raw sensory input. This could be addressed by considering a
feature to be a concatenation of several dependent variables.
Alternatively, in the case of dependent features, the optimisa-
tion problem in Equation (10) could be solved directly.

In order to use this method for feature selection from
a rich data source, such as a vision system, two primary
modifications would be required. Firstly, image processing is

Algorithm 2 Independent Feature Selection
Require: feature set φfull, entropy increase threshold ω

1: Compute Hφfull by Equation (9)
2: for every feature f in φfull do
3: φ−f ←− φfull \ f
4: Compute Hφ−f by Equation (9)
5: ∆f ←− Hφ−f −Hφfull

6: end for
7: φ̃∗ ←− {f ∈ φfull|∆f ≥ ω}
8: return φ̃∗

required of the input data to form hypothesis features. This
could be done by identifying common structure in the data
(see, e.g. [13]). Secondly, this feature selection procedure
could be used during online operation of the agent, which
allows for continued re-evaluation of feature importance [15].

The increased generality from using observations draws
from the intuition that certain behaviours only make sense
in the context of particular sensory features. If there is a high
entropy in which actions should be taken in the context of a
particular observation, then there are two possible reasons for
this: 1) it may be the case that different tasks use this context
differently, and so without conditioning action selection on the
current task, there is no clear bias on which action to select,
or 2) it may be that this observation is not informative enough
to make the decision, providing scope for feature learning.
This distinction can only be made in comparison to using the
maximal feature set, as the most informative set of observation
features. Without ground truth state information, this can only
be ascertained through learning. If the observations are not
informative enough, then this suggests that additional features
would be useful, providing the agent with the opportunity for
trying to acquire new features.

IV. EXPERIMENTS

A. The Factory Domain

The first domain used in these experiments is the factory
domain, which is an extended navigation domain involving a
mobile manipulator robot placed on a factory floor. The factory
layout consists of an arrangement of walls through which
the robot cannot move, with some procurement and assembly
points placed around the factory. Additionally there are express
routes demarcated on the ground, which represent preferred
paths of travel, corresponding to regions where collisions with
other factory processes may be less likely. The domain used
in these experiments is shown in Figure 2a.

The robot has an action set consisting of four movement
actions (North, South, East and West), each of which move the
robot in the desired direction, provided there is no wall in the
destination position, a Procure action, and an Assemble action.
Procure used at procurement point i, provides the robot with
the materials required to build component i. Assemble used at
assembly point i, constructs component i, provided the robot
already possesses the materials required for component i.

A task is defined as a list of components which must be
assembled by the robot. The domain has 9 components, and

7

(a) (b)

Fig. 2: (a) Factory domain used in the first experiments. Grey
cells are obstacles, white cells are free space, green cells are
procurement points, red cells are assembly points, and cyan
cells are express routes. (b) Caricature of the graph domain
used in the final experiments, showing clusters of nodes with
dense intra-cluster and sparse inter-cluster connections.

so this list can range in length from 1 to 9, giving a total of
29−1 different tasks. Task rewards are defined as follows. All
movement actions give a reward of −2, unless that movement
results in the robot being on an express route, for a reward
of −1. Collisions are damaging to the robot and so have a
reward of −100. Procure at a procurement point for an item
in the task definition which has not yet been procured gives a
reward of 10. Procure anywhere else in the domain yields −10.
Assemble at an assembly point for an item in the list which
has already been procured but not assembled gives 10, and
any other use of the Assemble action gives −10. Successful
completion of the task gives 100 and the episode is terminated.

This domain provides a number of invariances which could
be acquired by the robot. Locally, these include avoiding
collisions with walls, preferring express routes to standard free
cells, and not invoking a Procure or Assemble action unless at
a corresponding location. As all tasks are defined as procuring
and assembling a list of components, this additionally provides
scope for learning that regardless of the components required,
the robot should first move towards and within the region of
procurement points until all components have been procured,
after which it should proceed to the region of assembly points.

B. Results with State Action Priors

The results in Figure 3, which compares the performance
per episode of a learning agent using a set of different
priors, demonstrates that using action priors reduces the cost
of the initial phase of learning, which is largely concerned
with coarse scale exploration. In this case, the loss incurred
in the early episodes of learning is dominated by the fact
that the agent explores in the wrong directions, rather than
performs invalid or ill-placed actions. This figure also shows
comparative performance of Q-learning with uniform priors
(i.e. “standard” Q-learning), as well as with two different hand
specified priors; an “expert” prior and an “incorrect” prior.

The “expert” prior is defined over the state space, to guide
the agent towards the procurement area of the factory if the
agent has any unprocured items, and to the assembly area
otherwise. This prior was constructed by a person, who was
required to specify the best direction for each state in the

domain. We note that this prior is tedious to specify by hand, as
it involves an expert specifying preferred directions of motion
for the entire state space of the agent (number of states in the
factory × number of different item configurations). Note that,
although the performance is very similar, this prior does not
perform as well as the learnt prior, likely due to a perceptual
bias on behalf of the expert’s estimation of optimal routing.
We also compare to an “incorrect” prior. This is the same
as the expert prior, but we simulate a critical mistake in the
understanding of the task: when the agent has unprocured
items, it moves to the assembly area, and otherwise to the
procurement area. This prior still provides the agent with
an improvement in the initial episodes of uniform priors,
as it contains some “common sense” knowledge including
not moving into walls, moving away from the start location,
etc. Q-learning is still able to recover from this error, and
ultimately learn the correct solution.

Fig. 3: Comparative performance between Q-learning with
uniform priors, with state based action priors learned from
35 random tasks, and with two different pre-specified priors
(see text for details), averaged over 15 runs. Each task was
to assemble 4 components, selected uniformly at random. The
shaded region represents one standard deviation.

Figure 4 shows the speed up advantage in learning a set
of N = 40 tasks, starting from scratch and then slowly
accumulating the prior from each task, against learning each
task from scratch. This case is for a simple version of the task,
which involved procuring and assembling a single item. As a
result, all task variants are likely to have been encountered by
the time the agent is solving the final tasks.

On the other hand, Figure 5 shows that a similar effect
can be observed for the case of a more complicated task,
requiring the assembly of 4 randomly selected items. In this
case, even by the time the learning agent has accumulated a
prior composed from 40 tasks, it has only experienced a small
fraction of the possible tasks in this domain. Despite this, the
agent experiences very similar benefits to the single item case.

C. Results with Observation Action Priors

In order to demonstrate the effect of using the observation
action priors, we present a modification of the factory domain.
Recall that as state action priors define distributions over each
state of the domain, they cannot be robustly ported between

8

Fig. 4: Comparative performance between Q-learning with
uniform priors, and with state based action priors accumulated
from an increasing number of tasks (0 to 40). These curves
show the average reward per episode averaged over 10 runs,
where the task was to assemble 1 random component. The
“optimal” line is average performance of an optimal policy.
The shaded region represents one standard deviation.

Fig. 5: Comparative performance between Q-learning with
uniform priors, and with state based action priors accumulated
from an increasing number of tasks (0 to 40). These curves
show the average reward per episode averaged over 10 runs,
where the task was to assemble 4 random components. The
“optimal” line is average performance of an optimal policy.
The shaded region represents one standard deviation.

similar domains. On the other hand, as observation action
priors are based on local features rather than global state
information, this information is more portable, albeit possibly
less informative. The modified factory domain provides a test-
bed to demonstrate this point.

The modified domain stipulates that the factory floor layout
changes for each different task. This corresponds to either the
learning agent moving between different factories, or the fact
that the obstacles, procurement and assembly points may be
mobile and change with some regularity (e.g. whenever a new
delivery is made). Each factory floor consists of a 3×3 lattice

of zones, each of which is 6× 6 cells. There is an outer wall,
and walls in between every two zones, with random gaps in
some (but not all) of these walls, such that the entire space is
connected. Additionally, each zone contains randomly placed
internal walls, again with connectivity maintained. Two zones
are randomly chosen as procurement zones, and two zones
as assembly zones. Each of these chosen zones has either
four or five of the appropriate work points placed at random.
Examples of this modified domain are shown in Figure 6.

Fig. 6: Two instances of the modified factory domain. Grey
cells are obstacles, white cells are free space, green cells are
procurement points, and red cells are assembly points. The
procurement and assembly points count as traversable terrain.

D. Feature Selection

This modified domain has a different layout for every task.
As a result, every task instance has a different transition
function T . This is in contrast to the original factory domain,
where each task differed only in reward function R. State
based action priors can therefore not be expected to be as
useful as before. We thus use observation priors, and although
the choice of observation features remains open, we discuss
four particular feature sets.

Figure 7 demonstrates the improvement obtained by using
observation priors over state priors in this modified domain.
Note here that the state priors still provide some benefit, as
many of the corridor and wall placings are consistent between
task and factory instances. Figure 7 shows the effect of four
different observation priors:
• φ1: two elements – the type of terrain occupied by the

agent, and a ternary flag indicating whether any items
need to be procured or assembled.

• φ2: four elements – the types of terrain of the cells
adjacent to the cell occupied by the agent.

• φ3: six elements – the types of terrain of the cell occupied
the agent as well as the cells adjacent to that, and a ternary
flag indicating whether any items need to be procured or
assembled. Note that φ3 = φ1 ∪ φ2.

• φ4: ten elements – the terrain of the 3×3 cell grid around
the agent’s current position, and a ternary flag indicating
whether any items need to be procured or assembled.

As can be seen, all four observation priors contain infor-
mation relevant to the domain, as all provide an improvement
over the baselines. There is however a significant performance
difference between them, motivating the idea to use the priors
for feature selection as discussed in Section III-B.

9

Fig. 7: Comparative performance in the modified factory
domain between Q-learning with uniform priors, with state
based action priors, and with four different observation based
action priors: φ1, φ2, φ3 and φ4. These curves show the
average reward per episode averaged over 10 runs, where the
task was to assemble 4 random components. In each case
the prior was obtained from 80 training policies. The shaded
region represents one standard deviation.

Surprisingly, Figure 7 shows that the most beneficial feature
set is φ3, with φ2 performing almost as well. The fact that the
richest feature set, φ4, did not outperform the others seems
counterintuitive. The reason for this is that using these ten
features results in a space of 49 × 3 observations, rather than
the 45×3 of φ3. This factor of 256 increase in the observation
space means that for the amount of data provided, there were
too few samples to provide accurate distributions over the
actions in many of the observational settings.

We next identify the set of the most useful features using
Algorithm 2, by iteratively removing the features which con-
tribute the least to reducing the entropy of the action priors.
Recall that when posed as an optimisation problem in Equation
(10), the term c|φ| was used as a regulariser to control for the
effect of having too large a feature set: as seen in φ4 in Figure
7. These results, shown in Figure 8, indicate that the relative
importance for the ten features (all of which are present in φ4)
is consistent across the four feature sets. As expected, the φ4

results indicate that the values of the cells diagonally adjacent
to the current cell occupied by the agent are not important, as
they are at best two steps away from the agent.

Surprisingly, neither the value of the cell occupied by the
agent, nor the current state of the assembly carried by the agent
are considered relevant. Consider the current state of assembly:
this is already a very coarse variable, which only tells the agent
that either a procurement or an assembly is required next. This
is very local information, and directly affects only a small
handful of the actions taken by the agent. Now consider the
cell currently occupied by the agent. This indicates whether
the agent is situated above an assembly or procurement point.
Again, this is only useful in a small number of scenarios. Note
that these features are still useful, as shown by the performance
of φ1 relative to state based priors or uniform priors.

What turns out to be the most useful information is the
contents of the cells to the North, South, East and West of

Fig. 8: Feature importance of each feature in the four
different observation based action priors: φ1, φ2, φ3 and
φ4. The spatial features are labeled as relative positions
Y X , with Y ∈ {(U)p, (M)iddle, (D)own} and X ∈
{(L)eft, (M)iddle, (R)ight}. The feature Items is a flag,
indicating if the agent still needs to assemble or procure any
items.

the current location of the agent. These provide two critical
pieces of information to the agent. Firstly, they mitigate
the negative effects that would be incurred by moving into
a location occupied by a wall. Secondly, they encourage
movement towards procurement and assembly points. These
then constitute the most valuable features considered in our
feature sets. This observation is confirmed by the fact that φ2

performs very similarly to φ3.

E. Human Elicited Priors

A benefit of action priors is that they need not all be learnt
from policies executed by the same agent. In this way, the
priors can be accumulated from a number of different agents
operating in the same space. Furthermore, trajectories can
be demonstrated to the learning agent, perhaps by a human
teacher, as a means of training. Figure 9 illustrates how
human elicited action priors can be used to improve learning
performance on a new task. In this case, solution trajectories
were provided by a human for 40 randomly selected assembly
tasks in the modified factory domain. It can be seen that
the learning agent performs comparably to having full prior
policies, even though only trajectories were provided.

The human supplied trajectories were not assumed to be
optimal, but the human was assumed to be familiar enough
with the task such that the loss incurred when compared to
an optimal solution was bounded. This demonstrates that our
action prior approach works even when the training data is
suboptimal. We also note here that our method can be easily
applied to a case where a number of human demonstrators
supply trajectories. Any trajectories which are estimated to
be poorer in quality could be weighted by a smaller value of
w(π), in Equation (3). Practically, a weight could be computed
for each human which indicates the competence level of that
human at the task, and all trajectories supplied by that human

10

Fig. 9: Comparative performance in the modified factory
domain between Q-learning with uniform priors, with human
elicited observation based action priors, and with self trained
observation based action priors. These curves show the average
reward per episode averaged over 20 runs, where the task was
to assemble 4 random components. In each case the prior
was obtained from 40 training policies. The shaded region
represents one standard deviation.

would be weighted accordingly. This approach would be useful
for example in a crowdsourcing framework [22].

These results suggest that action priors can feasibly be
obtained by human demonstration, and used to model human
preferences in such a way as to guide the learning of an
autonomous agent on a similar task.

F. The Graph Domain

We now introduce the graph domain, to show comparative
performance on a domain with a very large action set. A
random graph with 1,000 nodes is constructed, with 10 clusters
of 100 nodes each. Intra-cluster connections are relatively
dense, with any edge between two nodes in the same cluster
existing with probability 0.1. On the other hand, inter-cluster
connections are sparse, with a probability of 0.005 of two
nodes being connected. A task is defined as the agent having to
reach a particular node. The actions available to the agent are
to attempt a move to any of the 1,000 nodes: this will succeed
only if an edge exists between those nodes (with a reward of
−1), and otherwise fail with a reward of −5. Reaching the
goal node terminates the episode with a reward of 10. This
domain is caricatured in Figure 2b.

In this large action set domain, as well as comparing
performance between learning with action priors and with
uniform priors, we compare to the use of probabilistic policy
reuse (PRQ) [23]. This represents a state-of-the-art example of
the family of methods which transfer knowledge by selecting
the best of a library of policies to seed learning in the new
task. PRQ couples Q-learning with a library of learnt policies
(we use the same 20 optimal policies used in constructing the
action priors) and uses these policies for exploration, keeping
probabilities over the policy library to indicate task similarity
and so potential for reuse. Because of the cluster structure of
the graph, we expect this method to perform well, as there
are representatives of each cluster in the library, which could

guide the new policy into the vicinity of its desired goal.
However, from the results presented in Figure 10, we see while
that PRQ benefits from greatly accelerated convergence over
vanilla Q-learning, the knowledge it reuses essentially points
the learning algorithm in the right direction. Even if a policy
from the library guides the agent to a node in the same cluster
as the true goal, this does not provide the agent with advice
for navigating around the cluster.

(a) (b)

Fig. 10: Comparative results on the graph domain between
Q-learning with uniform priors, Q-learning with state action
priors, and probabilistic policy reuse, showing (a) per episode
reward, and (b) cumulative reward. Results are averaged over
20 random tasks.

In contrast, the information encapsulated by the action priors
lacks the individual goal knowledge of a single policy in the
library, but instead represents the domain invariances, which in
this case are the graph edges. The lower performance observed
in the initial episodes of Figure 10a is then the result of
essentially navigating between different potential goal nodes,
rather than learning the inherent structure of the domain.

V. PRIORS IN HUMANS

As was shown in Section IV, action priors can provide
substantial benefits to learning and decision making, through
their ability to prune and prioritise action choices in a context
dependent manner. This guides the search process towards so-
lutions that are more likely to be useful, given past experience.

Making good decisions requires evaluating the effects of
decisions into the future, so as to estimate the value of each
choice. However, this is an expensive search process, as the
number of possible futures is exponential in the number of
choices to be made, with a branching factor given by the
number of actions which can be taken at each point in time.

This is a problem shared by humans. When a person is faced
with any planning problem, or any decision, this cannot be
solved by evaluating all possible sequences of actions, for the
aforementioned reason. It is thus assumed that some automatic
pruning of human decision trees occur, and negative rewards
(or punishments) seem to be particularly effective at inhibiting
behaviours [16]. There is evidence to suggest that this pruning
is Pavlovian in nature, particularly when exposed to a large
negative feedback, and that this pruning is task independent.
There is also much evidence to suggest that humans rely
heavily on prior knowledge for decision making, although that
process is not always conscious [17].

When making decisions which require a search through
large and rich problem spaces, humans thus seem to select

11

a subset of the valid choices for further consideration. This is
supported by long-standing results in psychology. For exam-
ple, the game of chess has been used as a vehicle for exploring
the theory of chunking [5]. A chunk refers to a recognisable
set of features, which in this context is a local pattern on the
chess board. Experiments were run on players of differing skill
levels, testing their ability to recall and reconstruct sequences
of briefly observed board positions, which were either drawn
from real games or random. The results indicated that the more
skilled a player, the larger the repertoire of such patterns they
have stored in memory (estimated to be over 50,000 for expert
players). Having additional information associated with these
chunks would account for the ability of an expert to notice
advantageous moves “at a glance” – essentially pruning away
poor action choices, similarly to action priors5 . This explicitly
suggests that the expert is not just remembering a compressed
version of all boards he has seen, but is pruning or selectively
compressing parts where the value function does not change.

In this way, perceptual cues are easily recognised, and
in turn they trigger actions, which could be thought of as
an intuition of the current situation [19]. Unconscious early
perceptual processes learn the relationships between the visual
elements of a scene under inspection. These are invoked fast
and in parallel, and act as a pre-processing step for later stages
of cognition [20]. Template theory [21] extends this idea, by
incorporating the idea of templates, which allow for open
parameters to be present in recognisable patterns. Templates
provide further semantic information which may be helpful in
making action selection, again pruning and biasing the search
process. It has been conjectured in multiple studies that “ex-
perts use the rapid recognition of complex patterns, mediated
by perceptual templates, in order to efficiently constrain and
guide their search for good moves” [20].

This interpretation corresponds to the semantics of action
priors, allowing a search process to prioritise exploration based
on recommended actions for a given context. Our approach
also hypothesises and demonstrates how these priors may be
gathered from experience. The overall effect is that if one does
not know what action to take, given uncertainty in the task, it
could be chosen according to the action prior, which represents
common sense and intuition in the domain6. This bias can be
used in instantaneous action selection to cause no immediate
harm in the absence of more task specific knowledge.

VI. RELATED WORK

The idea of learning priors over behaviours and using these
to bias search is an important theme in various contexts.
Notably, in problems where the policies are drawn from some
parametric policy space, policy priors can be learnt over the
space and used to generalise knowledge [24]. Importantly, in
our work we do not assume a known model over policy space.
In another thread, action pruning over the entire domain has
been studied [25], rather than the case we consider which
treats each state or observation individually. The effect is

5As a demonstration of this concept in practice, see for example [18].
6We do note that this notion of common sense is Markovian in nature, as

it does not consider temporally extended behaviours.

pruning away actions that are always harmful throughout the
domain, but the pruning is not context-specific. Other work
has explored incorporating a heuristic function into the action
selection process to accelerate reinforcement learning [26], but
this does not address the acquisition of these prior behaviours.
That approach is also sensitive to the choice of values in the
heuristic function, and requires setting additional parameters.

Our interpretation of action priors as distilling domain spe-
cific knowledge from a set of task instance specific behaviours
is similar to the idea of dividing a problem (or set thereof)
into an agent space and a problem space [27]. The agent
space refers to commonalities between the problems, whereas
the problem space is specific to each task. This formulation
involves learning a reward predictor which, in a sense, can be
used to guide action selection.

Where our approach reduces learning time by biasing and
restricting the search over action space, similar benefits have
been found by only searching over limited aspects of the state
space, particularly in relational planning problems. Examples
include reasoning only in terms of the subset of objects that are
relevant for current planning purposes (relevance grounding)
[12], or using variables to stand in for the objects relevant
to the current actions (deictic references) [28]. This is similar
to the way in which pruning is used in search, but we prune
based on the expected utility of the action, estimated from its
utility in the optimal policies for a set of previous tasks.

Options in hierarchical reinforcement learning are defined as
temporally extended actions with initiation sets where they can
be invoked, and termination conditions [29], [30]. Although
there are similarities between learning the initiation sets of
options and action priors, they are distinct in that an initiation
set defines where the option can physically be instantiated,
whereas an action prior describes regions where the option is
useful. For example, while pushing hard against a door may
always be possible, this level of force would be damaging
to a glass door, but that choice would not be ruled out by
options. Consequently, action priors not only augment options,
but are beneficial when using large sets of options to mitigate
the negative impact of exploration. Similarly, action priors
are related to the idea of learning affordances [31], being
action possibilities provided by some environment. These are
commonly modelled as properties of objects, and can be learnt
from experience (see e.g. [32]). Again, the ambitions of action
priors are subtly different to that of affordances, as affordances
model the notion of where an action can be applied, whereas
an action prior describes whether or not it should be applied.
Ideally, action priors should be applied over action sets which
arise as the result of affordance learning.

One may alternatively reuse experience by decomposing a
task into a set of subcomponents, learning optimal policies for
these elements, and then piecing them together [33], possibly
applying transforms to increase generality [34]. Action priors
differ by discovering a subset of reasonable behaviours in each
perceptual state, rather than one optimal policy, and thus can
be used for a variety of different tasks in the same domain,
although the policies must still be learned. As a result, action
priors are complementary to this decomposition approach.

12

Novel Contributions: The proposed action priors approach
thus builds on existing attempts to formalise the way in
which past experience can be generalised and applied to new
situations, where the tasks differ. To the best of our knowledge,
this is the first work to quantify the utility of each action in
every state across a repertoire of different tasks, and use this
to guide exploration and learning in new tasks.

VII. CONCLUSION

We introduce the concept of action priors, as distributions
over the action set of an agent, conditioned on either state or
observations received. This provides a mechanism whereby an
agent can, over the course of a lifetime, accumulate general
knowledge about a domain in the form of local behavioural
invariances. This is an important form of knowledge transfer,
as it allows for a decision making agent to bias its search
process towards previously useful choices.

As alluded to in Section V, pruning action possibilities is
useful in other decision making paradigms. The same principle
demonstrated here in the context of reinforcement learning
could thus be applied to planning, and the action priors could
be used to either prune certain actions or provide a preference
list for depth-first search. In either case, this should guide the
search toward solutions that have been previously encountered,
allowing for focused search biased by experience. Provided
there is structure to the behaviours in the domain, the result is
that paths to reach a goal (either in the case of motion planning
or classical planning) could be discovered faster through more
directed search. This additionally adds an element of safety
to the exploration process. As such, this principle has far-
reaching applications in real-world domains.

As shown, not only are action priors useful in practice, but
they draw parallels to the way humans prune action choices
automatically when making decisions. Hopefully further work
in this direction can strengthen this connection of accelerating
learning between human and artificial decision making.

ACKNOWLEDGEMENTS

Subramanian Ramamoorthy acknowledges the support of
the European Commission through SmartSociety Grant agree-
ment no. 600854, under the programme FOCAS ICT-
2011.9.10. The authors gratefully acknowledge the helpful and
insightful comments made by the four anonymous reviewers,
which greatly improved the quality of this paper.

REFERENCES

[1] S. Koos, A. Cully, and J.-B. Mouret, “High resilience in robotics with
a multi-objective evolutionary algorithm,” Genetic and evolutionary
computation conference companion, pp. 31–32, 2013.

[2] S. Thrun, “Is learning the n-th thing any easier than learning the first?,”
Advances in Neural Information Processing Systems, pp. 640–646, 1996.

[3] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning Domains: A Survey,” Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[4] I. Havoutis and S. Ramamoorthy, “Motion planning and reactive con-
trol on learnt skill manifolds,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1120–1150, 2013.

[5] H. A. Simon and W. G. Chase, “Skill in Chess: Experiments with chess-
playing tasks and computer simulation of skilled performance throw light
on some human perceptual and memory processes,” American Scientist,
vol. 61, pp. 394–403, July-August 1973.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[7] C. J. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8,
pp. 279–292, 1992.

[8] B. S. Rosman, “Learning Domain Abstractions for Long Lived Robots”,
Ph.D. Dissertation, The University of Edinburgh, 2014.

[9] B. S. Rosman and S. Ramamoorthy, “What good are actions? Acceler-
ating learning using learned action priors,” International Conference on
Development and Learning and Epigenetic Robotics, November 2012.

[10] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, pp. 99–134, May 1998.

[11] N. K. Jong and P. Stone, “State Abstraction Discovery from Irrelevant
State Variables,” International Joint Conference on Artificial Intelli-
gence, pp. 752–757, August 2005.

[12] T. Lang and M. Toussaint, “Relevance Grounding for Planning in
Relational Domains,” European Conference on Machine Learning, 2009.

[13] B. S. Rosman and S. Ramamoorthy, “A Multitask Representation using
Reusable Local Policy Templates,” AAAI Spring Symposium Series on
Designing Intelligent Robots: Reintegrating AI, 2012.

[14] B. R. Donald, “On information invariants in robotics,” Artificial Intelli-
gence, vol. 72, no. 1, pp. 217–304, 1995.

[15] B. Rosman, “Feature selection for domain knowledge representation
through multitask learning,” International Conference on Development
and Learning and Epigenetic Robotics (ICDL), 2014.

[16] Q. J. Huys, N. Eshel, E. O’Nions, L. Sheridan, P. Dayan, and J. P.
Roiser, “Bonsai trees in your head: how the Pavlovian system sculpts
goal-directed choices by pruning decision trees,” PLoS computational
biology, vol. 8, no. 3, p. e1002410, 2012.

[17] M. Strevens, Tychomancy. Harvard University Press, 2013.
[18] D. Simons, “Memory for chess positions (featuring grandmaster Patrick

Wolff),” https://www.youtube.com/watch?v=rWuJqCwfjjc, 2012.
[19] H. A. Simon, “What is an “explanation” of behavior?,” Psychological

Science, vol. 3, no. 3, pp. 150–161, 1992.
[20] M. Harre, T. Bossomaier, and A. Snyder, “The Perceptual Cues that

Reshape Expert Reasoning,” Scientific Reports, vol. 2, July 2012.
[21] F. Gobet and H. A. Simon, “Templates in chess memory: A mechanism

for recalling several boards,” Cognitive psychology, vol. 31, no. 1, pp. 1–
40, 1996.

[22] G. V. de la Cruz, B. Peng, W. S. Lasecki and M. E. Taylor, “Generating
Real-Time Crowd Advice to Improve Reinforcement Learning Agents,”
Proceedings of the AAAI Workshop on Learning for General Competency
in Video Games, 2015.

[23] F. Fernandez and M. Veloso, “Probabilistic policy reuse in a rein-
forcement learning agent,” Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, 2006.

[24] D. Wingate, N. D. Goodman, D. M. Roy, L. P. Kaelbling, and J. B.
Tenenbaum, “Bayesian Policy Search with Policy Priors,” International
Joint Conference on Artificial Intelligence, 2011.

[25] A. A. Sherstov and P. Stone, “Improving Action Selection in MDP’s via
Knowledge Transfer,” AAAI, pp. 1024–1029, 2005.

[26] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R. Costa, “Heuristic Se-
lection of Actions in Multiagent Reinforcement Learning,” International
Joint Conference on Artificial Intelligence, pp. 690–695, 2007.

[27] G. D. Konidaris and A. G. Barto, “Autonomous shaping: Knowledge
transfer in reinforcement learning,” Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pp. 489–496, 2006.

[28] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, pp. 309–352, May 2007.

[29] D. Precup, R. S. Sutton, and S. Singh, “Theoretical results on reinforce-
ment learning with temporally abstract options,” European Conference
on Machine Learning, 1998.

[30] M. Pickett and A. G. Barto, “PolicyBlocks: An Algorithm for Creating
Useful Macro-Actions in Reinforcement Learning,” International Con-
ference on Machine Learning, pp. 506–513, 2002.

[31] J. J. Gibson, The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, Inc., 2nd ed., 1986.

[32] J. Sun, J. L. Moore, A. Bobick, and J. M. Rehg, “Learning Visual Object
Categories for Robot Affordance Prediction,” The International Journal
of Robotics Research, vol. 29, pp. 174–197, February/March 2010.

[33] D. Foster and P. Dayan, “Structure in the Space of Value Functions,”
Machine Learning, vol. 49, pp. 325–346, 2002.

[34] B. Ravindran and A. G. Barto, “Relativized Options: Choosing the Right
Transformation,” Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

13

Benjamin Rosman received a Ph.D. degree in
Informatics from the University of Edinburgh, in
2014. Previously, he obtained an M.Sc. in Artificial
Intelligence from the University of Edinburgh, a
Bachelor of Science (Honours) in Computer Science
from the University of the Witwatersrand, and a
Bachelor of Science (Honours) in Computational
and Applied Mathematics also from the University
of the Witwatersrand.

He is a Senior Researcher in the Mobile Intel-
ligent Autonomous Systems group at the Council

for Scientific and Industrial Research (CSIR) in South Africa, as well as a
Visiting Lecturer in the School of Computer Science at the University of the
Witwatersrand. He is also the Chair of the IEEE South African joint chapter
of Control Systems, and Robotics and Automation.

Dr Rosman’s research focuses primarily on decision making and knowledge
transfer in general autonomous agents, as well as skill and behaviour learning
in robots.

Subramanian Ramamoorthy received the Ph.D.
degree in Electrical and Computer Engineering from
the University of Texas at Austin, in 2007. Previ-
ously, he received the Master of Engineering degree
in Mechanical and Aerospace Engineering from the
University of Virginia and the Bachelor of Engi-
neering degree in Instrumentation and Electronics
Engineering from Bangalore University, India.

He is a Reader (Associate Professor) in Robotics
at the School of Informatics, University of Edin-
burgh, Edinburgh, UK, where he has been on the

faculty since 2007. He is Coordinator of the EPSRC Robotarium Small
Research Facility and Member of the Executive Committee of the Centre
for Doctoral Training on Robotics and Autonomous Systems, both housed
within the School of Informatics. Prior to this, he was a Staff R&D Engineer
with National Instruments Corp., Austin, Texas, between 1999 - 2007, where
he worked on motion control, dynamic simulation and computer vision, where
his work contributed to five major products and resulted in seven US patents.

Dr Ramamoorthy’s research interests include autonomous robotics, human-
robot interaction, algorithms for learning and decision making with a focus
on interactively intelligent systems. This work is funded by grants from the
UK Engineering and Physical Sciences Research Council, Royal Academy of
Engineering and the European Commission.

