Feature Selection for Domain Knowledge
Representation through Multitask Learning

Benjamin Rosman

Mobile Intelligent Autonomous Systems
CSIR, South Africa
BRosman@csir.co.za

Abstract—Representation learning is a difficult and important
problem for autonomous agents. This paper presents an approach
to automatic feature selection for a long-lived learning agent,
which tackles the trade-off between a sparse feature set which
cannot represent stimuli of interest, and rich feature sets which
increase the dimensionality of the space and thus the difficulty
of the learning problem. We focus on a multitask reinforcement
learning setting, where the agent is learning domain knowledge in
the form of behavioural invariances as action distributions which
are independent of task specifications. Examining the change in
entropy that occurs in these distributions after marginalising
features provides an indicator of the importance of each feature.
Interleaving this with policy learning yields an algorithm for
automatically selecting features during online operation. We
present experimental results in a simulated mobile manipulation
environment which demonstrates the benefit of our approach.

I. INTRODUCTION

Autonomously learning concise and useful representations
of the world is one of the important open questions in
artificial intelligence. The representation scheme used by an
agent has major ramifications for not only its capabilities,
but also the computation time required for solving problems.
Despite this fact, most autonomous agents use hand-crafted
and carefully engineered feature sets. This approach presents
major drawbacks, in both being costly for a human to produce
and is thus not scalable, and also inherently biased towards the
sensing and experience of the human designer, which may be
suboptimal for the artificial agent.

In this paper we are interested in the problem of a learning
agent being able to select its own features for representing
domain knowledge. This does not solve the entire problem of
representation learning, but relieves a human designer from
the complete task of feature engineering. Instead, the human
need only specify a large set of features, and the agent can
then select the useful ones from this set.

It is beneficial to not use more features than necessary,
particularly if the agent is learning behaviours or dynamics
models. A larger feature set implies a higher dimensional rep-
resentation, inducing sparsity in the experiences of the agent,
and complicating learning through the curse of dimensionality.

Our goal is to have a concise representation of behavioural
domain knowledge which can be used to facilitate faster
completion and learning of future tasks. This can be used
to learn templates coupling observations to local behaviour

patterns [1], [2]. These local patterns could then be used as
the basis for stimulus based reactive control schemes [3].

The simplest way for an agent to learn an appropriate
representation of the domain is through its own experience.
However, learning from a single task is likely to overfit to
that task, and so instead we focus on a multitask setting.
Our approach is thus to present an agent with a collection of
different tasks, which it solves using a standard reinforcement
learning (RL) method. Each task then provides the agent with
an additional optimal policy which can be used to refine its
representation and model of the domain.

For this purpose we define a task as a Markov decision
process (MDP). We use a recent formalism, action priors [4],
to encode general domain knowledge. These are observation-
based distributions over the action set of the agent, learnt from
a collection of policies, which represent the task-independent
probability of an action being optimal in a particular context.
Through these local distributions, we analyse the impact of
each feature on the agent’s behaviour, and in doing so prune
away the least important features.

Our proposed approach seeks to reduce the total entropy
in the action prior distributions. The intuition is that the state
representation which provides the most informative (peaked)
distributions over the action set, given a set of previous optimal
policies, is the representation which provides the agent with
the most decisive model of behaviour in the domain.

Feature selection is an important and long-standing question
in the operation of autonomous and learning agents and
has been studied in many different contexts [5]. This issue
has commonly arisen in the construction of basis function
approximations, typically of continuous value functions in
RL [6]. Notable approaches for feature selection are through
regularisation [7] and incrementally building a basis to reduce
the Bellman error [8]. Furthermore, if states have factored rep-
resentations then conditional independencies between features
can be extracted from a dynamic Bayesian network [9].

In relational contexts, the relevance of an object can be
decided based on whether that object affects the outcomes or
rewards of actions [10], or deictic references can be used to
only refer to objects needed in the pre- or post-conditions of
actions [11]. This has a similar effect to feature selection.

More generally, the importance of features can be deter-
mined by studying properties of solution trajectories. For

example, a feature may be considered irrelevant if it does not
affect the policy passing through any state [12], or if there is
little conditional mutual information between the return and
that feature [13]. Alternatively, the importance of a feature
set can also be ascertained by evaluating the performance of
classifiers trained on different feature sets [14].

We instead leverage the fact that we are operating in
a multitask setting, where feature selection is required for
minimising the dimensionality of a domain model. In this way,
our novel contribution is to perform feature selection based on
commonalities between multiple policies for different tasks in
the same domain.

This paper is structured as follows. We first present some
reinforcement learning preliminaries in Section II. The learn-
ing and using of action priors is then described in Section III.
Our approaches to offline and online feature selection using
action priors appear in Section IV. Finally, we demonstrate
our methods empirically in Section V.

II. PRELIMINARIES

In keeping with the standard formalism of reinforcement
learning (RL), an environment is specified by a Markov
Decision Process (MDP): (S, A, T, R,~), for S a finite set
of states, A a finite set of actions which can be taken by the
agent, T : S x A x S — [0,1] the state transition function
where T'(s,a,s’) gives the probability of transitioning from
state s to state s’ after taking action a, R : S x A — R the
reward function, where R(s,a) is the reward received when
taking action « in state s, and v € [0, 1] a discount factor.

Now define a domain D = (S, A,T,~), and a task as the
MDP 7 = (D, R). This factorises the environment such that
the state set, action set and transition functions are fixed for
the domain, and each task varies only in the reward function.

A policy 7 : S x A — [0,1] for an MDP is a probability
distribution over state-action space. The return, generated
from an episode of running the policy , is the accumulated
discounted reward R™ = Y, 7*ry, for ry, being the reward at
step k. The goal of an RL agent is to learn an optimal policy
7% = arg max, R™ which maximises the total expected return
of an MDP, where typically 7" and R are unknown.

Many approaches to learning an optimal policy involve
learning the value function Q7 (s, a), giving the expected re-
turn from selecting action a in state s and thereafter following
the policy m [15]. @ is typically learnt by iteratively updating
values using the rewards obtained by simulating trajectories
through state space, e.g. Q-learning [16]. A greedy policy can
be obtained from a value function defined over S x A, by
selecting the action with the highest value for the given state.

Let a feature f; be a mapping from the current state of the
agent to a set of values {f}--- fXi}. Let ¢ be a set of these
features. We now abuse notation slightly and for a particular
feature set ¢; we enumerate the possible settings of all its
constituent features, such that ¢; = ¢} means that the features
in ¢; are set to configuration j, where these configurations are
uniquely ordered such that j € [1, Ky,], where Ky, =[], K,
g runs over the features of ¢;, and K, is the number of settings

for feature g. Observations at a state s are then a vector given
by ¢(s). Except where ambiguous, we use ¢ to refer to ¢(s).

III. PRIORS OVER ACTION SELECTION

A set of tasks, defined as MDPs, are assumed to exist in
a single domain D, which provides common infrastructure,
relating the tasks. We now seek to learn a model of domain
knowledge, and in particular a model of “normal” behaviour
in the domain. This is learnt from multiple tasks, giving the
domain’s action priors [4]. It is the representation of this
model for which we select features.

For an unknown but arbitrary set of tasks 7 = {7}, with
different reward functions and corresponding optimal policies
ITI = {n,}, we learn for each observation ¢ a distribution
84(A) over the action set A. This distribution is the action
prior, and represents the probability of each action in A being
used by a solution policy traversing through a state s with
observations ¢(s), aggregated over all states giving the same
observations, and tasks 7. These action priors model the local
invariant effects of the transition functions drawn from D.

From a set of policies, each selecting actions in the same
state s according to different distributions, a state-based model
is learnt of typical behaviour marginalised over all known
tasks in the domain. Thus, given a state s, if one action
is favoured by all trajectories through s, then that action
should be preferred by any new trajectory exploring through s.
Conversely, any action which is not selected by any trajectory
passing through s is likely to have negative consequences,
and should be avoided. By studying the policies from multiple
tasks, a model of the structure of the underlying domain can
be learnt, in terms of identifying the set of local behaviours
which are invariant across all tasks in the domain.

A. Learning Action Priors

Consider a setting in which multiple tasks have been solved
in D, each providing an optimal solution policy. For each
observation ¢ € ®, we model the action priors 6,(a), Va € A
using a Dirichlet distribution, by maintaining a count cg(a)
for each action a € A. The initial values of ay(a) = ag(a)
are the hyperprior, initialised to any value (zero in this case).

The as are learnt by the agent from previous behaviours
[4], and updated for each (¢(s), a) for a new policy 7 as

(67

() {afb(s)(a) +1 if 7(s,a) = max, m(s,a’) W

() gy (@) otherwise.

as(a) reflects the number of times a was considered an
optimal choice of action in state s by any policy, added to
the hyperprior priors a(a).
The closed form of Equation (1) given policy set II is

Do D Usla) +agi(@), @)
s€[s]y TEN

where Ug(s)(a) = d[m(p(s),a), maxg eca m(P(s),a’)] for
d[-, -] the Kronecker delta function, and [s], = {s’ € S|¢(s) =

@(s')} is the equivalence class of all states with the same
observation features as state s. This additional summation

ags(a) =

occurs because in the general case, the priors from multiple
states will map to the same observation based action priors.

To obtain the action priors 64(A), sample from the Dirichlet
distribution: 64(A) ~ Dir(ag). An action a is selected by
sampling from the action prior: a ~ 64(A).

B. Using the Action Priors

Action priors provide knowledge about which actions are
sensible in situations in which there are several choices, and so
are useful for seeding search in a policy learning process. We
demonstrate this as an exploration process with an adaptation
of traditional Q-learning [15], called e-greedy Q-learning with
Perception-based Action Priors (e-QPAP) [4], which is shown
in Algorithm 1. Note, in this algorithm, a? € [0, 1] denotes the
learning rate, and should not be confused with the Dirichlet
distribution counts «(a). The parameter € € [0,1] controls
the trade-off between exploration and exploitation. Both o
and € are typically annealed after each episode.

Algorithm 1 e-greedy Q-learning with Perception-based Ac-
tion Priors (e-QPAP)
Require: action prior 045 (A)
1: Initialise Q(s,a) arbitrarily
2: for every episode k =1...K do
3: Choose initial state s
4: repeat
5: ¢(s) +— observations(s)

. 4 Jargmax, Q(s,a), wp.1l—ce¢
a€ A, w.p. elg(s)(a)
: Take action a, observe r, s’
8: Q(s,a) +— Q(s,a) + a®[r + ymax, Q(s',a’) —
Q(s,a)]
9: s+— s
10: until s is terminal
11: end for

12: return Q(s,a)

The difference between this and standard e-greedy Q-
learning can be seen in the action selection step (line 6),
consisting of two cases. The first deals with exploiting the
current policy stored in (s, a) with probability 1 — ¢, and the
second with exploring other actions a € A with probability
€. The exploration case is typically handled by choosing
the action uniformly from A, but instead we choose with
probability based on the prior 6,(a) to shape the action
selection based on what were sensible choices in the past.

The effect is that the agent exploits the current estimate of
the optimal policy with high probability, but also explores, and
does so with each action proportional to the number of times
that action was favoured in previous tasks. This highlights the
assumption that there is inherent structure in the domain which
can be identified across multiple tasks.

IV. FEATURE SELECTION
A. Offline Feature Selection

The choice of observational features f is an open question,
depending on the capabilities of the agent. Possible features
include the state label (complete state description), or any sen-
sory information the agent may receive from the environment.
Furthermore, these features can include aspects of the task
description, or recent rewards received from the environment.

As a result, in many domains, there could be a large set of
observational features. The size of ®, the space of possible
mappings, is exponential in the number of features. We are
interested in identifying the optimal feature set ¢* € &,
which provides abstraction and dimensionality reduction, with
a minimal loss of information in the action prior. Finding such
a ¢* allows for the decomposition of the domain into a set of
capabilities [2], being recognisable and repeated observational
contexts, with minimal uncertainty in the optimal behavioural
responses, over the full set of tasks.

We wish to find a feature set which can prescribe actions
with the most certainty. To this end, we define the average
entropy of an action a for a particular feature set ¢ as

Ko
Hy(a) = _ZP(W’)H [P(a]¢")], 3)

where P(a|¢’) = 64i(a) is the action prior for a particular set
of feature values, P(¢") is the prior probability of those feature

values, estimated empirically from the data as %,
i a Pt

and H[p] = —plogyp is the standard entropy. The prior
P(¢") serves to weight each component distribution by the
probability of that feature combination arising in the data.

By summing the average entropy for each action, we define
the entropy of the action set A for a feature set ¢ as

Hy = > Hyla))

acA

Ly KZ Swrea o (@)
Kg

O4i(a)logy O4i(a). (5)
a€A i=1 2uj=1 Za/eA agi(a’)

The optimal feature set is the feature set which minimises
the action set entropy. In this way, what we seek is analogous
to the information invariance which is present in the observa-
tions of the agent [17]. The problem with this minimisation is
that the number of possible feature sets is exponential in the
number of features. We therefore present a method, shown in
Algorithm 2, which returns an approximate minimal feature
mapping gzNS* The key assumption of this approximation is that
each feature f affects the entropy of 4(a) independently, and
so we need only select the set of features that each individually
decreases the total entropy by more than some amount.

For each feature f from the full feature set ¢y, we
marginalise over that feature and compute the entropy of the
remaining feature set. Each of these ||¢ ¢,,;|| individual entropy
values is compared to the entropy of the full set Hy,,,,. The

greater the increase in entropy resulting from the removal of
feature f, the more important f is as a distinguishing feature
in the action prior, as that feature reduces the overall entropy
of the action prior distribution. The feature set chosen is thus
the set of all features which, when removed, would result in
an entropy increase greater than a threshold w.

Algorithm 2 Independent Feature Selection

Require: feature set ¢, entropy increase threshold w
1: Compute Hy, ,, by Equation (5)

2: for every feature f in ¢,y do

3 ¢ dpu \ f

4 Compute Hy_, by Equation (5)

5: Af %H(z)if 7H¢fu”

6

7

8

: end for

A {f € drauldy > w}
. return ¢

If there is a high entropy in which actions should be
taken in the context of a particular observation, then there
are two possible reasons for this: 1) it may be the case that
different tasks use this context differently, and so without
conditioning action selection on the current task, there is no
clear bias on which action to select, or 2) it may be that this
observation is not informative enough to make the decision,
providing scope for feature learning. This distinction can only
be made in comparison to using the maximal feature set, as the
most informative set of observation features. Without ground
truth state information, this can only be ascertained through
learning. If the observations are not informative enough, then
this suggests that additional features would be useful. This
provides the agent with the opportunity for trying to acquire
new features.

B. Online Feature Selection

Algorithm 3 describes a complete process for performing
feature selection on an online agent. The agent is repeatedly
presented with a new task, solves that task, and uses the new
policy to refine its feature set.

Algorithm 3 Online Feature Selection
1: Let ¢ be the full feature set
Initialise full action prior 69,
00— 0%
for every new task t = 1,2,... do
Learn policy 7 using prior #’~1 and Algorithm 1
Update 0%, using 6%, and ' with Eq. (1)
Select features ¢* from 6%, using Algorithm 2
Extract §° from 6%, marginalising over f € ¢y \ ¢*
end for

R A A o

Given a new task, the algorithm executes four steps. First,
a policy is learnt using the current action prior and Algorithm
1. This new policy is then used to update the full prior.
From the full prior, select features using Algorithm 2. Finally,

extract the action prior using the selected features by means
of marginalising over the excluded features.

As the feature selection is done using Algorithm 2, this
requires a choice of w. This parameter is domain specific, but
in our experiments we automate its selection as the mean of
the set of Ay values, as computed in Algorithm 2.

V. EXPERIMENTS
A. The Factory Domain

The factory domain is an extended navigation domain that
involves a mobile manipulator robot placed on a factory floor.
The layout of the factory consists of an arrangement of walls
through which the robot cannot move, with some procurement
and assembly points placed around the factory. The factory
layout changes between tasks (corresponding to different tran-
sition functions 7'), to simulate the effect of equipment being
moved, or the robot working in several different buildings.
Examples of the domain are shown in Figure 1.

Fig. 1. Examples of the factory domain. Grey cells are obstacles, white cells
are free space, green cells are procurement points, and red cells are assembly
points.

The robot’s action set consists of four movement actions
(North, South, East and West), each of which will move
it in the desired direction provided there is no wall in the
destination position, a Procure action, and an Assemble action.
Procure, when used at procurement point %, provides the robot
with the materials required to build component i. Assemble
used at assembly point ¢ constructs component %, provided the
robot possesses the materials required for component 7. A task
is defined as a list of components which must be assembled
by the robot. The state describes the position of the robot and
the state of assembly of each required component.

The rewards are defined as follows. All movement actions
give a reward of —1. Collisions are damaging and so have a
reward of —100. Procure at a procurement point corresponding
to an item in the task definition which has not yet been
procured gives a reward of 10. Procure executed anywhere
else in the domain yields —10. Assemble at an assembly point
for an item in the list which has already been procured but not
assembled gives 10, and any other use of the Assemble action
gives —10. Successful completion of the task gives 100 and
the episode is terminated. The learning algorithm parameters
were initialised as v = 0.99, e = 0.9 and a® = 0.5.

B. Effect of Different Feature Sets

Figure 2 demonstrates the performance of agents learning
using action priors with different feature sets. Note that

uniform priors equate to not using action priors (standard Q-
learning). Figure 2 shows the effect of four feature sets:
o ¢1: Two features: the terrain type occupied by the agent
(in { free, wall, procure-point, assembly-point}), and
a ternary flag indicating whether any items need to be
procured or assembled.
o ¢o: Four features: the types of terrain of the cells adjacent
to the cell occupied by the agent.
o ¢3: Six features: the types of terrain of the cell occupied
by the agent as well as the cells adjacent to that, and
a ternary flag indicating whether any items need to be
procured or assembled. Note that ¢35 = ¢1 U ¢o.
o ¢4: Ten features: the types of terrain of the 3 x 3 grid
of cells around the agent’s current position, and a ternary
flag indicating whether any items need to be procured or

assembled.
4
w10
0
02 [t
04
06
-0.8
e
s I Uniform Pricrs
% Cheervation Aciion Priors ¢,

B Ctzervation Action Priom ¢,
I Choorvation Action Priowm ¢,
B Cboervation Action Priors ¢,

100 200 300 400 A0 B0 70D 8O0 900 1000
x100 episodes

Fig. 2. Comparative performance of Q-learning with uniform priors and
four different observation based action priors: ¢1, ¢2, ¢3 and ¢4. The curves
show average reward per episode averaged over 10 runs, where the task was
to assemble 4 random components. In each case the prior was obtained from
80 training policies. The shaded region represents one standard deviation.

As can be seen, these four observation priors all contain
information relevant to the domain, as they all provide an
improvement over the baseline. There is however a significant
performance difference between the four feature sets.

Surprisingly, Figure 2 shows the most beneficial feature sets
are ¢o and ¢3. The fact that the richest feature set, ¢4, did not
outperform the others seems counterintuitive. The reason for
this is that using these ten features results in a space of 4° x 3
observations, rather than the 4° x 3 of ¢3. This factor of 256
increase in the observation space means that for the amount of
data provided, there were too few samples to provide accurate
distributions over the actions in many of the observational
settings. This illustrates the trade-off between a sparse feature
set which cannot capture the required information, and a rich
feature set which requires more time for learning.

We identify the set of the most useful features using
Algorithm 2. These results, given in Figure 3, show that
the relative importance for the ten features (all of which are

present in ¢4) are consistent across the four feature sets. As
may be expected, the ¢4 results indicate that the values of the
cells diagonally adjacent to the current cell occupied by the
agent are relatively unimportant, as they are at best two steps
away from the agent.

Feature et ¢,

Feature Set. ¢

entropy increase

PosUM PoshlL PoshM PoshR PosOM o OPos UL Pos UM Pos UR Pos ML Pos MM Pos MR Pos DL Pos D Pos DR fems
feature feature

Fig. 3. Feature importance of each feature in the four different ob-
servation based action priors: ¢1, ¢2, ¢3 and ¢4. The spatial features
are labeled PosY X, with Y € {(U)p, (M)iddle,(D)own} and X €
{(L)eft, (M)iddle, (R)ight}. The feature Items is a ternary flag, indi-
cating if the agent still needs to assemble or procure any items.

What is surprising at first glance is that neither the value
of the cell occupied by the agent, nor the current state of
the assembly carried by the agent are considered relevant.
Consider the current state of assembly: the feature items is
actually already a very coarse variable, which only tells the
agent that either a procurement or an assembly is required next.
This is very local information, and directly affects only a small
handful of the actions taken by the agent. Now consider the
cell currently occupied by the agent. This indicates whether
the agent is situated above an assembly or procurement point.
Again, this is only useful in a small number of scenarios. Note
that these features are still useful, as shown by the performance
of ¢, relative to uniform priors.

What turns out to be the most useful information is the
contents of the cells to the North, South, East and West of
the current location of the agent. These provide two critical
pieces of information to the agent. Firstly, they mitigate
the negative effects that would be incurred by moving into
a location occupied by a wall. Secondly, they encourage
movement towards procurement and assembly points. These
then constitute the most valuable features considered in our
feature sets. This observation is confirmed by the fact that ¢-
and ¢3 are near identical in performance.

C. Online Feature Selection

We now demonstrate the performance of the adaptive priors
generated through the use of online feature selection in Algo-
rithm 3. This is shown in Figure 4. Note that in the first episode
of learning, the performance of the agent with feature selection
is actually slightly better than that of the agent with the full
prior, again showing the cost incurred through the use of an
overly rich feature set. However, this (minor) improvement
comes with a considerable decrease in the number of possible

observational templates (discussed below). The performance of
both is considerably better than not using a prior. However, at
convergence, all three methods achieve the same performance
(shown by the three lines at the top of the figure).

- — .
. ———

— uniform prior (start)
uniform prior (end)

— full prior (start)

—— full prior (end)

—adaptive prior (start)

adaptive prior (end)

return

tasks

Fig. 4. Performance of learning agent during first (start) and 30" (end)
episodes, over thirty tasks. Results compare uniform priors, the full set of
10 features, and the adaptive prior of online feature selection. Results are
averaged over 10 runs. The shaded region represents one standard deviation.

Figure 5 shows the features selected by the algorithm as
a function of the number of tasks experienced. The result is
also a considerable reduction in feature space descriptions. The
algorithm is seen to converge to the four features used in ¢o.

Pas DM |

Pos DR

tems -

0 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 22 23 24 25 26 27 28 29 20

Fig. 5. Features selected during online feature selection over 30 tasks,
averaged over 10 runs. The brightness of each square indicates the per-
centage of runs for which that feature was selected. The spatial features
are labeled PosY X, with Y € {(U)p, (M)iddle, (D)own} and X €
{(L)eft,(M)iddle, (R)ight}. The feature Items is a flag, indicating if
the agent still needs to assemble or procure any items.

The effect is that a reduced set of four features is shown
to be preferable to the initial full set of ten which were
proposed for this domain in ¢4. The benefit is that the number
of possible feature configurations has been reduced from
4% x 3 down to 256: requiring about 0.033% of the storage
space (observational templates). Learning behaviours for these
configurations is far simpler, and provides the agent with a
conveniently small repertoire of useful local behaviours.

VI. CONCLUSION

In this paper, we presented a novel approach for using ex-
perience from multiple tasks to select observation features for
a concise representation of domain knowledge. This algorithm
frees a system designer from providing an agent with the best
representation scheme for the domain and tasks with which
it will operate, and instead allows the agent to select these
features itself over the course of its operational lifetime.

This automatic selection mechanism negotiates the problems
of having a feature set which is either too sparse (meaning
the agent cannot adequately describe the tasks at hand) or too
rich (which, thanks to the curse of dimensionality, requires
considerable time to learn and encounter each possible setting).

By reducing the dimensionality of the feature space, the
agent reduces the number of configurations which need to be
learnt in a domain. This provides the agent with a concise set
of scenarios which describe local behaviour, and thus domain
knowledge. The result is that this approach can be used for
reactive control, where selecting the feature sets corresponds
to learning a set of stimuli, and the action priors provide
appropriate local controllers.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the anonymous review-
ers for their helpful and insightful suggestions.

REFERENCES

[1] M. Stolle and C. G. Atkeson, “Knowledge transfer using local features,”
IEEE International Symposium on Approximate Dynamic Programming
and Reinforcement Learning, pp. 26-31, 2007.

[2] B. S. Rosman and S. Ramamoorthy, “A Multitask Representation using
Reusable Local Policy Templates,” AAAI Spring Symposium Series on
Designing Intelligent Robots: Reintegrating Al, 2012.

[3] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14-23,
1986.

[4] B. S. Rosman and S. Ramamoorthy, “What good are actions? Acceler-
ating learning using learned action priors,” International Conference on
Development and Learning and Epigenetic Robotics, November 2012.

[5] . Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” The Journal of Machine Learning Research, vol. 3, pp. 1157—
1182, 2003.

[6] G. Konidaris, S. Osentoski, and P. S. Thomas, “Value function approxi-
mation in reinforcement learning using the fourier basis.” in AAAZ, 2011.

[7] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-
squares temporal difference learning,” pp. 521-528, 2009.

[8] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman,
“An analysis of linear models, linear value-function approximation, and
feature selection for reinforcement learning,” pp. 752-759, 2008.

[9] M. Kroon and S. Whiteson, “Automatic feature selection for model-

based reinforcement learning in factored mdps,” in Machine Learning

and Applications, 2009. ICMLA’09. International Conference on. 1EEE,

2009, pp. 324-330.

T. Lang and M. Toussaint, “Relevance Grounding for Planning in

Relational Domains,” European Conference on Machine Learning, 2009.

H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-

bolic models of stochastic domains,” Journal of Artificial Intelligence

Research, vol. 29, no. 1, pp. 309-352, May 2007.

N. K. Jong and P. Stone, “State Abstraction Discovery from Irrelevant

State Variables,” International Joint Conference on Artificial Intelli-

gence, pp. 752-757, August 2005.

H. Hachiya and M. Sugiyama, “Feature selection for reinforcement

learning: Evaluating implicit state-reward dependency via conditional

mutual information,” in Machine Learning and Knowledge Discovery in

Databases. Springer, 2010, pp. 474-489.

C. Diuk, L. Li, and B. R. Leffler, “The adaptive k-meteorologists

problem and its application to structure learning and feature selection in

reinforcement learning,” in Proceedings of the 26th Annual International

Conference on Machine Learning. ACM, 2009, pp. 249-256.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

The MIT Press, 1998.

C. J. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8,

pp. 279-292, 1992.

B. R. Donald, “On information invariants in robotics,” Artificial Intelli-

gence, vol. 72, no. 1, pp. 217-304, 1995.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

