
Context-based Online Policy Instantiation for
Multiple Tasks and Changing Environments

Benjamin Rosman
Mobile Intelligent Autonomous Systems

Modelling and Digital Science
Council for Scientific and Industrial Research

South Africa

Abstract—This paper addresses the problem of online decision
making in continually changing and complex environments, with
inherent incompleteness in models of change. A fully general
version of this problem is intractable but many interesting
domains are rendered manageable by the fact that all instances
of a task can be generated from a finite set of qualitatively
meaningful contexts. We present an approach to online decision
making that exploits this decomposability in a two part procedure.
In a task independent exploratory process, our algorithm running
on an autonomous agent learns the set of structural landmark
contexts which compose its domain, and reduces this set through
the use of the symmetry structure of permutation groups. To
each reduced landmark we then associate a set of policies
independent of global context. This enables an efficient online
policy instantiation process that composes from already learnt
policy templates. This is illustrated on a spatial navigation domain
where the learning agent is shown to be able to play a pursuit-
evasion game in random environments with unknown dynamic
obstacles.

I. INTRODUCTION

This paper is motivated by the problem faced by a long-
lived agent that finds itself in a continuously changing envi-
ronment within which there is the need to make a sequence of
non-trivial decisions. These decisions must be made despite in-
completeness in available information and limitations on com-
putational resources. This general problem pervades a variety
of different domains including robotics and autonomous agents
in electronic markets. In this paper, we focus attention on one
specific domain – spatial navigation in random environments.

Decision making in rich, dynamic environments is difficult
to address using traditional methods such as those based
on optimisation of expected reward in a Markov Decision
Process (MDP) which operate on one particular environment
(at one time), specified explicitly or implicitly by a particular
combination of transition dynamics, state-action representation
and reward process. The primary difficulty lies in the fact that
the decision maker has both local and global constraints which
must be satisfied.

This is compounded by non-stationarity outside of the
control of the decision maker. Some interesting approaches
to this problem include robust dynamic programming with
respect to a bounded family of MDPs [1], viewing the non-
stationarity as arising from mode switches within a set of
MDPs [2] and modifying the value iteration process to ac-
commodate online estimates of transition/reward statistics [3],
[4]. The more practicable of these results view the problem

as one of repairing a base policy with respect to changes,
which may be quite inadequate in the sort of domains we
are interested in studying. This notion of adaptation is also
related to transfer learning [5]. In this setting, there have been
successful instances of reusing learnt strategies for tasks in
closely related environments, but the larger issue of adapting
and constructively developing representations is largely open.

People and animals, when faced with these kinds of de-
cision problems in changing environments, seem to conquer
this complexity in a way that suggests that the answer may
lie not so much in faster and better algorithms but in a clever
encoding of the problem. Indeed, it has long been argued that
the representation of problems of reasoning about actions has
a dramatic effect on problem solving efficiency [6], [7]. More
recently, it has also been shown that when faced with the
problem of acting optimally in environments with significant
structural uncertainty, the mathematically optimal solution may
be to adopt coarse strategies that are better adapted to a family
of tasks [8]. An example within the robotics literature of a
multi-task encoding that addresses some of these issues is
seen in the work of Burridge, et al. [9], based on the notion
of sequential composition by separating local policies from a
global strategy. Note however that this was a carefully hand-
crafted engineering design.

In this paper, we discuss achieving a similar result by a
method based on learning from direct experience. Our premise
is that although global aspects of the decision problem are
subject to continual change, most interesting instances of
complex environments are generated from a small number
of qualitatively meaningful local contexts. Task-independently,
each context may be associated with a set of local policy tem-
plates. The problem of dealing with the changing environment
can then be posed in terms of a combination of offline policy
learning, online decomposition and instantiation. The problem
of instantiation is posed in a factored manner, separating a
global task specification in the form of a game against an
abstract adversary from more local aspects of non-stationarity.

We expand on ideas introduced in our earlier work [10] and
present an algorithm that consists of two parts. In an offline
and task-independent setting, the agent is able to explore the
environment for a period of time, summarising the results in
a manifold representation of possible contexts. These contexts
are further reduced by eliminating symmetries through the use
of group operators. With the resulting abstract contexts, one
may associate a set of task-independent policy templates, to
form capabilities. In the online phase, the agent is able to

utilise these capabilities to quickly and efficiently compose
a best response to the current context. This response has a
local component, akin to a greedy best reaction, and a global
component, corresponding to a higher level game against an
abstract adversary. We demonstrate this in a spatial navigation
domain, involving random environments and agents whose
dynamics are a priori unknown to the learning agent, and show
that these results extend to adversarial settings.

II. CAPABILITY LEARNING

Assume a long-lived agent in some domain D is repeatedly
required to perform tasks Ti in some environments, being
instantiations of the domain Di ∈ D, i = 1, 2, The
agent assumes no prior knowledge of the structure of D.
Note that Di represents the environment dynamics, and Ti the
objectives of the agent. Both Di and Ti may be drawn from
non-stationary distributions, and in general are independent.
Under this setting, in the naı̈ve case, an agent is required to
learn a completely new solution πi for each environment-task
pair (Di, Ti).

Most interesting domains are not completely arbitrary, and
instead admit latent structure, in that every instantiation of
the domain is constructed from a finite set of generators, or
prototypical contexts XD = {χ}D encountered in that domain.
This property is evident in the structure of rooms in buildings,
and common patterns observed in games such as Go [11],
[12] and chess [13]. These local contexts are composed by
stitching them together sequentially in small neighbourhoods,
having transformed them using a finite set of operators {◦}D
which describe symmetries, e.g. in spatial problems; rotation,
mirroring and permutations. The goal of the learning agent is
then to discover these elements which allow for a decompo-
sition of any environment in the domain. The representation
({χ}D, {◦}D) provides the agent with an alphabet from which
environments can be constructed. Furthermore, if for each
context χ, the agent can associate a set of control policies
{π}χ which enable it to perform any number of subtasks
in that context (e.g. through local value functions), then the
agent could be said to have an understanding of that context,
through a set of capabilities which are applicable in χ. If these
capabilities are learnt in a task-independent manner, then the
agent is equipped with a behavioural structure, which can be
transferred between tasks and environments in the domain D.

Our model thus equips the agent with a notion of context-
specific capabilities in a domain, as a representation of a
family of tasks and environments. These capabilities provide a
description language for the domain which can be considered
as decision making affordances [14], owing to the fact that
they are learnt in an unsupervised, task-independent manner.
Reformulating a domain in this way allows for fast and
efficient behaviour in the domain, on which a whole suite
of decision-making algorithms can be built. The complete
algorithm for extracting this structure from the environment
is outlined in Figure 1, and described in the remainder of this
section.

A. Context Manifold Learning

The first phase of building capabilities is learning percep-
tual contexts. At time t, an agent receives observations as a

Fig. 1. The representation building process. (a) A snippet from the
environment containing the agent, where two different instances of North-
South corridors have been identified (b) The state vector (sensor readings)
acquired by the agent by random exploratory moves through the environment
(c) The growing neural gas representation of the contexts encountered by the
agent (Section II-A) (d) The landmark contexts extracted from the network
(Section II-B) (e) Symmetry reduced landmark set, with annotated operators
(Section II-C) (f) Policies learnt offline which are applicable in that context
(Section II-D). Note that the landmarks (e) and policies (f) define capabilities
of the agent.

state vector st from a state space S. Any inherent exploitable
structure in the domain must be observable by the agent
through st. Learning contexts requires that the agent learn the
decomposition of environments generated under the domain.
To do so, the agent builds a cognitive map of its experiences
as it explores randomly generated instances of the domain.

The experiences are gathered into a growing neural gas
(GNG) network [15] – a form of self-organising map that
has been shown to be effective for representation learning
[16]. This is represented as a graph G = (X , E), X ⊂ S,
E ⊂ X × X embedded in the state space S, that grows to
model the topology and distribution of sample points in S .
The network reflects the types of perceptions the agent may
encounter in other instances of the domain. While alternate
manifold representations may instead be used, the GNG mod-
els the topological structure of the observation manifold, as
well as any dimensionality changes in different regions of
the manifold. It is also a discrete model, which is useful for
efficient skeletonisation (see Section II-B), and the distances
between nodes can be described in terms of path lengths as a
convenient metric. Furthermore, epochs of learning and acting
using the network may be alternated, and so the network could
grow continually throughout the lifetime of the agent.

It is important to note that the GNG network does not
model temporal evolution of state, but instead models types
of local scenarios which may be encountered. Generated
environments in the domain could consist of any finite subset
of these contexts, arranged in many ways. One would thus
require a separate map of a particular instance of the domain
to encode causality in that environment.

B. Cognitive Map Skeletonisation

The GNG network is a discrete manifold in the observation
space S of the agent. The contexts represented by the nodes
of the network can be composed to describe a large family
of possible environments, on which many different objectives
could be defined. We use properties of this manifold to select
representative landmarks and simplify the structure of the
graph, such that each node of the original graph is represented
by a nearest landmark.

Given a graph G = (V,E), compute a refined graph G′ =
(V ′, E′) as follows. Let e = (u, v) ∈ E ⊂ V ×V be the edge
in E of minimum Euclidean length in S. Define a new node
w = (u+v)/2. Then V ′ = (V ∪{w})\{u∪v}. Let σa(E, b) be
a relabelling of all nodes a to b in E, then E′ = σu,v(E\e, w).

Iteratively refine the constructed GNG network G = G0,
giving a sequence of graph refinements G0, G1, G2, For
each refinement Gk, compute the Hausdorff distance

dH(G,Gk) = max{sup
χ

inf
χk
d(χ, χk), sup

χk

inf
χ
d(χ, χk)} (1)

for χ ∈ X , χk ∈ X k, and d(·, ·) the Euclidean distance
metric considered between nodes of the two graphs. Now
define HG(G

k) = dH(G,Gk). We choose the skeletonised
GNG network GK = Gk, where Gk is the refined network
maximising the curvature of HG(G

k).

Denote the landmark set corresponding to the nodes in
this refined graph GK by X̂ . These context landmarks X̂ are
points-of-interest on the context manifold, to which the agent
can associate behavioural knowledge to be generalised to the
rest of the manifold.

C. Symmetry Reduction

The GNG network with identified landmarks provide some
notion of invariance to noise and some metrical variations
to the contexts. However, there are additional topological
invariances which may be preserved in the domain, but not
reflected in the landmark network.

Symmetries in the observation space of an agent indicate
equivalent states, for which completely new observation and
behavioural models need not be learnt if the transformations
are known. An effective way of modelling these is with groups.
For the spatial navigation domain, we focus on permutation
groups. This is more general than rotations, in that we allow
mirroring, partial rotation, etc.

For an N -element state vector s, denote a permutation
as an index-reordering bijective mapping ◦ : {1, . . . , N} →
{1, . . . , N}, which imposes a finite group structure on the
elements of s [17]. The group of permutations generated by
repeated application of this operator must contain the identity
permutation. This structure has two particularly advantageous
properties: closure, meaning the transformations are finite and
computable, and invertibility, meaning a policy associated with
a landmark can be mapped back to the original space.

Note that the question of operator identification is outside
the scope of this paper. The operators are however a property
of the domain, and as a result, could be given to the agent as
prior domain knowledge by an external source. Alternatively,
they could be inferred from data [18], [19], [20].

These operators define equivalence classes over the ele-
ments of the state vector, i.e. every permutation of a single
element belongs to the same equivalence class. These classes
identify symmetric structure in the data. For each operator ◦,
its order | ◦ |, is defined as the number of times ◦ must be
applied to s such that the result is again s. The function of
these operators is to reduce the set of landmark contexts based
on symmetries. The question we wish to answer is: given two

landmarks χ1 and χ2, is there a finite sequence of operators
◦∗ = ◦1 ◦2 · · · ◦P such that χ1 ' ◦∗χ2?

These permutation groups are finitely generated, and as
such are finite-automaton presentable [21], meaning the group
operation can be recognised by a finite automaton (FA). We
can thus construct a FA from the definition of the domain
operators to recognise permutations.

Construct the FA F as follows: For each index i of the
N -element state vector, create a state in F labelled i. Now,
for each operator ◦j of order Mj , consider the enumeration of
the Mj repeated group permutations from that operator. The
composition of all J operators thus describes an enumeration
of up to M = M1 ×M2 × · · · ×MJ permutations. For each
of these permutations P = [p1, p2, · · · , pN], create a directed
transition (i, j) for each consecutive pair (pi, pj) in P . Label
this transition with the sequence of operators used in P .

Figure 2 provides an example of how an automaton may
be constructed to identify a composition of operators in a toy
domain.

Fig. 2. An example of permutation groups. (a) An agent’s state vector has
7 elements: 1-4 are distances to the walls of the room, 5 is speed, 6-7 are
distances to targets (b) Two operators define rotation in elements 1-4 (o) and
a permutation in 6-7 (p) (c) The automaton created from the permutation set
to recognise elements of the group.

F is constructed once for the set of operators. It is then
instantiated for a particular set of values by labelling the
transitions of F with the values from χ1, giving Fχ1

. F is then
presented with χ2, starts at the state corresponding to the first
element of χ2, and transitions to new states as each element
of χ2 is read. F accepts the vector if all transitions made are
defined in F , and if all states are visited exactly once. If Fχ1

accepts χ2 (or an approximation thereof, as the values may
be continuous) then these two landmarks are equivalent under
the operator set. Furthermore, the intersection of the annotated
labels on the transitions of Fχ1

required to accept χ2 provides
the sequence of operators required to transform χ2 into χ1.

Using the set of symmetry operators and the constructed
automaton F , we reduce the set of landmarks X̂ to a smaller
set, to eliminate symmetry-equivalent members of X̂ . Let the
reduced landmark set be denoted X< ⊆ X̂ .

D. Policy Association

The symmetry reduced landmark set X< with the operators
{◦} provide a decomposition of the domain into metrically

and topologically invariant contexts. The goal of learning this
reduction is to facilitate policy learning and selection, which
is faster in a smaller candidate state space. Policy learning
happens offline, as a form of introspection over each landmark
context.

For each landmark χ̃ ∈ X<, a set of policies {π}χ̃
are learnt, enumerating the set of all behaviours which the
agent can accomplish in that context. The policies may be
learnt through any of a number of techniques, e.g. learning
by demonstration from an expert being a human or another
agent [22], mixing between behaviours [23], through a form of
stochastic optimal control such as reinforcement learning [24],
or a heuristic approach like a shortest path A* algorithm. This
equips the agent with a set of locally applicable behaviours.

To learn policies in the reduced landmark set, the agent
considers each in turn, in an offline manner. In learning a pol-
icy, the landmark context is treated as a stationary, isolated and
restricted environment. The required local set of behaviours
may well need to be prescribed by an external source, but
the trajectories may be optimally learnt. For example, in
our navigation experiments policies were learnt by an A*
algorithm, although a reinforcement learning algorithm could
have been used instead to learn value functions.

Each landmark having an associated policy set in this
way could be broadly interpreted as the agent having an
‘understanding’ of that context – the agent could be said to
understand some small local environment if that environment
could be identified and the agent is equipped with a number of
different activities that could be performed locally, irrespective
of global context.

As an alternative to learning different policies for each
context, we may assume that the policy set is fixed across
the domain. In this case, we may instead learn action priors
over the policy set for each context, being task-independent
probabilistic action selection preferences in that situation [25].

III. ONLINE POLICY INSTANTIATION

Having learnt the GNG context manifold and associated
policies, the agent is equipped for online decision making.
Given a task and domain instance, at each time step t the
agent acquires some information st about its current state
in the environment. This is used to perform a lookup into
the GNG network to find the context χt such that χt =
argminχ∈X dS(st, χ), for dS(·, ·) a distance in S. This returns
the landmark context most similar to the current state. Note
that if the distance between χt and st exceeds some threshold,
e.g. some percentage of the total distance spanned by the GNG,
this is a state with which the agent is not familiar, and so the
agent may reinstate the GNG learning temporarily.

Find the best matching template χ̂t from the full landmark
set X̂ to the context χt, such that χ̂t = argminχ̂∈X̂ dG(χt, χ̂),
for dG(·, ·) the graph distance measured by the number of links
between two nodes in G. χ̂t is thus the landmark policy which
best matches st.

Now, for each landmark context χ̂i, there is a group
transformation ◦i which maps it to some symmetry reduced
landmark χ̃i. Let (χ̃t, ◦t) be the transformation-landmark pair
associated with χ̂t. χ̃t is then a topologically and metrically

invariant version of st. This affords the agent a set of be-
haviours {π}χ̃t which could be instantiated at time t. If the
chosen policy πt describes a behaviour in state space relative
to χ̃t, then ◦−1i πt describes the behaviour relative to st.

The aforementioned procedure, depicted in Figure 1, de-
scribes a generalisable representation scheme of the environ-
ments which could be generated in some domain. As such,
this is not a causal model of the domain. To predict the results
of selecting a particular policy, one must learn a causal map
(specified in the language of landmark contexts and associated
policies) of a particular environment in the domain. Inference
can then be done over this causal model. For example, it
could be learnt that in a particular instance of the domain,
executing some policy from a specific template leads to other
templates with some probability. This causal understanding of
that environment gives rise autonomously to dynamics models
[26], for which plans can be computed using methods such as
dynamic Bayesian networks [27].

This representation and policy instantiation method allows
for a coupling of local reactions to uncertainty, with a higher
level global game associated with incomplete knowledge of a
different kind, e.g. strategies of an adversary. This is illustrated
in our second experiment in Figure 5. Such a factored approach
makes it possible to separate concerns and acknowledge in-
completeness of knowledge at a global level.

IV. EXPERIMENTAL RESULTS

We illustrate our method in a two-dimensional navigation
domain. Random environments are generated, in which the
agent is placed at a random initial position, and is tasked
with reaching a random goal location. This must be done
while avoiding an arbitrary number of dynamic obstacles
whose dynamics are unknown. The aim is to illustrate that
our algorithm provides an agent with the ability to survive a
multitude of widely varying environments with many dynamic
components.

Environments are generated as polygons of between four
and twelve sides, and thus vary considerably in size, shape and
convexity. A random number of dynamic obstacles (between
10 and 15) are added to the environment. These obstacles
execute a random walk, at a speed of 0.6 of the agent’s speed.
Example environments are shown in Figure 3.

Fig. 3. Four sample environments, showing dynamic obstacles with their
traces over time, the agent trajectory (in red) and a goal location.

In training, the agent moved randomly about 100 environ-
ments, for 300 time steps each, while building a GNG network
of contexts in the domain. State information was constructed
from a set of 32 ring-arranged range-sensors. The resulting
network contained 593 nodes, which were reduced to a set of
9 landmarks. Each landmark had a maximum of four policies

trained on it: one for moving in each direction if possible in
that landmark.

A difficulty with evaluation concerns performance optimal-
ity on these tasks. To the best of our knowledge, there are no
competing methods which would allow successful performance
in all these environments, online. In the absence of comparative
experiments, one might look at optimality criteria. However,
without knowledge of all dynamic obstacle trajectories (only
available post hoc), optimality isn’t well defined. Comparing
an online algorithm to an optimal trajectory based on ret-
rospective knowledge is meaningless. Instead, we compare
our solutions to those of an optimal A* shortest path, run
on stationary snapshots of the environment, inspired by the
concept of regret in online learning.

Results are reported in Figure 4 showing the difference
in the path lengths of our solution and the optimal solution
as a fraction of the optimal solution, for a total of 1549
different environments. Bearing in mind that the agent was
acting online, in a dynamic environment performing one-shot
tasks, these results show that in the majority of instances the
solution path was not considerably longer than the optimal
solution in the stationary environment: in fact, generally less
than 50% longer. There is a long tail to this distribution, which
indicates that there were cases with which the online algorithm
struggled. These typically amount to situations where the agent
is required to navigate tight passageways (static or dynamic) to
reach the goal. In these corner cases, improvements could be
made by using these trajectories as jumpstart solutions for an
agent which is operating longer in any of these environments,
as a seed which could be further optimised by other techniques.

Fig. 4. Results of reaching the target in 1549 different dynamic environments.
The histogram shows the error in our agent’s path length, compared to that
of the optimal solution in the stationary task where the obstacles were kept
static. The median value is shown in green.

Once we have this ability to locally respond to environmen-
tal change, we may couple this with different global task re-
quirements. A second experiment was aimed at demonstrating
this capability of the algorithm and representation. We use the
previously learnt capabilities to play a pursuit-evasion game

known as the “homicidal chauffeur” [28], [29] which involves
a slower but more manoeuvrable evader fleeing a slightly faster
and less agile pursuer. The relative position of the evader (x, y)
to the pursuer is

ẋ = Ve sinφ− Vp
y

R
u,

ẏ = Ve cosφ− Vp + Vp
x

R
u,

u ∈ [−1, 1],

for Ve the constant speed of the evader, Vp the constant speed
of the pursuer, R the minimum pursuer turn radius, φ the
evader’s control and u the pursuer’s control. Results are shown
in Figure 5, and indicate that our algorithm is still able to
handle non-stationary environments while performing a closed-
loop task which depends on the behaviour of the agent itself.

Note that the agent did not learn the solution to the game.
Instead, the focus here is to demonstrate that policy instanti-
ation is not restricted to myopic decisions but can be part of
longer-term reasoning. In this example, it would be infeasible
to model the entire environment to the extent demanded by
traditional approaches to solving the differential game. Our
approach reduces the problem to a more manageable one.

Fig. 5. Result trajectories for three instances of the pursuit-evasion games.
The pursuer trajectory is shown in red, and the evader in blue. Row (i) is the
solution in a stationary environment and row (ii) is the same problem with
added dynamic obstacles.

This is just one example of a global game. The point is
that non-stationarity and change need not only be approached
via expensive repair of a single comprehensive policy, instead
it can be dealt with compositionally by formulating the deci-
sion problem in an essentially different way; designed for a
changing environment from the outset.

V. RELATED WORK

Our method learns particular sub-policies which are ap-
plicable in various local contexts. As such, they are closely
related to the options framework of hierarchical reinforcement
learning. The identification and discovery of options is still
an open question which has received considerable attention
[30], [31], [32]. These methods focus on finding common
subsets or generalisations of solutions to particular environ-
ments in a domain. Our method instead focuses on commonly
occurring features in the environment, over a large number
of different environments, and applying these to approximate

context matches. The local policies we learn can also be used
as options, but the association of contexts allows us to further
factorise the domain. Other approaches to transforming poli-
cies are relativised options [33] and SMDP homomorphisms
[34]. We adopt a related notion of abstraction through our
group formalism, but our complete formulation allows for local
models to be used dynamically within any online decision
procedure.

Our approach is also inspired by the idea of analysing the
space of value functions to find repeated structure [35], but
we couple observations and behaviours. Our method is most
similar to the notion of learning local features for behaviour
reuse [36], [37] but we explicitly model the context manifold
using a GNG network, and reduce this with group operators.

VI. CONCLUSION

We present an algorithm for re-describing environments
generated in a domain to associate generic capabilities with
local contexts that are qualitatively meaningful across many
task instances. This equips the agent to deal with changing
environments and tasks, enabling flexible online decision mak-
ing. This factors the problem by separating the global issues
having to do with the larger scale structure of the task from
the local issues that can be dealt with by correspondingly local
policies that are essentially independent of other higher level
considerations. So, for instance, the agent could treat the global
problem as a low-dimensional differential game while the local
problem requires a higher dimensional policy, but one that can
be learnt offline and tuned across multiple environments.

REFERENCES

[1] J. Y. Yu and S. Mannor, “Arbitrarily Modulated Markov Decision
Processes,” IEEE Conference on Decision and Control, pp. 2946–2216,
December 2009.

[2] S. P. M. Choi, D.-Y. Yeung, and N. L. Zhang, “Hidden-mode Markov
decision processes,” International Joint Conference on Artificial Intelli-
gence, Workshop on Neural Symbolic, and Reinforcement Methods for
Sequence Learning, pp. 9–14, 1999.

[3] R. Jaulmes, J. Pineau, and D. Precup, “Learning in Non-Stationary
Partially Observable Markov Decision Processes,” ECML Workshop on
Reinforcement Learning in Non-Stationary Environments, 2005.

[4] B. da Silva, E. Basso, A. Bazzan, and P. Engel, “Dealing with
Non-Stationary Environments using Context Detection,” International
Conference on Machine Learning, pp. 217–224, 2006.

[5] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning Domains: A Survey,” Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[6] S. Amarel, “On representations of problems of reasoning about actions,”
Machine Intelligence, vol. 3, pp. 131–171, 1968.

[7] R. E. Korf, “Toward a model of representation changes,” Artificial
Intelligence, vol. 14, no. 1, pp. 41–78, August 1980.

[8] R. Bookstaber and J. Langsam, “On the optimality of coarse behavior
rules,” Journal of Theoretical Biology, vol. 116, no. 2, pp. 161–193,
September 1985.

[9] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential Compo-
sition of Dynamically Dexterous Robot Behaviors,” The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, June 1999.

[10] B. S. Rosman and S. Ramamoorthy, “A Multitask Representation using
Reusable Local Policy Templates,” AAAI Spring Symposium Series on
Designing Intelligent Robots: Reintegrating AI, 2012.

[11] B. Georgeot and O. Giraud, “The game of go as a complex network,”
arXiv:1105.2470, May 2011.

[12] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, pp. 167–173, May 2011.

[13] H. A. Simon and W. G. Chase, “Skill in Chess: Experiments with chess-
playing tasks and computer simulation of skilled performance throw
light on some human perceptual and memory processes,” American
Scientist, vol. 61, no. 4, pp. 394–403, July-August 1973.

[14] J. J. Gibson, The Ecological Approach to Visual Perception, 2nd ed.
Lawrence Erlbaum Associates, Inc., 1986.

[15] B. Fritzke, “A Growing Neural Gas Network Learns Topologies,”
Advances in Neural Information Processing Systems, pp. 625–632,
1995.

[16] J. Provost, “Reinforcement Learning in High-Diameter, Continuous
Environments,” Ph.D. dissertation, The University of Texas at Austin,
August 2007.

[17] C. C. Sims, Computation with Finitely Presented Groups, ser. Ency-
clopedia of mathematics and its applications. Cambridge University
Press, 1994, vol. 48.

[18] X. Miao and R. P. N. Rao, “Learning the Lie Groups of Visual
Invariance,” Neural Computation, vol. 19, pp. 2665–2693, 2007.

[19] G. Bartók, C. Szepesvári, and S. Zilles, “Models of active learning in
group-structured state spaces,” Information and Computation, vol. 208,
no. 4, pp. 364–384, April 2010.

[20] D. Pierce and B. J. Kuipers, “Map learning with uninterpreted sensors
and effectors,” Artificial Intelligence, vol. 92, pp. 169–227, 1997.

[21] A. Nies, “Describing Groups,” The Bulletin of Symbolic Logic, vol. 13,
no. 3, pp. 305–339, September 2007.

[22] P. Abbeel and A. Y. Ng, “Apprenticeship Learning via Inverse Rein-
forcement Learning,” International Conference on Machine Learning,
2004.

[23] B. S. Rosman and S. Ramamoorthy, “A Game-Theoretic Procedure
for Learning Hierarchically Structured Strategies,” IEEE International
Conference on Robotics and Automation, 2010.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[25] B. S. Rosman and S. Ramamoorthy, “What good are actions? Acceler-
ating learning using learned action priors,” International Conference on
Development and Learning and Epigenetic Robotics, November 2012.

[26] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, no. 1, pp. 309–352, May 2007.

[27] M. Toussaint, “Probabilistic inference as a model of planned behavior,”
German Artificial Intelligence Journal, vol. 3, 2009.

[28] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. Society for Industrial and Applied Mathematics, 1999.

[29] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization,
Estimation, and Control. Hemisphere Publishing Corporation, 1975.

[30] Ö. Şimşek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals
in reinforcement learning by local graph partitioning,” International
Conference on Machine Learning, pp. 817–824, 2005.

[31] M. Pickett and A. G. Barto, “PolicyBlocks: An Algorithm for Creat-
ing Useful Macro-Actions in Reinforcement Learning,” International
Conference on Machine Learning, pp. 506–513, 2002.

[32] G. D. Konidaris and A. G. Barto, “Skill Discovery in Continuous
Reinforcement Learning Domains using Skill Chaining,” Advances
in Neural Information Processing Systems, vol. 22, pp. 1015–1023,
December 2009.

[33] B. Ravindran and A. G. Barto, “Relativized Options: Choosing the Right
Transformation,” Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

[34] ——, “SMDP homomorphisms: an algebraic approach to abstraction in
semi-Markov decision processes,” Proceedings of the 18th international
joint conference on Artificial intelligence, pp. 1011–1016, 2003.

[35] D. Foster and P. Dayan, “Structure in the Space of Value Functions,”
Machine Learning, vol. 49, pp. 325–346, 2002.

[36] M. Stolle and C. G. Atkeson, “Knowledge transfer using local features,”
IEEE International Symposium on Approximate Dynamic Programming
and Reinforcement Learning, pp. 26–31, 2007.

[37] ——, “Finding and transferring policies using stored behaviors,” Au-
tonomous Robots, vol. 29, pp. 169–200, 2010.

