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Abstract

An agent continuously performing different tasks in
the same domain has the opportunity to learn, over the
course of its operational lifetime, about the behavioural
regularities afforded by the domain. This paper ad-
dresses the problem of learning a task independent be-
haviour model based on the underlying structure of a
domain which is common across multiple tasks pre-
sented to an autonomous agent. Our approach involves
learning action priors: a behavioural model which en-
codes a notion of local common sense behaviours in the
domain, conditioned on either the state or observations
of the agent. This knowledge is accumulated and trans-
ferred as an exploration behaviour whenever a new task
is presented to the agent. The effect is that as the agent
encounters more tasks, it is able to learn them faster and
achieve greater overall performance. This approach is
illustrated in experiments in a simulated extended navi-
gation domain.

Introduction
Consider a long-lived robot that is expected to carry out a
number of different tasks in the same (or similar) environ-
ments over the course of its lifetime. We assume that the
tasks which will be assigned to it are varied but related, for
example all pertaining to the manipulation of different ob-
jects around a home or factory, and using these objects in
different ways. Furthermore, we assume that the set of tasks
which will be encountered by this robot are unknown a pri-
ori, and as such it will be required to learn to complete these
tasks as they arise.

This paper questions what can be learnt so as to ensure
that the performance of the agent improves with each new
task it is required to tackle. Clearly there will be commonal-
ities between behaviours if the tasks exist within a common
domain, in which case relearning everything from scratch is
wasteful. To this end we seek to transfer knowledge from a
bank of previous tasks in order to facilitate faster learning of
new tasks (Taylor and Stone, 2009). This question is consid-
ered within the context of reinforcement learning.

We focus on one important aspect of transfer, in learn-
ing about the domain itself. While different tasks each nec-
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essarily have different utility or reward functions, their de-
pendence on a single domain implies that locally their so-
lutions will contain behavioural elements which are persis-
tent across multiple tasks. This can be seen for example in
the fact that some constraints such as obstacle avoidance or
the selection of shortest paths are general to large classes
of problems. In addition, complex behaviours such as the
use of particular tools at specific times may be useful as the
components of full policies required to solve different tasks.

What is common to all of these examples is a preference
for choosing certain actions over others under particular con-
ditions. We thus seek to model these local action selection
preferences as a form of prior knowledge which can be ex-
tended as the agent learns about different tasks in the do-
main. This then acts as a form of action pruning, which is
also evident in human behaviour as a mechanism for con-
straining the search space during sequential decision mak-
ing tasks (Huys et al., 2012; Harre, Bossomaier, and Snyder,
2012). We refer to this model of task independent domain
specific local behaviours as action priors (Rosman, 2014).

Learning this domain behaviour model provides a factori-
sation of the policies of an agent into a domain space (ac-
tions taken as a result of the structure of the domain) and a
task space (actions taken specifically to complete a particu-
lar task), which can be viewed as an extension of the con-
cept of decomposing tasks into an agent space and problem
space (Konidaris and Barto, 2006). In this paper, we show
how such a model can be useful for seeding learning of new
tasks in the same domain.

We consider two different ways of modelling action pri-
ors. If the domain remains unchanged between tasks, we
can learn about action preferences conditioned on specific
states. On the other hand, it is often more realistic to consider
cases where the domain may change slightly between tasks.
For example, the agent may move between different build-
ings, or the building may change as equipment is moved
around. Under these conditions we can instead learn at the
level of observation based behaviours. This provides transfer
through a set of local controllers which can be more flexibly
applied to new instances of a domain.

The action prior approach is illustrated in a simulated fac-
tory domain, which is an extended navigation domain that
requires simple manipulation actions to be taken at spe-
cific locations. We show how action priors provide positive



knowledge transfer when learning multiple tasks, using both
state and observation representations.

Domains and Tasks
Throughout this paper, we adopt the standard formalism
used in reinforcement learning and assume that a problem
faced by a learning agent is fully specified by a Markov
Decision Process (MDP). An MDP is defined as a tuple
(S,A, T,R, γ), where S is a finite set of states, A is a fi-
nite set of actions which can be taken by the agent, T :
S × A × S → [0, 1] is the state transition function where
T (s, a, s′) gives the probability of transitioning from state s
to state s′ after taking action a,R : S×A→ R is the reward
function, where R(s, a) is the reward received by the agent
when transitioning from state s with action a, and γ ∈ [0, 1)
is a discount factor.

A policy π : S × A → [0, 1] for an MDP describes
the probability of selecting an action in each state. The re-
turn, generated from an episode of running the policy π is
the accumulated discounted reward R̄π =

∑
k γ

krk, for
rk being the reward received at step k. The goal of a re-
inforcement learning agent is to learn an optimal policy
π∗ = arg maxπ R̄

π which maximises the total expected re-
turn of an MDP, where typically T and R are unknown.

Many approaches to learning an optimal policy involve
learning the value function Qπ(s, a), giving the expected
return from selecting action a in state s and thereafter fol-
lowing the policy π (Sutton and Barto, 1998). Q is typi-
cally learnt by iteratively updating values using the rewards
obtained by simulating trajectories through the state space,
e.g. the Q-learning algorithm (Watkins and Dayan, 1992). A
greedy policy can be obtained from a value function defined
over S × A, by selecting the action with the highest value
for any given state.

We now define a domain by the tuple D = (S,A, T, γ),
and a task as the MDP τ = (D,R, S0). In this way we fac-
torise the environment such that the state set, action set and
transition functions are fixed for the whole domain, and each
task varies only in the reward function, and the set of initial
states S0 ⊆ S.

This factorisation allows us to learn a model of the domain
which is task independent, and it is the local action selec-
tion probabilities based on this domain information which
we can transfer between tasks. Note that this domain model
is accessible by studying the commonalities between several
different tasks. As such, we distill domain specific knowl-
edge from a set of task specific behaviours. We refer to this
knowledge as action priors.

Action Priors
Consider a setting in which an agent has prolonged experi-
ence in a domain D. By this we mean that the agent has had
to solve a set of tasks in D, and we use the resulting set of
optimal policies to extract the behavioural regularities as a
form of structural information about the domain.

Given an arbitrary set of tasks T = {τ} in D and their
corresponding optimal policies Π = {π∗τ}, we wish to learn

for each state s a distribution over the action set, represent-
ing the probability of each action being used in an optimal
policy in s, aggregated over the tasks T . This is then used as
a model of domain behaviour in subsequent tasks to priori-
tise the actions in each state.

For each state s ∈ S, let the action priors θs(A) be this
distribution over the action set A, describing the usefulness
of each action in optimally solving the tasks in T using the
policies Π. To construct these action priors, we first define
the utility of an action a in a state s under a policy π as

Uπs (a) = δ(π(s, a),max
a′∈A

π(s, a′)), (1)

where δ(·, ·) is the Kronecker delta function: δ(a, b) = 1 if
a = b, and δ(a, b) = 0 otherwise. As a result Uπs (a) = 1 if
and only if a is the best (or tied best) action in s under π.

Now consider the utility UΠ
s (a) of an action a in a state s

under a set of policies drawn from a policy library Π. This
value is a weighted sum, given as

UΠ
s (a) =

∑
π∈Π

w(π)Uπs (a), (2)

where w(π) ∈ R is a weight for the policy π. This weight
can be used to indicate a prior probability over the policies
if they are not equiprobable. The inclusion of this weight
factor also allows us to include suboptimal policies in the
policy library, by allocating them lower weights. In our ex-
periments we do not assume to have knowledge about this
distribution, and so uniformly set w(π) = 1, ∀π ∈ Π.

The fact that the domain knowledge is constructed from
the policies solving a sampled set of tasks T raises the pos-
sibility that T is not wholly representative of the complete
set of possible tasks in D. We adjust for this by forming an
augmented policy set Π̂, defined as Π̂ = Π ∪ π0, where π0

is the uniform policy: π0(s, a) = 1
‖A‖ , ∀s ∈ S, a ∈ A. The

utility of this policy is then Uπ0
s (a) = 1, ∀s ∈ S, a ∈ A.

In this case, the weight w(π0) represents the likelihood of
encountering a new task outside the sampled set T .

Given a state s, for each action a the utility U Π̂
s (a) esti-

mates the value of the state-action pair (s, a) in D under the
augmented policy set Π̂. Lacking more specific knowledge
of the current task, an agent should choose actions according
to these values. To select an action, sample from the action
prior a ∼ θs(A), where the action prior itself is sampled
from a Dirichlet distribution θs(A) ∼ Dir(U Π̂

s (a)).
This Dirichlet distribution is parametrised by concentra-

tion parameters (α(a1), α(a2), . . . , α(a‖A‖))
T and so for

each state s, we maintain a count αs(a) for each action
a ∈ A, which is updated for every policy in Π̂. The initial
values of αs(a) = α0

s(a) are known as the pseudocounts,
and can be initialised to any value by the system designer
to reflect prior knowledge. If these counts are the same for
each action in a state, i.e. αs(a) = k, ∀a ∈ A this returns
a uniform prior, which results in each action being equally
favourable in the absence of further information.

The pseudocount α0
s(a) is a hyperprior which models

prior knowledge of the tasks being performed by the agent.
If the variance between tasks is small, or a large number



of training tasks are provided, then this hyperprior is set to
a smaller value. However, if there is great diversity in the
tasks, and the agent will not be expected to sample them
thoroughly, then a larger hyperprior will prevent the action
priors from over-generalising from too little data.

We wish these counts to describe the number of times an
action a was considered optimal in a state s, across a set of
policies Π. We thus augment Equation (2) and set

αs(a) = U Π̂
s (a) =

∑
π∈Π̂

w(π)Uπs (a) (3)

=
∑
π∈Π

w(π)Uπs (a) + α0
s(a). (4)

This provides a natural intuition for the counts as the
weighted utility of Π, and the hyperprior is then given by
α0
s(a) = w(π0).
Typically, one does not want to maintain a full library of

policies. As a result, the α counts can be learnt by the agent
in an online manner as it learns the solutions to new tasks.
In this way, when the agent solves task τ t+1, the counts for
each state-action pair can be updated by the values in πt+1.
This provides an online version of Equation (3) as

αt+1
s (a) ←−


αts(a) + w(πt+1) if πt+1(s, a) =

maxa′∈A π
t+1(s, a′)

αts(a) otherwise.
(5)

This model weights each action by the number of inde-
pendent tasks which require the selection of that particular
action in that state, which is used as the prior probability of
that action in that state for any future tasks in the domain.

Observation Based Priors
In the previous section, action priors were defined as dis-
tributions over actions, conditioned on the current state. In
this section we extend these definitions such that the action
priors are instead conditioned on observations.

There are several reasons for this representation change.
The most obvious being that the transition function T or
even the state space S may not be task independent, and
may instead differ between task instances. This may be the
case for example, when an agent is tasked with exploring
different buildings. It is not sensible to condition action pri-
ors on states, if the connectivity of those states changes be-
tween task instances. Instead, the agent should condition ac-
tion priors on observable features of the states – features
which would persist across tasks, even if state identities do
not. This representation change allows the action priors to
generalise to tasks in similar environments.

Another justification for using observation based priors is
that one may not always have full observability of s, mean-
ing that different states cannot be uniquely distinguished.
This is the case in partially observable reinforcement learn-
ing problems (Kaelbling, Littman, and Cassandra, 1998)
which typically require the solution of partially observable
Markov decision processes (POMDPs). State information,
such as exact world coordinates of a mobile robot, is not al-
ways accessible. Similarly, there may be states in S which

have not been explored during training, and so no action
prior would be available for these states, which may be re-
quired later. In both these scenarios, it is again sensible to
instead base the action priors on whatever features of the
state are observed (perhaps with high confidence). Obser-
vation based action priors provide the ability to transfer to
unseen state and action combinations.

Basing these priors on observations rather than states in-
volves changing the dependence of θ from s ∈ S to φ :
S −→ O, where φ is the mapping from state space S to
the observation (perception) spaceO. The observed features
of s are described by φ(s). The state based priors can thus
be considered as a special case of observation based priors,
with φ(s) = s.

Note that we are not solving a partially observable prob-
lem, but are instead building domain models based on some
partial information signals. Using observations rather than
exact state descriptions allows for more general priors, as
they are applicable to different states emitting the same ob-
servations. This also enables pooling of the experience col-
lected from different states with similar observations, to
learn more accurate models. Note that this does not neces-
sarily imply that the observation space is smaller, but that it
is structured in that similar observations may suggest similar
behaviours. This observation space could in fact be clustered
into templates (Rosman and Ramamoorthy, 2012a).

There is a trade-off between the generality and the useful-
ness of the priors. This is a function of the choice of observa-
tion features, and the amount of action information captured
by these features. These depend on properties of the tasks
and environments. More general observation features imply
less informative action priors. On the other hand, the more
specific these features are (up to exact state identification),
the less portable they are to new states.

Exploration using Action Priors
Action priors provide the agent with a model of transferred
knowledge about which actions are sensible in situations in
which the agent has several choices to explore. They are thus
useful for seeding search in a policy learning process. We
demonstrate this modified exploration process with an adap-
tation of the Q-learning algorithm (Sutton and Barto, 1998),
called ε-greedy Q-learning with State-based Action Priors,
or ε-QSAP (Rosman and Ramamoorthy, 2012b), which is
shown in Algorithm 1. The parameter ε ∈ [0, 1] controls the
trade-off between exploration and exploitation, and αQ ∈
[0, 1] denotes the learning rate (not to be confused with the
Dirichlet distribution counts αs(a)). Both αQ and ε are typ-
ically annealed after each episode.

The difference between this and standard ε-greedy Q-
learning is seen on line 5. This is the action selection step,
consisting of two cases. The first case deals with exploiting
the current policy stored in Q(s, a) with probability 1 − ε,
and the second case with exploring other actions a ∈ A
with probability ε. The exploration case is typically handled
by choosing the action uniformly from A, but instead we
choose with probability based on the prior θs(a) to shape
the action selection. Although this algorithm uses the state



Algorithm 1 ε-greedy Q-learning with State-based Action
Priors (ε-QSAP)
Require: action prior θs(a)

1: Initialise Q(s, a) arbitrarily
2: for every episode k = 1 . . .K do
3: Choose initial state s
4: repeat

5: a←−
{

arg maxaQ(s, a), w.p. 1− ε
a ∈ A, w.p. εθs(a)

6: Take action a, observe r, s′
7: Q(s, a)←− Q(s, a)+αQ[r+γmaxa′ Q(s′, a′)−

Q(s, a)]
8: s←− s′
9: until s is terminal

10: end for
11: return Q(s, a)

based action priors, conditioning on observations instead is
a trivial extension.

The effect of this modified exploration mechanism is that
the agent exploits the current estimate of the optimal policy
with high probability, but also explores, and does so with
each action proportional to the number of times that action
was favoured in previous tasks under the transferred model.
This leverages the assumption that there is inherent structure
in the domain which gives rise to behavioural regularities
which can be identified across multiple tasks.

Exploration thus occurs by randomly sampling actions ac-
cording to the probabilities that they are optimal, given the
previously encountered tasks. Choosing actions randomly in
this way is an established action selection mechanism (Wy-
att, 1997; Dimitrakakis, 2006) known as Thompson sam-
pling (Thompson, 1933) which, rather than being a heuristic,
has been shown to be a principled approach to dealing with
uncertainty (Ortega and Braun, 2013). As these probabilities
relate to the domain, rather than the current task, this is still
traded off against exploiting the current Q-function.

Experiments
To illustrate the action prior approach, we introduce the fac-
tory domain: an extended navigation domain involving a
mobile manipulator robot in a factory. The layout of the fac-
tory consists of an arrangement of walls, with some procure-
ment and assembly points placed around the factory. Addi-
tionally there are express routes, which represent preferred
paths of travel, corresponding to regions where collisions
with other factory processes may be less likely. The domain
used in these experiments is shown in Figure 1.

The robot has an action set consisting of four movement
actions (North, South, East and West), each of which will
move the robot in the desired direction provided there is no
wall in the target position, a Procure action, and an Assemble
action. Procure, when used at procurement point i, provides
the robot with the materials required to build component i.
Assemble, when used at assembly point i, constructs com-
ponent i, provided the robot already possesses the materials
required for component i.

Figure 1: The factory domain. Grey cells are obstacles, white
cells are free space, green cells are procurement points, red
cells are assembly points, and cyan cells are express routes.

A task is defined as a list of components which must be
assembled by the robot. The domain has 9 components, and
so this list can range in length from 1 to 9, giving a total of
29 − 1 different tasks.

The task rewards are defined as follows. All movement
actions give a reward of −2, unless that movement results
in the robot being on an express route, for a reward of −1.
Collisions are damaging to the robot and so have a reward of
−100. Procure at a procurement point corresponding to an
item in the task definition which has not yet been procured
gives a reward of 10. Procure executed anywhere else in the
domain yields −10. Assemble at an assembly point for an
item in the list which has already been procured but not as-
sembled gives 10, and any other use of the Assemble action
gives −10. Successful completion of the task gives 100 and
the episode is terminated.

This domain has many local task independent behaviours
which could be learnt by the robot. On a local level, this
includes avoiding collisions with walls, preferring express
routes over standard free cells, and not invoking a Procure
or Assemble action unless at a corresponding location. As
all tasks are defined as procuring and assembling a list of
components, this additionally provides scope for learning
that regardless of the components required, the robot should
first move towards and within the region of procurement
points until all components have been procured, after which
it should proceed to the region of assembly points.

Results with State Action Priors
The results in Figure 2, which compares the performance
per episode of a learning agent using a set of different pri-
ors, demonstrates that using action priors reduces the cost
of the initial phase of learning, which is largely concerned
with coarse scale exploration. This figure also shows com-
parative performance of Q-learning with uniform priors (i.e.
“standard” Q-learning), as well as with two different hand
specified priors; an “expert” prior and an “incorrect” prior.



Figure 2: Comparative performance between Q-learning
with uniform priors, state based action priors learned from
35 random tasks, and two different pre-specified priors (see
text for details). The figure shows learning curves averaged
over 15 runs, where each task was to assemble 4 compo-
nents, selected uniformly at random. The shaded region rep-
resents one standard deviation.

The “expert” prior is defined over the state space, to guide
the agent towards the procurement area of the factory if the
agent has any unprocured items, and to the assembly area
otherwise. This prior was constructed by a person, who was
required to specify the best direction for each state in the do-
main. We note that this prior is tedious to specify by hand, as
it involves an expert specifying preferred directions of mo-
tion for the entire state space of the agent (number of states
in the factory × number of different item configurations).
Note that although the performance is very similar, this prior
does not perform as well as the learnt prior, likely due to a
perceptual bias on behalf of the expert’s estimation of opti-
mal routing. We also compare to an “incorrect” prior. This
is the same as the expert prior, but we simulate a critical
mistake in the understanding of the task: when the agent has
unprocured items, it moves to the assembly area, and oth-
erwise to the procurement area. This prior still provides the
agent with an improvement in the initial episodes over uni-
form priors, as it contains some “common sense” knowledge
including not moving into walls, moving away from the start
location, etc. Q-learning is still able to recover from this er-
ror, and ultimately learn the correct solution.

Figure 3 shows the speed up advantage in learning a set of
N = 40 tasks, starting from scratch and then slowly accu-
mulating the prior from each task, against learning each task
from scratch. This illustrates the improved transfer benefits
through the continued acquisition of more domain knowl-
edge over time. This case is for a simple version of the task,
which involved procuring and assembling a single item. As
a result, all task variants are likely to have been encountered
by the time the agent solves the final tasks.

On the other hand, Figure 4 shows that a similar effect
can be observed for the case of a more complicated task,
requiring the assembly of 4 randomly selected items. In this
case, even by the time the learning agent has accumulated

Figure 3: Comparative performance between Q-learning
with uniform priors, and accumulating state based action pri-
ors from an increasing number of tasks. The number of prior
tasks ranges from 0 to 40. These curves show the average re-
ward per learning episode averaged over 10 runs, where the
task was to assemble 1 random component. The shaded re-
gion represents one standard deviation. The “optimal” line
refers to average performance of an optimal policy, which
will necessarily be higher than the per episode reward of a
learning algorithm.

a prior composed from 40 tasks, it has only experienced a
small fraction of the possible tasks in this domain. Despite
this, the agent experiences very similar benefits to those seen
in the single item case.

Results with Observation Action Priors
In order to demonstrate the effect of using the observation
action priors, we present a modification of the factory do-
main wherein the factory floor layout changes for each task.
The map consists of a 3 × 3 lattice of zones, each of which
is 6 × 6 cells. There is an outer wall, and walls in between
every two zones, with random gaps in some (but not all) of
these walls, such that the entire space remains connected.
Additionally, each zone contains randomly placed internal
walls, again maintaining connectivity. Two zones are ran-
domly chosen as procurement zones, and two zones as as-
sembly zones. Each of these chosen zones has either four or
five of the appropriate work points placed at random. Ex-
amples of this modified factory domain are shown in Figure
5.

This modified domain has a different layout for every
task, and so every task instance has a different transition
function T . This is in contrast to the original factory do-
main, where each task differed only in reward function R.
State based action priors can therefore not be expected to
provide the same benefits as before. We instead use observa-
tion priors and discuss four particular feature sets.

Figure 6 demonstrates the improvement obtained by using



Figure 4: Comparative performance between Q-learning
with uniform priors, and accumulating state based action pri-
ors from an increasing number of tasks. The number of prior
tasks ranges from 0 to 40. These curves show the average re-
ward per learning episode averaged over 10 runs, where the
task was to assemble 4 random components. The shaded re-
gion represents one standard deviation. The “optimal” line
refers to average performance of an optimal policy, which
will necessarily be higher than the per episode reward of a
learning algorithm.

observation priors over state priors in this modified domain.
Note here that the state priors still provide some benefit, as
many of the corridor and wall placings are consistent be-
tween task and factory instances. Figure 6 shows the effect
of four different observation priors:
• φ1: Two features – the type of the terrain in the cell oc-

cupied by the agent (in {free, wall, procure-station,
assembly-station}), and a ternary flag indicating
whether any items still need to be procured or assembled.

• φ2: Four features – the types of terrain of the four cells
adjacent to the cell occupied by the agent.

• φ3: Six features – the types of terrain of the cell occupied
the agent as well as the four cells adjacent to that, and a
ternary flag indicating whether any items need to be pro-
cured or assembled. Note that the features in φ3 are the
union of those in φ1 and φ2.

• φ4: Ten features – the types of terrain of the 3 × 3 grid
of cells around the agent’s current position, and a ternary
flag indicating whether any items need to be procured or
assembled.
These four observation priors can all be seen to contain

information relevant to the domain, and all provide an im-
provement over the baselines. There is however a significant
performance difference between the four feature sets.

Surprisingly, Figure 6 shows that the most beneficial fea-
ture set is φ3, with φ2 performing almost as well. The fact
that the richest feature set, φ4, did not outperform the others
seems counterintuitive. The reason for this is that using these

Figure 5: Two instances of the modified factory domain.
Grey cells are obstacles, white cells are free space, green
cells are procurement points, and red cells are assembly
points. The procurement and assembly points count as
traversable terrain.

Figure 6: Comparative performance in the modified factory
domain between Q-learning with uniform priors, state based
action priors, and four different observation based action pri-
ors: φ1, φ2, φ3 and φ4. These curves show the average re-
ward per episode averaged over 10 runs, where the task was
to assemble 4 random components. In each case the prior
was obtained from 80 training policies. The shaded region
represents one standard deviation.

ten features results in a space of 49 × 3 observations, rather
than the 45 × 3 of φ3. This factor of 256 increase in the ob-
servation space means that for the amount of data provided,
there were too few samples to provide accurate distributions
over the actions in many of the observational settings.

These results indicate the importance of having an infor-
mative yet sparse set of observation features for maximal
benefits in transfer.

Related Work
Recent work on learning policy priors has similar aspirations
to our own (Wingate et al., 2011). This involves an MCMC-
based policy search algorithm that learns priors over the



problem domain, which can be shared among states. For ex-
ample, the method can discover the dominant direction in
a navigation domain, or that there are sequences of motor
primitives which are effective and should always be priori-
tised during search. Inference is on (π, θ), where π is the
policy and θ the parameters, by casting this search problem
as approximate inference over which priors can be speci-
fied or learnt. Our work differs in that we do not assume a
known model or kernel over policy space, and as such can-
not sample from a generative model as is typical in Bayesian
reinforcement learning.

Information from previous tasks can also be transferred
as priors for a new task through model-based approaches.
Sunmola (2013) proposes one such approach by maintaining
a distribution over all possible transition models which could
describe the current task and environment, and updating this
belief every time an action is taken. Transfer is achieved by
using the experience of state transitions in previous tasks to
update beliefs when the agent first encounters each state in
the new task, before anything is known about the transition
probabilities from that state. Local feature models are also
used to facilitate generalisation.

Sherstov and Stone (2005) also address transferring ac-
tion preferences. In problems with large action sets, they try
to either cut down the action set, or bias exploration in learn-
ing. The difference in this work is that the reduced action
set, based on what they call the relevance of an action, is de-
termined from the training data of optimal policies for the
entire domain, rather than for each state or observation. This
has the effect of pruning away actions that are always harm-
ful throughout the domain, but the pruning is not context-
specific.

Options (Precup, Sutton, and Singh, 1998) are a popu-
lar formalism of hierarchical reinforcement learning, and
are defined as temporally extended actions with initiation
sets where they can be invoked, and termination conditions.
There are many approaches to learning these, see e.g. Pick-
ett and Barto (2002). Although there are similarities be-
tween learning the initiation sets of options and action pri-
ors, they are distinct, in that an initiation set defines where
the option can physically be instantiated, whereas an action
prior describes regions where the option is useful. This is
the same distinction that must be drawn between learning
action priors and the preconditions for planning operators
(e.g. Mourão et al. (2012)). For example, while pushing hard
against a door may always be physically possible, this level
of force would be damaging to a glass door, but that choice
would not be ruled out by options or planning preconditions.
Consequently, action priors not only augment preconditions,
but are beneficial when using large sets of options or opera-
tors, in that they mitigate the negative impact of exploration
with a large action set.

One approach to reusing experience is to decompose an
environment or task into a set of subcomponents, learn op-
timal policies for these common elements through meth-
ods such as imitation learning (Argall et al., 2009) or ap-
prenticeship learning (Abbeel and Ng, 2004; Rosman and
Ramamoorthy, 2010), and then piece them together (Foster
and Dayan, 2002), possibly applying transforms to make the

subcomponents more general (Ravindran and Barto, 2003).
This is the philosophy largely taken by the options frame-
work. Our method differs by discovering a subset of rea-
sonable behaviours in each perceptual state, rather than one
optimal policy. Our priors can thus be used for a variety of
different tasks in the same domain, although the policy must
still be learned. As a result, our method is also complemen-
tary to this decomposition approach.

The idea of using a single policy from a similar problem
to guide exploration is a common one. For example, policy
reuse (Fernandez and Veloso, 2006) involves maintaining a
library of policies and using these to seed a new learning
policy. The key assumption is that the task for one of the
policies in the library is similar to the new task. While we
acknowledge that this is a very sensible approach if the poli-
cies are indeed related, we are instead interested in extract-
ing a more abstract level of information about the domain
which is task independent, and thereby hopefully useful for
any new task.

Other authors have explored incorporating a heuristic
function into the action selection process to accelerate re-
inforcement learning (Bianchi, Ribeiro, and Costa, 2007),
but this does not address the acquisition of these prior be-
haviours, is sensitive to the choice of values in the heuristic
function, and requires setting additional parameters.

Action priors are related to the idea of learning affor-
dances (Gibson, 1986), being action possibilities provided
by some environment. These are commonly modelled as
properties of objects, and can be learnt from experience (e.g.
Sun et al. (2010)). The ambitions of action priors are how-
ever slightly different to that of affordances. As an example,
learning affordances may equate to learning that a certain
class of objects is “liftable” or “graspable” by a particular
robot. We are instead interested in knowing how likely it is
that lifting or grasping said object will be useful for the tasks
this robot has been learning. Ideally, action priors should be
applied over action sets which arise as the result of affor-
dance learning, making these complementary concepts.

Conclusion
The problem of learning across multiple tasks is an impor-
tant issue, as much knowledge gained during the learning of
previous tasks can be abstracted and transferred to accelerate
learning of new tasks. We address this problem by learning
action priors from the policies arising from solving a collec-
tion of tasks. These describe context-specific distributions
over the action set of the agent, based on which actions were
used in different optimal policies under the same conditions.

We have shown that by learning priors over actions, an
agent can improve performance in learning tasks in the same
underlying domain. These priors are learned by extracting
structure from the policies used to solve various tasks in the
domain. By maintaining these distributions over the action
space, exploration in learning new policies is guided towards
behaviours that have been successful previously.

Our experiments show that this approach leads to faster
learning, by guiding the agent away from selecting actions
which were sub-optimal in other policies in the same do-
main. This approach essentially limits the branching fac-



tor caused by large action sets, and prunes the decision tree
of options available to the agent during sequential decision
making, based on successful behaviours in other tasks.

In future work we aim to apply this approach to knowl-
edge transfer on real robotic systems, consisting of tasks
with higher dimensionality and imperfect sensing, with the
aid of perceptual templates for robustness. Additionally, we
are investigating the application of action priors to other de-
cision making paradigms, most notably planning.
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