
A Multitask Representation using Reusable Local Policy Templates

Benjamin Rosman
School of Informatics

University of Edinburgh, UK
Council for Scientific and Industrial Research

South Africa
B.S.Rosman@sms.ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh, UK
s.ramamoorthy@ed.ac.uk

Abstract

Constructing robust controllers to perform tasks in large, con-
tinually changing worlds is a difficult problem. A long-lived
agent placed in such a world could be required to perform a
variety of different tasks. For this to be possible, the agent
needs to be able to abstract its experiences in a reusable way.
This paper addresses the problem of online multitask deci-
sion making in such complex worlds, with inherent incom-
pleteness in models of change. A fully general version of
this problem is intractable but many interesting domains are
rendered manageable by the fact that all instances of tasks
may be described using a finite set of qualitatively meaning-
ful contexts. We suggest an approach to solving the multitask
problem through decomposing the domain into a set of capa-
bilities based on these local contexts. Capabilities resemble
the options of hierarchical reinforcement learning, but pro-
vide robust behaviours capable of achieving some subgoal
with the associated guarantee of achieving at least a partic-
ular aspiration level of performance. This enables using these
policies within a planning framework, and they become a
level of abstraction which factorises an otherwise large do-
main into task-independent sub-problems, with well-defined
interfaces between the perception, control and planning prob-
lems. This is demonstrated in a stochastic navigation exam-
ple, where an agent reaches different goals in different world
instances without relearning.

1 Introduction
A long-lived autonomous robot in a complex and contin-
uously changing world is expected to make a sequence of
nontrivial decisions. These decisions must be made despite
incompleteness in available information and limitations on
computational resources, and the robot may be required to
complete tasks, without much time for exploration.

This combination of issues makes the decision problem
difficult to address using standard methods such as those
based on optimisation of expected reward in a Markov De-
cision Process (MDP). In much of the way this theory has
been developed, the agent operates in one particular environ-
ment (at one time), specified – explicitly or implicitly – by
a particular combination of transition dynamics, state-action
representation and reward process. The problem of extend-
ing such work to changing environments is a topic of cur-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rent research. Some interesting approaches include robust
dynamic programming with respect to a bounded family of
MDPs (Yu and Mannor 2009), viewing the non-stationarity
as arising from mode switches within a set of MDPs (Choi,
Yeung, and Zhang 1999) and modifying the value itera-
tion process to accommodate online estimates of transi-
tion/reward statistics (Jaulmes, Pineau, and Precup 2005;
da Silva et al. 2006). The more practicable of these re-
sults view the problem as one of repairing a base policy
with respect to changes, which may be inadequate in the
sort of domains we are interested in studying. This notion
of adaptation is also related to transfer learning (Taylor and
Stone 2009). In this setting, there have been successful in-
stances of reusing learned strategies for tasks in closely re-
lated worlds, but the larger issue of adapting and construc-
tively developing representations is largely open.

A primary difficulty for the operation of a robot in this
type of problem is to make sense of the vast degree of vari-
ability it may encounter. An elegant mechanism for pos-
ing such problems with hidden or incomplete information is
the partially observable Markov decision process (POMDP),
or the I-POMDP in the interactive multiagent setting (Gmy-
trasiewicz and Doshi 2005). These models involve updating
belief distributions over state space, but unfortunately the
problem of coping with this richness becomes quickly in-
tractable under such models as the state space grows (Lane
and Smart 2005). The implications are that an agent attempt-
ing to model the real world must develop some succinct rep-
resentation of experiences in order to quickly approximate
and reason about new environments.

People, and animals, when faced with these kinds of de-
cision problems in changing environments, seem to conquer
this complexity in a way that suggests that the answer may
lie not so much in faster and better algorithms but in a clever
encoding of the problem. Indeed, it has long been argued
that the representation of problems of reasoning about ac-
tions has a dramatic effect on problem solving efficiency
(Amarel 1968; Korf 1980). More recently, it has also been
shown that when faced with the problem of acting optimally
in environments with significant structural uncertainty, the
mathematically optimal solution may be to adopt coarse
strategies that are better adapted to the family of tasks (Book-
staber and Langsam 1985). These coarse strategies are more
likely to provide reusable components which are of lower

complexity than the global problem, making policy learning
and instantiation faster. An excellent example of a multitask
encoding that addresses some of these issues is seen in the
work of Burridge, et al. (Burridge, Rizzi, and Koditschek
1999), based on the notion of sequential composition by
separating local policies from a global strategy. This was a
carefully hand-crafted engineering design. In this paper, we
propose a way to achieve a similar effect by a method that is
more constructive, based on learning from direct experience.

Our premise is that although global aspects of the deci-
sion problem are subject to continual change, many inter-
esting instances of complex worlds are generated from a
small number of qualitatively meaningful contexts. There
is reason to believe that there is latent local structure in
many domains of interest, and worlds are not completely
arbitrary in their formation. A large, and potentially in-
finite, set of instances of a domain may be generated (at
least in an approximate sense) from some finite, and hope-
fully small, set of prototypical contexts. Particular ex-
amples can be seen, for example, in the strategy space
of the complex game of Go (Georgeot and Giraud 2011;
Liu, Slotine, and Barabási 2011). More general approaches,
such as belief space compression (Roy, Gordon, and Thrun
2005), suggest that such structure exists more fundamentally
as an underlying manifold in many decision problems.

We introduce the idea of a capability, as a behaviour
that an agent can instantiate in particular settings to consis-
tently achieve some desired result. This couples the con-
trol and perception problems, so the framework can exploit
the strengths of both these fields, as well as planning for
structuring sequences of capabilities. Capabilities are com-
ponent policies that may be composed for one-shot tasks,
and are used as a basis for flexible policy composition, en-
abling transfer of skills between environments. We demon-
strate this in a spatial navigation domain, involving random
environments and stochastic agents with dynamics unknown
to the learning agent. This enables a robot to quickly plug
into a new task and function sensibly, by estimating coarsely
optimal policies (in a component sense) on the fly in previ-
ously unexplored regions of state space using local models.

2 A Decomposition of Structure
The key element of this work is the idea of an agent learning
capabilities to decompose an environment, and use that to
form a set of reusable policy templates that may be com-
posed later. A capability consists of a context and a be-
haviour. The context is a state abstraction, identified from
the observations made by the agent. When the agent is in the
appropriate context, that capability becomes active. This al-
lows the agent to invoke the associated behaviour. Formally,
define a capability C as

C := 〈χ, µ, p, δ〉 (1)

where χ is the context under which C is applicable, µ is
the policy associated with C, and p is the predicate achieved
with probability 1−δ, by executing policy µ in χ. As such, δ
is a measure of the robustness, or a performance guarantee,
of the capability.

The intuition behind this is that a subset of behaviours
are applicable only in certain situations, under specific con-
ditions. When those conditions are met, the associated be-
haviours become viable. Furthermore, an agent finding itself
in an unfamiliar situation may try to invoke behaviours from
the closest matching contexts to bootstrap its knowledge of
the new scenario, rather than learning from scratch.

An overview of the procedure is presented in Figure 1.
This illustrates how the experiences of an agent (a mobile
robot in this depiction) can be used to learn a set of proto-
typical contexts which represent some of the compositional
elements of the structure of the world within which it finds
itself. Associating learnt policies with these contexts (to-
gether with their intended outcomes and robustness mea-
sures) define a set of capabilities for the agent, which allow
it to achieve some local predicate (such as navigating a lo-
cal region of a map). The learning of contexts is presented
in Section 3 and the association and learning of policies is
covered in Section 4.

A capability can be regarded as an abstract policy, which
is applicable only under particular local conditions, as de-
fined by the context. This allows for policy reuse and skill
transfer between different instances of a domain.

Figure 1: The representation building process. (a) A snip-
pet from the environment containing the agent, where two
instances of North-South corridors have been identified (b)
State vector (sensor readings) acquired by the agent in ran-
dom exploratory moves through the environment (c) Repre-
sentation of contexts encountered by the agent (d) Landmark
contexts extracted from the network (e) Symmetry reduced
landmark set, with annotated operators (f) Policies learned
offline, applicable in that context. Note that landmarks (e)
and policies (f) define the basic capabilities of the agent.

As an example, consider a simple navigation domain,
such as that presented in Figure 2. In this case, learning the
different local structures of navigable space equips the agent
with the knowledge needed to survive and navigate other
similar worlds. The agent can thus acquire policy templates
in each context which work up to a performance guarantee δ.
An example of this is presented in Section 5. Furthermore,
composition of these local structures provides temporal ex-
tension and allows for planning, as discussed in Section 6.

Structural context is not limited to navigation domains.
Recurring motifs can be seen in other domains such as ma-
nipulation tasks, by taking into account topological descrip-
tors of the objects in the robot’s workspace (Rosman and
Ramamoorthy 2011). Figure 3 provides one such example

Figure 2: (a) An example navigation world, where the white
regions are navigable corridors (b) The local contexts ex-
tracted automatically by the method described in Section 3

of the feature of holes in object configurations.

Figure 3: Two examples of topologically equivalent holes
detected in scenes with multiple objects. The semantic no-
tion of a “hole” is a contextual feature which describes the
structure of the scene

Given a learnt set of capabilities C, the agent operates by
using observations ot at time t to determine its current con-
text χt. The current context is identified as the one for which
some distance measure d(·, ·) from ot is minimised, i.e.

χt = argmin
χ
{d(χ, ot)}. (2)

Capabilities which can be invoked, Ct, are then any with a
context matching χt:

Ct = {C ∈ C|χC = χt}. (3)

The agent may then invoke any capability in Ct, depend-
ing on which is best suited to the current task. Mechanisms
for planning and a representation for composing capabilities
in a temporally extended manner are discussed in Section 6.

3 Perceptual Contexts
The function of a context is to ground the behaviours of the
agent in its perception, through a set of primitive templates
which describe some landmarks used in the latent process
which generates worlds in the domain. As a result, contexts
can be learned from commonly occurring sets of states as the
agent randomly explores worlds generated from the domain,

much in the spirit of bootstrap learning (Pierce and Kuipers
1997).

The problem of learning contexts is one of uncovering
latent structure in perceptual space in terms of learning a
decomposition based on experience of observations. These
are then used as a discretisation of state space, where each
discrete context has an inherent meaning, represented by a
capability, giving a set of policies usable in that context.

A capability is a form of partial model, which can make
limited predictions about the evolution of the world. This
only happens when a capability is active, which is in turn
defined by the context, and when the agent is in a setting
which matches that context. In the experiments reported in
Section 5, the contexts are defined by particular patterns of
free space around the agent. However, structure exists in
many domains, such as that shown in Figure 3 where poli-
cies may correspond to grasp types.

One way to implement this, the procedure used in our ex-
periment in Section 5, is described as follows:

1. Experience multiple instances of the domain through ran-
dom exploration,

2. Collect all sensory experiences into a Growing Neural
Gas (GNG) network in perception space, which is a form
of self-organising map (Fritzke 1995),

3. Skeletonise GNG network into a set of landmark contexts
by removing spurious edges which do not affect the topol-
ogy of the network,

4. Learn and associate policies with the reduced set of con-
texts (see Section 4).

Using the GNG network means that the topology of the dis-
tribution of structures is modelled, and higher density re-
gions are better represented. The procedure for acquiring the
structural knowledge of contexts (with associated policies)
for the navigation problem is illustrated in Figure 1. The
resulting network represents the clusters in sensory space
experienced by the agent, with topological connectivity be-
tween them. This method, similarly to other approaches
such as vector quantisation, results in a clustering of per-
ceptions to provide a basis of landmarks.

As mentioned previously, fitting a capability requires
finding an approximate match between the current percep-
tions of the agent, and the context associated with that ca-
pability. If any contexts match the current perceptions, then
the agent is in that context, implying the associated capabil-
ity could be invoked in the current situation. If, at a given
point in time, no contexts match the current perceptions of
the agent (minχ{d(χ, ot)} ≥ τ for some threshold τ), then
the context set is not rich enough to encapsulate the domain.
In this case, the closest matching contexts could still be used,
although the expected rewards of the capabilities may not be
achieved. Alternatively, this indicates a situation when more
learning is required. Note that context fitting and detection
is based on the observation signal rather than the reward sig-
nal (da Silva et al. 2006). This is a faster and more plausible
process (an agent can determine this when first entering a
new context) and is a direct result of the tighter integration
of perception into the framework.

4 Local Policies
Given a decomposition of the structure of the world into a
set of basis contexts, the agent learns a set of local control
policies associated with each of these contexts, to form capa-
bilities. Each context may have several capabilities based on
it, depending on the number of local goals which the agent
may try achieve in that context.

There are different ways in which an agent could automat-
ically determine local goals, e.g., through heuristics which
identify regions of interest in a context. The approach taken
in the experiment in Section 5 is that a “bag of goals” is ini-
tially provided to the agent, which is required to determine
which of these are possible in each context. This set of lo-
cally possible goals are then used for training the policy set.

Learning of the policies can, in the base case, proceed
with an A∗ algorithm or reinforcement learning techniques
such as value function learning (Sutton and Barto 1998) over
the reduced state space defined by χ. In contexts containing
other strategic agents, game theoretic procedures such as re-
gret minimisation or other online learning techniques (Foster
and Vohra 1999) may be favourable.

Learning the policy µ occurs in the neighbourhood given
by χ and provides a mechanism for the agent to achieve the
predicate p from χ. In this way, a policy acts as a funnel,
to move the agent from the region of state space represented
by χ to a region wherein p is true. As a number of capabil-
ities are usually associated with the same context, there are
a corresponding number of funnels starting from the same
region but moving the agent towards several potential out-
comes (depending on the capability selected).

These policies are learnt offline, once the prototypical
contexts of the world have been identified or, as in the case
of lifelong learning, whenever a new context is identified.
The agent determines which of the possible goals are feasi-
ble in that context, and for each local goal, learns a policy to
achieve it.

Each capability C = 〈χC , µC , pC , δC〉 also has an asso-
ciated robustness, δC . This robustness is estimated empiri-
cally, through the proportion of times that executing µC in
χC succeeded in making pC true,

δC = 1− # times µC in χC ⇒ pC = true
times µC in χC

. (4)

A low robustness (δC → 1) indicates that the policy can-
not reliably achieve pC . This suggests there could be a latent
factor which has not been considered in χC , and so a more
refined model of this situation is required. The execution
of a policy µ, once initiated in a context χ, proceeds by at-
tempting to maintain the predicate p. It is desirable to have
policies that are locally robust (Nilim and El Ghaoui 2005).

5 An Experiment
We demonstrate the use of this representation in transfer be-
tween one-shot tasks in a dynamic two-dimensional naviga-
tion domain. Random worlds are generated, with the agent
placed at a random initial position, and tasked with reaching
a random goal location. This must be done while avoiding
an arbitrary number of dynamic obstacles with unknown dy-
namics. The aim is to illustrate that this method provides an

agent with the ability to survive a multitude of widely vary-
ing worlds with dynamic components. These are one-shot
tasks, in that the agent has only a single attempt at each task,
and a new world is generated for each instance.

Worlds are generated as polygons of between four and
twelve sides, with no restrictions on convexity. They thus
vary considerably in size, and shape. A random number
of dynamic obstacles (between 10 and 15) are added to the
world. These obstacles move arbitrarily (in our simulation,
execute a random walk) over the world, at a speed of 0.6 of
the agent’s speed. Example worlds are shown in Figure 4.

Figure 4: Six sample worlds, with dynamic obstacles and
their motion traces, the agent trajectory and a goal location.

In training, the agent moved randomly around 100 worlds,
for 300 time steps each, while building a GNG network of
contexts in the domain. The agent was equipped with 32
ring-arranged range-sensors, which provide the state infor-
mation. The resulting GNG network contained 593 nodes,
which were reduced to a set of 9 landmarks. Each landmark
had up to four policies trained on it: one for moving in each
direction, if that was possible from that landmark. These
were provided as four predicates which the agent should try
and learn to achieve in each context.

A difficulty with evaluation concerns performance opti-
mality on these tasks. To the best of our knowledge, there
are no competing methods which would allow successful
performance in all these worlds, online. In the absence of
comparative experiments, one might look at optimality cri-
teria. However, without knowledge of all dynamic obsta-
cle trajectories (only available post hoc), or a corresponding
generative model, optimality isn’t well defined. Comparing
an online algorithm to an optimal trajectory based on retro-
spective knowledge is not helpful. Instead, these solutions
are compared to those of an optimal A∗ shortest path, run on
stationary snapshots of the world, inspired by the concept of
regret in online learning.

Figure 5: Results of reaching the target in 1549 different dy-
namic worlds. The histogram shows the error in the agent’s
path length, compared to that of the optimal solution in the
stationary task where the obstacles were kept static. The
median value is also shown.

Results in Figure 5 show the difference in path lengths of
our solution and the optimal solution, as a fraction of the op-
timal solution, for a total of 1549 different worlds. Bearing
in mind that the agent was acting online, in a dynamic envi-
ronment performing one-shot tasks, these results show that
in the majority of instances the solution path was not con-
siderably longer than the optimal solution in the stationary
world: in fact, generally less than 50% longer. There is a
long tail to this distribution, indicating there were cases with
which the online agent struggled. These typically amount to
situations where the agent was required to navigate tight pas-
sageways (static or dynamic) to reach the goal. In these cor-
ner cases, improvements could be made by using the above
trajectories to jumpstart solutions for an agent which is oper-
ating longer in these worlds, as a seed trajectory to be further
optimised by other techniques. However, these trajectories
still bootstrap performance for the one-shot tasks.

6 Planning Globally
This capability model endows an agent with the ability to act
robustly in some local capacity. Using these capabilities, the
agent was shown to be able to act myopically by online se-
lection of applicable policies, using a guiding heuristic. This
is however insufficient for long-term planning, and achiev-
ing goals requiring a sequence of subgoals. What is required
in this case is a structuring of multiple behaviours, in order
for some to move the agent into states from which other be-
haviours can be instantiated, bringing the agent towards the
desired goal. Capabilities are then compositional elements,
in terms of which sequenced and parallel capabilities can be
defined, much as in the case of, say, options.

For an agent to be able to achieve a goal state g, it must
appear as the output of a capability. If g is not immediately
attainable in the current context, the agent leverages the fact
that predictions are made in the form of p, with performance
guarantees. Each capability guides the agent from one set of
states χ to another set p with some probability 1 − δ. This
probability bounds the performance of each capability. Pre-
dictable results with performance bounds enable capabilities
to be used as controllers which direct the agent towards de-
sired regions of state space in the spirit of funnels (Burridge,
Rizzi, and Koditschek 1999) or skill chaining (Konidaris and
Barto 2009). Thus long-term plans are maps between ab-
stract capabilities, with no notion of the time required for the
transitions. The abstract capabilities organise policy space
as a form of knowledge representation.

To achieve a long-term goal, the agent reasons iteratively
backwards from the goal through causal chains to determine
courses of action with the required consequences. How-
ever, in any dynamic environment the world will change,
and so planning should be done in terms of weak precondi-
tions, which needs abstraction. It is also possible that a plan
could fail, if an unpredicted event transpires during plan ex-
ecution. This would push the agent’s state into a different,
unexpected context. To mitigate these effects, it makes sense
for the agent to plan while keeping its options open. We thus
require a data structure for planning with these requirements.

One proposal for a general purpose structuring of these
capabilities is to organise them as a simplicial complex,

which is a higher-order generalisation of a graph. In the
semantics of this structure, each capability is represented by
a single vertex. An edge appears between two vertices Ca
and Cb if the predicate pa ∧ pb can be held in the region de-
fined by χa ∩ χb. This means that the two capabilities can
be achieved simultaneously. Similarly, faces can be defined
between sets of three vertices, tetrahedra between four, etc.

These higher-order substructures within the capability
simplicial complex can be learnt through exploration, incre-
mentally, as the agent discovers that several of these pred-
icates may be held simultaneously. These represent local
tasks which the agent can perform in parallel, which provide
faster trajectories towards global goals.

In the paradigm of the capability simplicial complex, a
global plan becomes a mapping between different substruc-
tures on the complex. This provides the agent with a for-
malism for encoding the probabilistic transitions between
capabilities, as these transitions are labelled by their like-
lihood, which is learnt from experience. This knowledge is
also transferrable between instances of the same domain, or
tasks in those instances. In current work, we are trying to
show that these transitions speed up the planning process,
by identifying capability transitions that may or may not be
particularly reliable. If the agent chooses policies to always
keep it on the substructure of highest dimensionality possi-
ble, then it is essentially keeping options open for respond-
ing to changes in the world, by making a least commitment
to specific states, despite limited knowledge about the exact
stochastic process of future evolution of the world.

For purposes of planning globally, this capability simpli-
cial complex provides a concise alphabet of domain-specific
subproblems, with simultaneous capabilities as well as tem-
poral mappings on the same structure. This provides the
agent with a topological encoding of the entire domain in
terms of capabilities, and the knowledge required to address
the combination of local uncertainty and a global objective.

7 Related Work
The capability model is closely related to hierarchical rein-
forcement learning with options (Precup, Sutton, and Singh
1998), being temporally extended actions defined as O =
〈I, µ, β〉, which are tuples of initial states, policies and dis-
tribution over termination states respectively. They allow
for subcomponents of solution trajectories to be learned
independently and reused. The question of learning op-
tions remains in general an open question, but has been ap-
proached from many different angles (Şimşek, Wolfe, and
Barto 2005; Pickett and Barto 2002). Extensions to the op-
tions model have improved generalisability, such as using
homomorphisms to define mappings between relativised op-
tions (Ravindran and Barto 2003). The relation between this
and our capabilities model is that options have no notion of
robustness with respect to a set of contexts.

Other related approaches to problem decomposition in-
clude using libraries of behaviours matched with nearest
neighbours (Stolle and Atkeson 2007). They differ from the
capability model in that capabilities are grounded in percep-
tual contexts and are coupled to sets of robust behaviours.
More symbolic approaches to task decomposition include

a complete abstraction of actions in terms of their precon-
ditions and postconditions (Pasula, Zettlemoyer, and Kael-
bling 2007), which allows for planning with the effects of
these actions, efficiently as a dynamic Bayesian network
(Toussaint 2009). The distinction is that rather than abstract-
ing using a logical state about which one can reason using
traditional inference methods (logical or probabilistic), we
chain abstract sub-problems as a composition technique.

The capability model is also related to collections of par-
tial models (Talvitie 2010), which have partial models mak-
ing restricted predictions in restricted settings. Our model
extends this by coupling these models with policies, local
goals and a notion of robustness.

8 Conclusion
We present a representation for re-describing worlds gener-
ated in a domain, to associate abstract capabilities with local
contexts that are useful across many task instances. This
equips the agent to deal with changing worlds and tasks, en-
abling flexible online decision making through coarsely op-
timal modular policies, with local scope and reduced com-
plexity. This capability model allows for decomposing the
entire domain, rather than a single task. This provides a rep-
resentation useful for multitask scenarios, and transferring
knowledge learnt in one task to others in the same domain.

9 Acknowledgements
This work has taken place in the Robust Autonomy and De-
cisions group within the Institute of Perception, Action and
Behaviour, School of Informatics. Research of the RAD
Group is supported in part by grants from the UK Engineer-
ing and Physical Sciences Research Council (grant number
EP/H012338/1) and the European Commission (TOMSY
Grant Agreement 270436, under FP7-ICT-2009.2.1 Call 6).
The authors gratefully acknowledge the anonymous review-
ers for their insightful comments and suggestions.

References
Amarel, S. 1968. On representations of problems of reasoning
about actions. Machine Intelligence 3:131–171.
Bookstaber, R., and Langsam, J. 1985. On the optimality of coarse
behavior rules. Journal of Theoretical Biology 116(2):161–193.
Burridge, R. R.; Rizzi, A. A.; and Koditschek, D. E. 1999. Sequen-
tial composition of dynamically dexterous robot behaviors. The
International Journal of Robotics Research 18(6):534–555.
Choi, S. P. M.; Yeung, D.-Y.; and Zhang, N. L. 1999. Hidden-
mode markov decision processes. International Joint Conference
on Artificial Intelligence, Workshop on Neural Symbolic, and Re-
inforcement Methods for Sequence Learning 9–14.
Şimşek, Ö.; Wolfe, A. P.; and Barto, A. G. 2005. Identifying use-
ful subgoals in reinforcement learning by local graph partitioning.
International Conference on Machine Learning 817–824.
da Silva, B.; Basso, E.; Bazzan, A.; and Engel, P. 2006. Dealing
with non-stationary environments using context detection. Interna-
tional Conference on Machine Learning 217–224.
Foster, D. P., and Vohra, R. 1999. Regret in the on-line decision
problem. Games and Economic Behavior 29:7–35.

Fritzke, B. 1995. A growing neural gas network learns topologies.
Advances in Neural Information Processing Systems 625–632.
Georgeot, B., and Giraud, O. 2011. The game of go as a complex
network. arXiv:1105.2470.
Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for se-
quential planning in multi-agent settings. Journal of Artificial In-
telligence Research 24:49–79.
Jaulmes, R.; Pineau, J.; and Precup, D. 2005. Learning in non-
stationary partially observable markov decision processes. ECML
Workshop on Reinforcement Learning in Non-Stationary Environ-
ments.
Konidaris, G. D., and Barto, A. G. 2009. Skill discovery in continu-
ous reinforcement learning domains using skill chaining. Advances
in Neural Information Processing Systems 22:1015–1023.
Korf, R. E. 1980. Toward a model of representation changes. Ar-
tificial Intelligence 14(1):41–78.
Lane, T., and Smart, W. D. 2005. Why (po)mdps lose for spatial
tasks and what to do about it. International Conference on Machine
Learning.
Liu, Y.-Y.; Slotine, J.-J.; and Barabási, A.-L. 2011. Controllability
of complex networks. Nature 473:167–173.
Nilim, A., and El Ghaoui, L. 2005. Robust control of markov
decision processes with uncertain transition matrices. Operations
Research 53(5):780–798.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of Arti-
ficial Intelligence Research 29(1):309–352.
Pickett, M., and Barto, A. G. 2002. Policyblocks: An algorithm
for creating useful macro-actions in reinforcement learning. Inter-
national Conference on Machine Learning 506–513.
Pierce, D., and Kuipers, B. J. 1997. Map learning with uninter-
preted sensors and effectors. Artificial Intelligence 92:169–227.
Precup, D.; Sutton, R. S.; and Singh, S. 1998. Theoretical results
on reinforcement learning with temporally abstract options. Euro-
pean Conference on Machine Learning.
Ravindran, B., and Barto, A. G. 2003. Relativized options: Choos-
ing the right transformation. Proceedings of the Twentieth Interna-
tional Conference on Machine Learning.
Rosman, B. S., and Ramamoorthy, S. 2011. Learning spatial re-
lationships between objects. International Journal of Robotics Re-
search 30(11):1328–1342.
Roy, N.; Gordon, G.; and Thrun, S. 2005. Finding approximate
pomdp solutions through belief compression. Journal of Artificial
Intelligence Research 23:1–40.
Stolle, M., and Atkeson, C. G. 2007. Knowledge transfer using
local features. IEEE International Symposium on Approximate Dy-
namic Programming and Reinforcement Learning 26–31.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. The MIT Press.
Talvitie, E. N. 2010. Simple Partial Models for Complex Dynami-
cal Systems. Ph.D. Dissertation, The University of Michigan.
Taylor, M. E., and Stone, P. 2009. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine Learning
Research 10:1633–1685.
Toussaint, M. 2009. Probabilistic inference as a model of planned
behavior. German Artificial Intelligence Journal 3.
Yu, J. Y., and Mannor, S. 2009. Arbitrarily modulated markov de-
cision processes. IEEE Conference on Decision and Control 2946–
2216.

