
What Good are Actions?
Accelerating Learning using Learned Action Priors

Benjamin Rosman
Institute of Perception, Action and Behaviour

School of Informatics
University of Edinburgh, UK.

Mobile Intelligent Autonomous Systems (MIAS)
CSIR, South Africa

B.S.Rosman@sms.ed.ac.uk

Subramanian Ramamoorthy
Institute of Perception, Action and Behaviour

School of Informatics
University of Edinburgh, UK

s.ramamoorthy@ed.ac.uk

Abstract—The computational complexity of learning in sequen-
tial decision problems grows exponentially with the number of
actions available to the agent at each state. We present a method
for accelerating this process by learning action priors that express
the usefulness of each action in each state. These are learned from
a set of different optimal policies from many tasks in the same
state space, and are used to bias exploration away from less useful
actions. This is shown to improve performance for tasks in the
same domain but with different goals. We extend our method
to base action priors on perceptual cues rather than absolute
states, allowing the transfer of these priors between tasks with
differing state spaces and transition functions, and demonstrate
experimentally the advantages of learning with action priors in
a reinforcement learning context.

I. INTRODUCTION

A major goal of the artificial intelligence community is the
development of autonomous robots capable of performing a
wide variety of tasks and operating autonomously for extended
periods of time. Such flexibility requires a large repertoire
of skills — potentially including both preprogrammed skills,
increasingly transferred between robots by standard operating
systems such as ROS, and skills acquired by the robot au-
tonomously over the course of its operational lifetime. One
way to view the developmental process is that it is primarily
concerned with the accumulation of skills.

However, access to a rich palette of possible skills comes
with a cost: it can significantly increase the computational
complexity of learning and/or planning. The robot is faced
with a decision-making problem that has complexity exponen-
tial in the number of possible actions in each situation. This
additional complexity has the potential to fatally undermine
the advantages of either starting with a wide range of skills,
or acquiring a large number of skills over time.

Humans face a similar problem. A very large number of
behaviours could be invoked by a person at any point in time,
and although all are in theory useful, in most cases only a
handful of context-relevant actions make sense at that point
in time. For example, when confronted with a closed door,
one may think of pushing it, pulling it, unlocking it, turning
the handle, etc. Although these are all physically possible,
the idea of licking the door or punching it are unlikely to

occur to the person. It seems likely that people control the
computational explosion arising from reasoning through chains
of actions by restricting themselves to prioritising small sets
of “useful” actions. Which actions are useful in a situation can
be determined by introspecting over what has been previously
learned in the same or similar settings, and using the past
experience of optimal behaviours from many different tasks
to guide exploration. This introspection could be a gradual
process over a lifetime, allowing the person to become an
expert in that particular scenario. A similar phenomenon has
been noted in chess [1], where experts are able to quickly limit
the set of moves to be considered from any given position; an
ability that seems lacking in less experienced players.

This problem is an excellent example of one where a
developmental and life-long approach yields benefits. By con-
sidering the statistics of action choices over a lifetime, we
obtain restrictions to search that may not have been obvious
if each task was solved in isolation. Also, as the human
example demonstrates, there is reason to believe that this
is an important ingredient in the development of expertise.
Furthermore, we suggest conditioning this information on local
perceptual information, the context of the agent, as this is more
flexible than relying on global state identification and is known
to help facilitate knowledge transfer [2].

We present two methods for learning prior action selection
distributions over the actions available to an agent, depending
on either the state of the agent or the agent’s perception (the
context). These priors arise from previous experience in similar
settings, and can be used to bias action selection. We pose our
problem in the setting of reinforcement learning in discrete
Markov Decision Processes. The topic we wish to address is
the extent to which priors over an action set can be learned
from other policies in the same environment, and used to
accelerate subsequent learning. This is similar to the idea of
ordering actions according to relevance in the domain [3].

Our proposed approach involves combining a set of policies
learned in a single domain, by constructing action priors as a
Dirichlet distribution. This is a form of lifelong learning, as the
priors improve with the number of tasks the agent carries out
in that domain. It can also be regarded as a form of transfer

learning [4] because these priors are learned from previous
policies, although we are interested in transferring preferences,
rather than the policies themselves.

The first method we present conditions the action priors
on the state, and the second has them conditioned on the
observations of the agent. This allows us to pool the priors
from different, yet perceptually similar states to enable faster
learning, and allows for priors to be transferred to different
domains with different state spaces. Grounding the action
priors in perception provides the learning agent with the ability
to perform fast look-ups from any known or unknown location,
to determine base preferences for action selection. Indeed,
this approach is compatible with more sophisticated spatial
knowledge representations [5], [6], in that richer observations
provide more structure in which to embed these priors.

We demonstrate the advantages of using action priors in a
navigation maze experiment, where we show that exploration
using action priors in the reinforcement learning paradigm
provides significant improvements in convergence speed com-
pared to the standard approach of using uniform priors.

II. PRELIMINARIES

In keeping with the standard formalism of reinforcement
learning, we assume an environment specified by a Markov
Decision Process (MDP). An MDP is defined as a tuple
(S,A, T,R, γ), where S is a finite set of states, A is a
finite set of actions which can be taken by the agent, T :
S × A × S → [0, 1] is the state transition function where
T (s, a, s′) gives the probability of transitioning from state s
to state s′ after taking action a, R : S × A × S → R is the
reward function, where R(s, a, s′) is the reward received by
the agent when transitioning from state s to s′ with action
a, and γ ∈ [0, 1] is a discount factor. As T is a probability
function,

∑
s′∈S T (s, a, s′) = 1,∀a ∈ A,∀s ∈ S.

A Markovian policy π : S × A → [0, 1] for an MDP is a
mapping from states to actions. The return, or utility, generated
from an episode of running the policy π is the accumulated
discounted reward Uπ =

∑
k γ

krk, for rk being the reward
received at step k. The goal of reinforcement learning is to
learn an optimal policy π∗ = arg maxπ U

π which maximises
the total expected return of an MDP, where typically T and
R are unknown.

Many approaches to learning an optimal policy involve
learning the value function Qπ(s, a), giving the expected re-
turn from selecting action a in state s and thereafter following
the policy π, and then using this to improve the policy.

III. LEARNING PRIORS OVER ACTION SELECTION

We define a domain by the tuple D = (S,A, T, γ), and a
task as the MDP M = (D,R) such that the state set, action
set and transition functions are fixed for the whole domain,
and each task varies only in the reward function. Given an
arbitrary set of tasks M = {M} and their corresponding
optimal policies Π = {π∗M}, we wish to learn for each state
s ∈ S a distribution θs(A) over the action set, representing
the probability of each action in A being used in an optimal

policy in the state s, aggregated over tasks. This is then used
to prioritise the actions in each state.

To provide an intuition into how this distribution represents
action “usefulness”, we say that an action a1 is more useful
than an action a2 in a state s, if a1 is used in s by more
optimal policies than a2. The setting in which we study the
phenomenon of accelerated learning in a lifelong sense is that
the tasks seen so far are sampled from a distribution of all
possible tasks, and are representative of that task space. By
studying the optimal policies that arise from multiple tasks in
the same domain, we hope to learn about the structure of the
underlying domain.

A. Combining Policies

Consider the setting in which the agent has prolonged
experience in the domain D. This means the agent has had
to solve a set of tasks in D, and we use the set of optimal
Q-functions to extract the action priors as a form of structural
information about the domain.

For each state s ∈ S in the domain, we model the action
priors θs(a), ∀a ∈ A using a Dirichlet distribution [7]. A
Dirichlet distribution is a conjugate prior of the multinomial
distribution, and so the posterior distribution has a closed-form
solution. For each state s, we maintain a count αs(a) for each
action a ∈ A. The initial values of αs(a) = α0

s(a) are known
as the pseudocounts, and can be initialised to any value by the
system designer to reflect prior knowledge. If these counts are
the same for each action in a state, i.e. αs(a) = k, ∀a ∈ A
this returns a uniform prior, which results in each action being
equally favourable.

The α counts are updated whenever a new Q-function Qnew

is available:

αnews (a) ←−

{
αs(a) + 1 if a = arg maxaQ

new(s, a)

αs(a) otherwise.

In this way, αs(a) reflects the number of times a was consid-
ered the best choice of action (leading to the highest return)
in state s in any Q-function, added to the count priors α0

s(a).
To obtain the action priors θs(a), sample from the Dirichlet

distribution: θs(a) ∼ Dir(αs). Note that θs(a) is sampled as a
probability distribution over A, and so

∑
a θs(a) = 1, ∀s ∈ S.

This process could be viewed as a form of averaging the
Q-functions. However, naive averaging is known to be prob-
lematic, and often gives detrimental results. Reward functions
may, in principle, differ by orders of magnitude, and an
averaged policy may not even be feasible. For example, given
a state s in front of an obstacle, Q-function Q1 may suggest
moving around the obstacle to the left, while Q-function Q2

indicates movement to the right. Averaging suggests moving
forward, straight into the obstacle. We instead infer that both
moving left and moving right are feasible choices to be later
explored, whereas moving forward is never the correct choice.
The action priors should consequently place more weight on
‘left’ and ‘right’ than on ‘forward’, reflecting the preferences
elicited from Q1 and Q2. This is learned from experience.

B. Trajectory-based Priors

The assumption that the agent has access to the full policy
set Π for the task set M is a strong one. We can relax this
by providing the agent with access to trajectories, rather than
full policies, sampled from some policies in the domain. These
are preferably near optimal, and may be demonstrated by some
domain expert or by the agent itself. This could easily be the
case during the process of long term development.

Define a trajectory as a sequence of states-action pairs (with
the final action being null): τ = (s0, a0), (s1, a1), . . . , (sT , ∅).
Given a trajectory τnew, and using the same Dirichlet model,
the counts are updated using

αnews (a) ←−

{
αs(a) + 1 if (s, a) ∈ τnew

αs(a) otherwise.

The counts obtained using full Q-functions and those from
sampled trajectories are compatible, which results in the agent
being able to combine knowledge from both these sources.
This is useful in the case of a long-lived agent who may, for
example, first be provided with some demonstrations, and later
learn policies for various tasks.

IV. USING THE ACTION PRIORS

An action prior provides the agent with knowledge about
which actions are sensible in situations in which the agent
has several choices to explore. As a result, they are useful for
seeding search in a policy learning process. We demonstrate
this with an adaptation of traditional Q-learning [8], called ε-
greedy Q-learning with State-based Action Priors (ε-QSAP),
and shown in Algorithm 1. Note, in this algorithm, αQ ∈ [0, 1]
denotes the learning rate, and should not be confused with the
Dirichlet distribution counts αs(a). The parameter ε ∈ [0, 1]
controls the trade-off between exploration and exploitation.
Both αQ and ε are typically annealed after each episode.

Algorithm 1 ε-greedy Q-learning with State-based Action
Priors (ε-QSAP)
Require: action prior θs(a)

1: Initialise Q(s, a) arbitrarily
2: for every episode k = 1 . . .K do
3: Choose initial state s
4: repeat

5: a←−

{
arg maxaQ(s, a), w.p. 1− ε
a ∈ A, w.p. εθs(a)

6: Take action a, observe r, s′

7: Q(s, a) ←− Q(s, a) + αQ[r + γmaxa′ Q(s′, a′) −
Q(s, a)]

8: s←− s′
9: until s is terminal

10: end for
11: return Q(s, a)

The difference between this and standard ε-greedy Q-
learning can be seen on line 5. This is the action selection step,
consisting of two cases. The first case deals with exploiting

the current policy stored in Q(s, a) with probability 1 − ε,
and the second case with exploring other actions a ∈ A with
probability ε. The exploration case is typically handled by
choosing the action uniformly from A, but instead we choose
with probability based on the prior θs(a) to shape the action
selection based on what were sensible choices in the past. This
is aided by the fact that θs(a) is a probability distribution.

The effect is that the agent exploits the current estimate of
the optimal policy with high probability, but also explores, and
does so with each action proportional to the number of times
that action was favoured in previous tasks.

V. CONDITIONING PRIORS ON PERCEPTION

The primary limitation of the state-based action priors
described in Section III is that the reuse of these priors is
restricted to specific, previously visited states in the same
domain D. In order to extend the portability of these priors,
we generalise their use by associating them with perceptual
features, rather than more specific absolute state information.
This is possible by noting that in many cases there is a
dependence between priors of different states, possibly in
the form of physical constraints or general commonsense
behaviour. This enables cross domain transfer, as the priors
may be used in different state spaces, provided the observation
space remains the same. The assumption is that even though
the action priors could be grounded in the state, they actually
relate to observations, in that the current observables dictate
useful actions, rather than some arbitrary state identification.
This change also allows action priors to be used in partially-
observable scenarios.

Therefore, instead of learning θs(a),∀s ∈ S, we learn
θo(a),∀o ∈ O, where O is the observation space. In this
case, the observations are a function of the state o(s), and
depend on the sensing capabilities of the agent. We assume
there is redundancy in the observation space, and so the inverse
mapping from observation to state is non-unique. The Dirichlet
model works just as before, with the equivalent learning
process:

αnewo(s) (a) ←−

{
αo(s)(a) + 1 if a = arg maxaQ

new(s, a)

αo(s)(a) otherwise.

Note that the priors from multiple states will map to the
same perception-based action priors, increasing the speed of
learning. This is because if the same observation is obtained at
different states, the action prior information is updated better
due to this, as more data is acquired for that observation during
a training episode. The assumption we have made is that the
world, which is potentially infinite in states, is composed of a
finite number of observational patterns.

The perceptual action priors can then similarly be used in a
variant of Q-learning. This modification, ε-greedy Q-learning
with Perception-based Action Priors (ε-QPAP), is shown in
Algorithm 2.

This variant differs from ε-QSAP in that the perceptual
action priors θo(a) are used instead of the state action priors
θs(a). The effect is that the state space S and state transition

Algorithm 2 ε-greedy Q-learning with Perception-based Ac-
tion Priors (ε-QPAP)
Require: perceptual action prior θo(a)

1: Initialise Q(s, a) arbitrarily
2: for every episode k = 1 . . .K do
3: Choose initial state s
4: repeat
5: o←−observations(s)

6: a←−

{
arg maxaQ(s, a), w.p. 1− ε
a ∈ A, w.p. εθo(a)

7: Take action a, observe r, s′

8: Q(s, a) ←− Q(s, a) + αQ[r + γmaxa′ Q(s′, a′) −
Q(s, a)]

9: s←− s′
10: until s is terminal
11: end for
12: return Q(s, a)

function T can be different to those used in the training
process, provided the observation space O remains consistent.

Line 5 refers to obtaining perceptual information (context)
from the current state. The observations repeat throughout the
domain, whereas the state information is global and unique.
The observations used in our experiments simulate simple
range scans.

Note that learning still occurs over the state space, but the
actions are defined over the observation space. The action
priors do not in fact require that the system is fully observable,
and so our approach should be easily applicable to partially
observable domains. This is because only the perceptual
information available to the agent is used, whether or not this
is an absolute and complete description of the state of the
environment and agent.

VI. EXPERIMENTS

Spatial navigation is one setting in which we believe an
agent stands to make significant gains by using action priors.
Our state-based experiment therefore takes place in a 23× 23
cell maze where every second row and column is passable
space, and the remaining cells are obstacles, creating a lattice.
Each task involves a random goal location which has to be
reached by the agent, and each episode of a task initialises the
agent in a random location in free space. The set of actions
available to the agent is to move one cell North, South, East
or West. The state available to the agent is the unique number
of the cell the agent is occupying. Reaching the goal provides
a reward of 100, walking into a wall a reward of -10, and each
action taken results in -1 reward.

The nature of this maze world is such that in most cells,
only two or three of the available actions are beneficial (do not
result in colliding with a wall). Typically, every action is tried
with equal probability during learning. However, any optimal
policy has already learned to avoid collisions, and it is this
knowledge we transfer to a new learning instance.

Fig. 1. Example perception-based action priors learned for 7×7 maze worlds,
from 50 random optimal Q-functions. The indicated directions in each cell
are those with a non-negligible probability mass, but in every cell the agent
has the choice of executing any of four directional movements. Grey cells are
obstacles, and white cells are free space.

To illustrate perception-based action priors learned from
optimal Q-functions, Figure 1 demonstrates the result of
using our methods on 7 × 7 maze worlds (smaller than our
actual 23× 23 experimental worlds for ease of visualisation),
extracted from Q-functions which were the optimal solutions
to 50 random tasks. An arrow in a cell is drawn in a direction
only if any mass was allocated to that direction by any Q-
function. Note that this results in the “useful” actions of the
domain, being the actions that do not cause collisions with
obstacles. The use of action priors effectively reduces the set
of actions from four in each cell to the subset which were
useful in the training tasks (55.26% and 63.16% of the full
action sets respectively in the examples shown in Figure 1).

The experimental procedure is as follows. We generate a
set of tasks in the domain, and allow the agent to learn the
corresponding optimal Q-functions. We then extract the action
priors θs(a) from these, using the method described in Section
III, and finally provide the agent with a new set of tasks which
use the priors for exploration as discussed in Section IV.

Figure 2 shows the improvement in convergence speed ob-
tained through the addition of action priors. These results were
averaged over learning of 10 different tasks, and this speed-
up was achieved using the policies obtained from 10 training
task optimal policies. One important observation is that the ε-
QSAP algorithm immediately receives positive return, unlike
Q-learning, as it has learned to avoid harmful actions. The
results do not include the training times for ε-QSAP, which can
be considered a once-off overhead which need not be repeated
for any future task. Alternatively, if the priors are updated with
each new task instance then ε-QSAP starts with no advantage,
but after 10 tasks achieves the performance benefits shown.

Note that the Q-learning baseline is equivalent to ε-QSAP
with a uniform action prior. Additionally, the fact that we are
modelling the action prior as a Dirichlet distribution means
that none of the action probabilities ever decrease to zero
(assuming they started with a uniform prior and α0

s(a) >
0,∀s, a). As a result, an action is never wholly excluded from
the action set, and so all convergence guarantees are retained.

The second experiment demonstrates the advantages of
ε-QPAP in tasks with different state spaces and transition
functions. The domain here was a similar 23× 23 gridworld,
but instead of the lattice configuration, a random percentage

Fig. 2. Comparing the learning rates of Q-Learning with State-based Action
Priors (ε-QSAP) to Q-learning, in the 23 × 23 maze domain. The results
are averaged over 10 different random tasks. The shaded bars below indicate
episodes taken for each method to reach 90% of optimal return. The error
bars indicate one standard deviation.

Fig. 3. Example world instances for the second experiment

of the cells are obstacles, while preserving the connectivity of
the free space. Example mazes are shown in Figure 3.

In this domain, ε-QSAP is at a disadvantage, as the structure
of the world differs greatly between trials, and in particular
the connectivity of each free cell may be very different (if that
cell indeed remains free between different trials). However,
the perceptual contexts of the agent remain the same across
trials, and so any priors learned for these percepts can be
transferred between trials. We consider here simple perception
of the occupancy of the 8 cells surrounding the current location
of the agent. This simulates a scaled down sonar, and results
in a smaller observation space than state space. The results
are shown in Figure 4, and clearly show there is no marked
difference in performance between Q-learning and ε-QSAP,
but ε-QPAP shows greatly accelerated convergence of learning.

VII. RELATED WORK

Work by Sherstov and Stone [9] has similar aspirations to
those of our own methods. In problems with large action sets
(|A| ∼ 100, often from parametrised actions), they also try to
either cut down the action set, or bias exploration in learning.
The difference is that the reduced action set, or the relevance
of an action, is determined from the training data of optimal
policies for the entire domain, rather than for each state or
observation. This has the effect of pruning away actions that
are always harmful in the domain, but the pruning is not
context-specific.

Other work on learning policy priors [10] also has similar
aspirations to our own. They propose a policy search algo-

Fig. 4. Comparing the learning rates of Q-Learning with Perception-based
Action Priors (ε-QPAP), Q-Learning with State-based Action Priors (ε-QSAP)
and Q-learning, in the 23×23 noise domain, with 50%-80% noise. The results
are averaged over 10 different random tasks. The shaded bars below indicate
episodes taken for each method to reach 90% of optimal return. The error
bars indicate one standard deviation.

rithm, based on MCMC, which learns priors over the problem
domain. The method requires the specification of a hyperprior
(abstract prior knowledge) over the prior, with the effect that
the method learns priors which it is able to share among states.
For example, the method can discover the dominant direction
in a navigation domain, or that there are sequences of motor
primitives which are effective and should always be prioritised
during search.

Learning action priors is related to the idea of dividing a
problem (or set thereof) into an agent space and a problem
space [11]. The agent space refers to commonalities between
the problems, and the problem space is specific to each task.
This formulation involves learning a reward predictor which,
in a sense, can be used to guide action selection.

Where our approach reduces computation by biasing and
restricting the search over action space, similar benefits have
been found by only searching over limited aspects of the state
space, particularly in relational planning problems. Notable
examples include reasoning only in terms of the subset of ob-
jects that are relevant for current planning purposes (relevance
grounding) [12], or using variables to stand in for the objects
relevant to the current actions (deictic references) [13].

Options [14] are a popular formalism of hierarchical rein-
forcement learning, and are defined as temporally extended
actions with initiation sets where they can be invoked, and
termination conditions. There are many approaches to learning
these [15]. Although there are similarities between learning the
initiation sets of options and action priors, they are distinct, in
that an initiation set defines where the option can physically be
instantiated, whereas an action prior describes regions where
the option is useful. For example, while punching a door may
always be physically possible, it would seldom make sense for
a robot to do this, but that choice would not be ruled out by

options. Consequently, action priors not only augment options,
but are beneficial when using large sets of options to mitigate
the negative impact of exploration with a large option set.

One approach to reusing experience is to decompose an
environment or task into a set of subcomponents, learn op-
timal policies for these common elements, and then piece
them together [16], possibly applying transforms to make
the subcomponents more general [17]. This is the philosophy
largely taken by the options framework. Our method differs
by discovering a subset of reasonable behaviours in each
perceptual state, rather than one optimal policy. Our priors
can thus be used for a variety of different tasks in the same
domain, although the policy must still be learned. As a result,
our method is complementary to this decomposition approach.

VIII. CONCLUSION

We have shown that by learning priors over actions, an
agent can improve performance in learning tasks in a single
domain. These priors are learned by extracting structure from
the policies (or trajectories) used to accomplish other tasks in
the domain. By maintaining these distributions over the action
space, exploration is guided towards behaviours that have been
successful previously.

Associating action priors with observations has the added
advantage of enabling transfer between not just different tasks
in the same domain, but different state spaces as well. As a
result, the agent can perform a fast query of a situation that has
not previously been encountered, and provided it resembles an
explored state perceptually, the action priors can be transferred.

The notion of perceptions as used here could easily be
extended to encompass topological descriptors of the environ-
ment [18]. These richer percepts could then be structured into
contexts, by means of topic models [19] or related methods,
where each observation is generated from some distribution
over topics. By first extracting structural contexts from the
environment, these would then act as the seeds for learning
action priors.

This approach to learning the usefulness of actions in differ-
ent situations is model free, as the definition of usefulness is
based on previous experience of the agent in the environment,
and which behaviours were used to achieve tasks optimally.
A more powerful learning algorithm may involve a model
based approach wherein action usefulness is defined by some
objective measure. This is a topic of our current and future
work, where we are working to model this with the regret
incurred by not taking an action in a certain state.

These results would be expected to improve with a larger
action space. Our results show that this approach can yield a
substantial improvement in learning, even in a case with only
four actions. In richer environments, with more capable agents,
one would expect the benefits of this method to increase.

The same principle demonstrated here in reinforcement
learning could additionally be applied to planning, similar to
learning initial conditions [20], and the action priors could be
used to either prune certain actions or provide a preference
list for depth-first search. In either case, this should guide the

search toward solutions that have been previously encountered,
allowing a deeper focused search with minimal additional
computational overhead.

ACKNOWLEDGEMENTS

This work has taken place in the Robust Autonomy and
Decisions group within the School of Informatics, University
of Edinburgh. Research of the RAD Group is supported by
the UK Engineering and Physical Sciences Research Council
(grant number EP/H012338/1) and the European Commission
(TOMSY Grant Agreement 270436, under FP7-ICT-2009.2.1
Call 6).

The authors gratefully acknowledge the anonymous review-
ers for their helpful and insightful comments.

REFERENCES

[1] H. A. Simon and W. G. Chase, “Skill in Chess: Experiments with chess-
playing tasks and computer simulation of skilled performance throw light
on some human perceptual and memory processes,” American Scientist,
vol. 61, no. 4, pp. 394–403, July-August 1973.

[2] M. Stolle and C. G. Atkeson, “Finding and transferring policies using
stored behaviors,” Autonomous Robots, vol. 29, pp. 169–200, 2010.

[3] D. Dey, T. Y. Liu, B. Sofman, and J. A. Bagnell, “Efficient Optimization
of Control Libraries,” AAAI, pp. 1983–1989, 2012.

[4] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning Domains: A Survey,” Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[5] H. M. Dee, D. C. Hogg, and A. G. Cohn, “Scene Modelling and
Classification Using Learned Spatial Relations,” COSIT-09, Lecture
Notes in Computer Science, no. 5756, pp. 295–311, 2009.

[6] C. Galleguillos and S. Belongie, “Context based object categorization:
A critical survey,” Computer Vision and Image Understanding, vol. 114,
no. 6, pp. 712–722, June 2010.

[7] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[9] A. A. Sherstov and P. Stone, “Improving Action Selection in MDP’s via
Knowledge Transfer,” AAAI, pp. 1024–1029, 2005.

[10] D. Wingate, N. D. Goodman, D. M. Roy, L. P. Kaelbling, and J. B.
Tenenbaum, “Bayesian Policy Search with Policy Priors,” International
Joint Conference on Artificial Intelligence, 2011.

[11] G. D. Konidaris and A. G. Barto, “Autonomous shaping: Knowledge
transfer in reinforcement learning,” Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pp. 489–496, 2006.

[12] T. Lang and M. Toussaint, “Relevance Grounding for Planning in
Relational Domains,” European Conference on Machine Learning, 2009.

[13] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, no. 1, pp. 309–352, May 2007.

[14] D. Precup, R. S. Sutton, and S. Singh, “Theoretical results on reinforce-
ment learning with temporally abstract options,” European Conference
on Machine Learning, 1998.

[15] M. Pickett and A. G. Barto, “PolicyBlocks: An Algorithm for Creating
Useful Macro-Actions in Reinforcement Learning,” International Con-
ference on Machine Learning, pp. 506–513, 2002.

[16] D. Foster and P. Dayan, “Structure in the Space of Value Functions,”
Machine Learning, vol. 49, pp. 325–346, 2002.

[17] B. Ravindran and A. G. Barto, “Relativized Options: Choosing the Right
Transformation,” Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

[18] B. S. Rosman and S. Ramamoorthy, “Learning spatial relationships
between objects,” International Journal of Robotics Research, vol. 30,
no. 11, pp. 1328–1342, September 2011.

[19] D. M. Blei, “Probabilistic Topic Models,” Communications of the ACM,
vol. 55, no. 4, pp. 77–84, April 2012.

[20] M. D. Schmill, T. Oates, and P. R. Cohen, “Learning Planning Oper-
ators in Real-World, Partially Observable Environments,” International
Conference on Artificial Planning and Scheduling, pp. 246–253, 2000.

