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Abstract— We present a method for segmenting a set of
unstructured demonstration trajectories to discover reusable
skills using inverse reinforcement learning (IRL). Each skill is
characterised by a latent reward function which the demonstra-
tor is assumed to be optimizing. The skill boundaries and the
number of skills making up each demonstration are unknown.
We use a Bayesian nonparametric approach to propose skill
segmentations and maximum entropy inverse reinforcement
learning to infer reward functions from the segments. This
method produces a set of Markov Decision Processes (MDPs)
that best describe the input trajectories. We evaluate this
approach in a car driving domain and a simulated quadcopter
obstacle course, showing that it is able to recover demonstrated
skills more effectively than existing methods.

I. INTRODUCTION

Programming agents in complex domains such as com-
puter games and robotics can be prohibitively time con-
suming, requiring extensive engineering expertise. Learning
from Demonstration (LfD) is an alternative approach which
can reduce this complexity by allowing a human expert to
demonstrate tasks to an agent. The approach has been used
to teach agents to walk [1], perform helicopter manoeuvers
[2] and play real-time strategy games [3].

LfD methods fall into two broad categories based on the
approach taken to mimic the demonstrator. Methods either
learn a policy which maps actions to states in a way that
is consistent with the demonstrator, or attempt to learn a
task description capturing the goal of the demonstrator [4].
For the latter category, it is common to learn an objective
or reward function, which is the “most succinct, robust,
and transferable definition of the task” [5]. A significant
advantage of this approach, known as inverse reinforcement
learning (IRL), is that a reward function is robust to changes
in the environment and agent configuration, making it suit-
able for representing transferrable skills [6].

LfD algorithms typically search for a policy or reward
that explains the entirety of a demonstration, making the
assumption that demonstrators are performing a single mono-
lithic task. This is problematic for two reasons. Firstly, it
imposes the unnatural constraint that the demonstrator must
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repetitively perform a single task with a defined start and end.
Secondly, the discovery of complex global reward functions
is suboptimal in the context of transfer, as a complex task
may be composed of skills that can be reused in other tasks.

Recently, attempts have been made to allow learning
multiple skills from natural, unstructured demonstrations and
have focused on the characterisation of skills as attempts to
reach particular subgoal states [7], [4], [8]. This approach has
shown good results, but suffers from an inability to represent
the complex reward structures which may be encountered in
practice.

We propose nonparametric Bayesian reward segmentation
(NPBRS), a method to discover latent skills from unstruc-
tured demonstration trajectories. It works by segmenting the
trajectories by identifying the skill employed in each segment
through the reward function it is optimizing. We accomplish
the segmentation by discovering the set of reward functions
which results in the highest likelihood of the demonstration
trajectories. Because we do not know how many skills are
employed in a set of demonstration trajectories, we use a
Bayesian nonparametric approach to segmentation, allowing
the model complexity to be determined in a data driven
manner. We also do not know that the trajectories have the
same skill transition dynamics, as different contexts may
use different sequences of common skills. We use the Beta
Process Hidden Markov Model (BP-HMM) [9] as it allows
for this complication.

NPBRS is able to identify multiple skills in unstructured
demonstrations, identifying skill boundaries and recovering
the reward functions associated with them. We show that
it extracts suitable skills given demonstration trajectories in
two domains, the car driving domain and the quadcopter gate
domain.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning problems are usually modelled as
a Markov Decision Process (MDP) [5]. This is a control
process defined as a tuple M = (S,A,T,R), where S is the
set of possible states of the environment, A is the set of
actions available to an agent, T (s,a,s′) is the probability
that taking action a from state s will result in a transition to
state s′; and R(s,a,s′) is the reward obtained by the agent
for taking action a in state s, causing a transition to state
s′. Note that because T is stochastic, an action taken by an
agent in a particular state need not transition to the same
resulting state each time. The goal is to discover a policy



π = S×A that maximizes the agent’s cumulative expected
reward.

B. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning focuses on decompos-
ing a task into smaller subtasks. The options framework
[10] is a common approach to this. Options are temporally
extended actions which can be used to represent skills.

Formally, an option o is a tuple (Io,πo,βo), where Io ⊆ S
is the initiation set of the option, which defines the states
in which the option can be initiated, πo : S×A→ [0,1] is
the option policy which governs action selection during the
execution of the policy, and βo : S→ [0,1] is the termination
condition, which gives the probability of terminating the
execution of the option when in state s.

Automated option creation methods must learn the policy
corresponding to the option along with the initiation and
termination sets. Methods exist for finding Io and βo given a
segmentation [7]. We focus on discovering the option reward
function Ro, and then treat the policy learning as a standard
reinforcement learning task.

C. Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) [11] is the process
of determining a reward function from expert demonstration.
IRL algorithms take as input an MDP\R which is a tuple
(S,A,T ) and a set of trajectories D where each trajectory
D(i) = {(s(i)1 ,a(i)1 ),(s(i)2 ,a(i)2 ), ...} represents a sequence of
state and action pairs produced by the expert. The goal is
to find a reward function R such that D is likely to have
been produced by an agent solving the MDP (S,A,T,R).

It is worth noting here that the log likelihood of D given
policy π optimizing the reward function R can be written as
log P(D|R) = ΣiΣt logπ(a(i)t |s

(i)
t ). This makes it clear that the

likelihood is not affected by the stochastic nature of T as the
goal is to mimic the behaviour of the expert rather than the
reaction of the environment.

A number of IRL algorithms have achieved good results
[11], [12], [13]. We use maximum entropy inverse reinforce-
ment learning [14] as tests indicated faster convergence than
competing methods, but our method is easily extensible to
other algorithms.

D. Subgoal State Methods

The Bayesian nonparametric inverse reinforcement learn-
ing algorithm is capable of learning multiple reward func-
tions from unstructured demonstrations [20]. The method has
been extended with a number of optimizations making it
suitable for large state spaces [21], but is restricted to reward
functions representing the goal of reaching particular subgoal
states. These reward functions return a positive reward in a
single state, and zero elsewhere.

This restriction is also present in the CST algorithm
[7], which segments trajectories using changepoint detection
with each segment mapping to a single value function. The
method produces options which can be chained together
with the termination set of an option corresponding to the

initiation set of its successors. The discovered options have
the goal of reaching these common subgoal states.

E. Switching Linear Dynamical Systems

Algorithms which model expert trajectories as a series of
switches between linear dynamical systems have achieved
good results in the context of human motion segmentation
[15], [16], [17]. Hidden Markov Models (HMMs), which are
Markov processes with unobservable hidden states known as
modes, have been successfully used to model this switching
behaviour [18]. In these, each mode represents a linear
dynamical system. Methods exist which can discover the
most likely sequence of modes, but commonly require that
either the number of modes be prespecified (which is not
realistic for unstructured demonstrations) or do not allow for
modes to be repeated or shared across trajectories.

The Beta Process Hidden Markov Model (BP-HMM) [9]
solves this problem by placing a beta process prior on the
mode sequence. This allows for potentially infinitely many
modes, with each time series exhibiting a subset of the total
modes. Each time series can then switch between the modes
it exhibits. This representation also encourages the sharing
of modes between trajectories. The appropriate number of
modes can be inferred from the data instead of being pre-
specified. In the Beta Process Autoregressive Hidden Markov
Model (BP-AR-HMM), emissions are produced from a mode
specific vector autoregressive (VAR) process.

The generative model for the BP-AR-HMM is

B|B0 ∼ BP(1,β0)

Xi|B∼ BeP(B)

π
(i)
j | f i,γ,κ ∼ Dir([γ, ...,γ +κ,γ, ...]⊗ f i)

z(i)t ∼ π
(i)

z(i)t−1

y(i)t =
r

∑
j=1

A
j,z(i)t

y(i)t− j + e(i)t (z(i)t ).

B, drawn from a beta process, provides a set of coin-flipping
probabilities ωk, with one global probability for each skill.
These ωk are then used to produce a Bernoulli process
realization Xi for each trajectory i. The Xi distributions are
used to construct a binary feature vector fi that indicates
which skills are present in the ith trajectory. The beta process
formulation encourages shared skills among the trajectories,
while also leaving room for any trajectory to leave out
particular skills. The graphical model representation is shown
in Figure 1.

Next, the feature constrained transition probability vector
π
(i)
j is drawn from a Dirichlet distribution, and defines the

transition probabilities for time series i in mode j. The mode
sequence is drawn at each time step t from the transition
distribution of the mode at time step t−1. The observations
are computed from the mode dependent linear dynamical
system.

Inference is accomplished using a Markov Chain Monte
Carlo (MCMC) algorithm which solves for the mode se-
quence z(i)t [19]. The sampler alternates between: sampling
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Fig. 1. Graphical model of the BP-AR-HMM.

the feature vector and mode sequence given the data and
mode specific HMM emission parameters; sampling the
HMM emission parameters from a matrix normal inverse-
Wishart distribution given the data and mode sequence; and
proposing birth/death moves which introduce new features
or remove existing ones from the global feature set.

III. NONPARAMETRIC BAYESIAN REWARD
SEGMENTATION

Our task is to identify repeated skills given a set of demon-
stration trajectories. Each trajectory may contain multiple
skills, and common skills occur in multiple trajectories. We
model these skills as reward functions. This is a departure
from the use of subgoal states in previous work, and has
the advantage of being more robust to changes in the
environment and in the agent’s configuration, which are
important properties in the context of transfer. The use of
reward functions rather than states also allows us to capture
more complex subgoals that cannot be represented as a
single target state, as illustrated in Figure 2. We introduce

S

Fig. 2. If the goal of the agent is to get from position S to the flag, we
could represent the subgoal as a target state. However, a single target state
cannot capture the situation where an agent must also avoid the swamp in
the middle.

nonparametric Bayesian reward segmentation (NPBRS), a
method for segmenting trajectories from an MDP according
to latent reward functions. The method combines the BP-
HMM and IRL. Note that, like most IRL methods, it assumes
knowledge of the transition function T .

The system is required to segment the demonstration
trajectories into skills, with the important property that skills
can be shared between trajectories, and that the number

of skills is potentially infinite. We use the beta process
and conjugate Bernoulli process in the same manner as the
BP-HMM model, and draw features and mode sequences
representing skills in the same way. However, we model the
emissions as an MDP rather than as a VAR process.

Given the mode sequence z(i)t , we model the dynamics of
the system as follows:

P(a)|z(i)t =
eτQz(i)t (y(i)t−1,a)

∑a eτQz(i)t (y(i)t−1,a)

a(i)t ∼ P(a)|z(i)t

yt ∼ T (yt−1,a
(i)
t ).

(1)

We thus replace the step wherein HMM emission parameters
A and e are sampled. Instead, we use IRL to determine
the agent’s reward function and accompanying policy, and
calculate the transition probabilities from a combination of
the policy and the known dynamics of the environment. The
graphical representation is shown in Figure 3.
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Fig. 3. Graphical model of the BP-HMM applied to MDPs. R
z(i)t

represents

the reward function of the MDP in mode z(i)t .

We make use of the birth and death reversible jump
Markov Chain Monte Carlo sampler developed for BP-AR-
HMM [18]. The algorithm proposes skill birth and death
moves and accepts or rejects them on the basis of the relative
model likelihood. Skills can also be created using a split-
merge procedure which introduces new skills by either com-
bining or splitting existing ones [19]. The skill sequence is
then block sampled using a variant of the forward-backward
algorithm [22].

Our algorithm then models the skill specific dynamics by
learning the action-value function associated with each skill
(Qz(i)t in equation 1). We do this by grouping all subtrajec-
tories by the skill assigned to them. We perform maximum
entropy IRL on each skill, taking all of its subtrajectories as
input paths. This process yields a reward function for each
skill. We then use value iteration to determine Qz(i)t , allowing
us to determine the likelihood of the demonstration trajecto-
ries. This approach replaces the HMM emission model with
an MDP, allowing us to use the segments to infer a policy
to be used for control, rather than to recognise a change in



Fig. 4. Segmentation for the car driving domain for trajectory lengths 128 (top) and 500 (bottom), showing using segmentation based on NPBRS, subgoal
states, and linear dynamical systems.

dynamics. It does, however, incur a large cost as we must
perform IRL multiple times at each iteration of the sampler.

IV. EXPERIMENTS

A. Trajectory Generation

To test our method, we create a number of trajectories and
attempt to segment them on the basis of the reward functions
inherent at each timestep. To generate input, we create agents
which employ particular reward functions.

For each of the two domains, we designed multiple reward
functions representing skills. We then used each reward
function to train an optimal agent using Q-Learning [23]. In
order to generate trajectories containing a mixture of skills,
we switched between the action selections of the trained
agents. This selection is biased to be “sticky”, as a skill is
likely to be employed for multiple sequential timesteps. We
generated 16 trajectories for each domain, and recorded the
true switching sequence for later comparison.

We used these trajectories as input to the segmentation
methods. We ran the sampler 10 times for 40 minutes each,
and selected the segmentation with the highest log likelihood.

We evaluate the effectiveness of segmentation based on
extracted rewards by comparing against methods based on
subgoal states and linear dynamical systems. In order to
remove the effect of other design decisions, we keep the
probabilistic model and inference procedure the same for all
the methods, and vary the segmentation likelihood calcula-
tion to obtain algorithms based on reward functions, subgoal
states and linear dynamical systems.

B. Driving Domain

For our first experiment, we use a modified version of the
car driving domain, commonly used as an IRL benchmark
problem [11]. In this domain, the agent is driving on a three
lane highway as shown in the screenshot in Figure 5, with
each containing cars moving at a different speed.

The car controlled by the agent is moving faster than all
other cars on the road and has three available actions: it can
change lanes to the left, to the right, or stay in the current
lane. The car is also able to drive on the verge to either

side of the highway, in which there are no cars. Cars appear
randomly in the distance, so it is possible for the highway
to be completely blocked.

The state is described by 4 variables: the current lane,
which includes the verge on either side, and 3 variables
representing the distance to the closest car in each lane. If this
distance is zero for the current lane, a collision has occurred.
This distance was discretized to 6 distance values to simplify
the learning process.

We designed three reward functions to encode different
objectives:
• A: Hit as many cars as possible. The agent receives a

reward of 500 for hitting a car, 0 otherwise.
• B: Drive in the right lane, but change lanes to avoid

collisions. The agent receives a reward of 10 for being
in the right lane, -500 for hitting a car and 0 otherwise.

• C: Drive in the left lane, but change lanes to avoid
collisions. The agent receives a reward of 10 for being
in the left lane, -500 for hitting a car and 0 otherwise.

Fig. 5. The car driving domain. The blue car is the learning agent which
could be tasked with avoiding the red cars.

For this domain, we generated two sets of trajectories, of
length 128 and 500, with a 2% chance of switching reward
functions at each timestep.

These generated trajectories were segmented using the
NPBRS, subgoal state and linear dynamical systems (La-
belled LDS) samplers.

Figure 4 presents a typical result from this process. The
skills produced are labelled based on their correspondence



Fig. 6. The quadcopter gate domain. The agent is initially flying through as many hoops as possible (cyan) but switches to avoiding the hoops (green).

to skills in the true sequence. If a skill overlaps with a true
skill for more than 50% of its occurrences, it is given the
same letter. Thus, inferred skills B, B1 and B2 all received
the label B because they mostly align with skill B in the
true skill sequence across all trajectories. Skills which did
not share more than 50% of their occurrences with any true
skill are shown in grey.

NPBRS produces segmentations very similar to the true
mode sequence. It makes small errors at the boundaries
between skills because the skills agree on their action se-
lections in these small windows, making the skill boundary
indistinguishable.

The poor performance of the LDS sampler is expected as
the method is not meant to model a system whose mode
specific emissions are not a linear dynamical system. It
is included here only to verify that different models are
necessary in some domains, but does not indicate poor
performance in more appropriate domains.

Expert NPBRS Subgoal IRL

Reward 39093 37832 -5660 -14453
Skill Switches 7.13 9.2 45.11 0
Skills 3 7.8 3.4 1

Fig. 7. Results from NPBRS, Subgoal state and unsegmented IRL in
the 500 length highway domain averaged over 10 runs. Rewards and skill
switches are presented as an average per trajectory

In Figure 7 we present aggregate results of using the
inferred skills in the original trajectories according to the
corresponding inferred segmentation. Since we are using
these skills for control, we exclude LDS from the com-
parison, as the model is uncontrolled. We instead compare
against unsegmented IRL. NPBRS achieves a much higher
average reward than subgoal state segmentation or IRL, and
is very close to that achieved by the original expert. It
also switches skills at a similar frequency to the expert.
It does, however, find 8 skills where the expert displayed
3, finding multiple skills corresponding to each expert skill.
The subgoal state method has a negative average reward and

switches skills frequently, indicating that it has not managed
to find appropriate skills. Unsegmented IRL performs poorly
in terms of reward received, meaning that it could not find
a single reward function that explains the expert behaviour.

C. Quadcopter Gate Domain

In the quadcopter gate domain, a simulated quadcopter
must make its way through an obstacle course. This was im-
plemented using the TUM simulator [24], a 3D simulation of
the AR.Drone quadcopter built in Gazebo [25] and integrated
with ROS [26].

The obstacles involved are square hoops placed in a
corridor, as shown in Figure 6. The quadcopter is able to
control its motion in the height and width dimensions using
the actions up, down, left and right, and moves forward by
a fixed amount at every timestep. The corridor is discretized
into a 3× 3× 500 grid, with each 3× 3 slice having one
of 6 hoop configurations placed in it. The available hoop
configurations are shown in Figure 8.

Fig. 8. The hoop configurations available in the quadcopter gate domain.

The state is described by the coordinates of the quadcopter



Fig. 9. Segmentations for the quadcopter gate domain for trajectory length 500 showing using segmentation based on NPBRS and subgoal states.

within the slice and the hoop configurations of the next
four slices. We have designed three reward functions in this
domain:
• A: Fly through as many hoops as possible. The agent

receives a reward of 500 for flying through a hoop and
zero otherwise.

• B: Fly as close to the ceiling as possible, avoiding flying
through hoops. The agent receives a reward of 10 for
being in the top row, a reward of -500 for flying through
a hoop, and zero otherwise.

• C: Fly as close to the ground as possible, avoiding flying
through hoops. The agent receives a reward of 10 for
being in the bottom row, a reward of -500 for flying
through a hoop, and zero otherwise.

A typical segmentation for the quadcopter domain is
shown in Figure 9. NPBRS again performs very well, with
the segmentation approximating the true mode sequence. It
does however sometimes find multiple skills where a single
true skill appears, as in the case of B in Figure 9 which
is split into B1, B2, and B3. This happens because IRL is
an ill-posed problem, with multiple reward functions able to
explain a trajectory [11].

Subgoal states perform very poorly, which is possibly a
result of the stochasticity of the domain. The agent has no
control over the hoop configurations which will be observed
as these are randomly generated. It is thus impossible for an
agent to formulate an effective policy to reach a particular
subgoal state.

Expert NPBRS Subgoal IRL

Reward 82616 79501 -30045 139
Skill Switches 6.81 9.47 88.95 0
Skills 3 8.2 2.6 1

Fig. 10. Results from NPBRS, Subgoal state and unsegmented IRL in the
quadcopter gate domain averaged over 10 runs. Rewards and skill switches
are presented as an average per trajectory

Figure 10 presents aggregate results. Again, NPBRS
achieves an average reward which is similar to the expert.
Unsegmented IRL performed reasonably well in this domain,

achieving a positive reward, and outperformed the subgoal
state method by a large margin, indicating that the expert’s
behaviour in this domain is better modelled by a complex
reward function rather than a combination of simple ones.
NPBRS greatly outperforms both unsegmented IRL and the
subgoal state method. It also indicates that the method is not
data intensive, as it was able to model expert behaviour using
only 16 input trajectories.

V. RELATED WORK

Surana and Srivastava [27] provide a nonparametric
Bayesian method for recovering multiple reward functions
from a single set of trajectories. They use the HDP-HMM
formulation. This requires the skill transition dynamics to be
consistent across all of the trajectories, which fails in the case
where a library of skills is used in trajectories with different
goals [18]. The formulation thus discourages shared skills
across trajectories.

Niekum et al. [16] extend the BP-AR-HMM by post-
processing the discovered segments, learning Dynamic
Movement Primitives which provide better generalization
and the ability to use RL for policy improvement. This is
performed after segmentation on the basis of linear dynamics
and is hence limited by the quality of the initial segmentation.

Clustering methods exist to discover multiple reward func-
tions from unlabelled demonstration trajectories where each
trajectory is assumed to be generated from a single reward
function [28], [29]. The methods cluster trajectories based
on their reward functions, defining IRL methods to do so.
They are unsuitable for situations where each trajectory is
made up of multiple skills as they do not attempt to perform
trajectory segmentation.

VI. SUMMARY

We have presented a method that segments unstructured
demonstrations based on the skill being employed at each
timestep, with skills represented by reward functions in an
MDP. We have demonstrated that this method is better suited
to some domains than representing skills as linear dynamical
systems or subgoal states.
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