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ABSTRACT

Recent work in signal propagation theory has shown that dropout limits the depth to which information

can propagate through a neural network. In this paper, we investigate the effect of initialisation on

training speed and generalisation for ReLU networks within this depth limit. We ask the following

research question: given that critical initialisation is crucial for training at large depth, if dropout

limits the depth at which networks are trainable, does initialising critically still matter? We conduct a

large-scale controlled experiment, and perform a statistical analysis of over 12 000 trained networks.

We find that (1) trainable networks show no statistically significant difference in performance over

a wide range of non-critical initialisations; (2) for initialisations that show a statistically significant

difference, the net effect on performance is small; (3) only extreme initialisations (very small or very

large) perform worse than criticality. These findings also apply to standard ReLU networks of moderate

depth as a special case of zero dropout. Our results therefore suggest that, in the shallow-to-moderate

depth setting, critical initialisation provides zero performance gains when compared to off-critical

initialisations and that searching for off-critical initialisations that might improve training speed or

generalisation, is likely to be a fruitless endeavour.
c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Dropout is arguably one of the most popular and successful

forms of regularisation for deep neural networks (Srivastava

et al., 2014). This has sparked research into analysing dropout’s

effects (Wang and Manning, 2013; Wager et al., 2013; Baldi and

Sadowski, 2013), extending dropout’s mechanism of regulari-

sation (Wan et al., 2013; Gal et al., 2017; Gomez et al., 2018;

Ghiasi et al., 2018) and connecting dropout to different Bayesian

inference methods (Kingma et al., 2015; Gal and Ghahramani,

2016; Molchanov et al., 2017). Despite its success, dropout has

also been shown to limit the trainable depth of a neural network

(Schoenholz et al., 2017).

At initialisation, the random weight projection at each layer

combined with dropout may cause inputs to become uniformly

correlated beyond a certain depth. Discriminatory information

∗∗Corresponding author: e-mail: kamperh@sun.ac.za (Herman Kamper)

in the inputs may therefore vanish before reaching the output.

The trainable depth of a network is the maximum depth to which

this information is able to propagate forward without completely

vanishing in this way. Schoenholz et al. (2017) arrive at this

result through a mean field analysis of dropout at initialisation.

Mean field theory provides a powerful approach to analysing

neural networks and has become a cornerstone of recent discov-

eries in improved initialisation schemes. These schemes, often

referred to as critical initialisations, ensure stable signal propa-

gation dynamics by preserving second moment input statistics

during the forward pass, even at infinite depth. Critical initial-

isation has made it possible to train extremely deep networks

(sometimes up to 10 000 layers) for a variety of different ar-

chitectures (Pennington et al., 2017; Xiao et al., 2018; Chen

et al., 2018). Using the tools of mean field theory, Pretorius

et al. (2018) extend these results to fully-connected ReLU net-

works with multiplicative noise regularisation. These results

hold for a general class of noise distributions, while earlier
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work (Hendrycks and Gimpel, 2016) describes dropout-specific

initialisation schemes.

For non-critical initialisation, signal propagation can become

unstable and result in the saturation of activation functions. In

the particular case of ReLU activations, numerical instability

(overflow or underflow) can arise when training very deep net-

works. Despite this, when training ReLU networks of a finite

depth, there is a range of trainable but non-critical initialisations.

That is, there exists a “band” of valid initialisations around the

critical point. It is conceivable that using these alternative, non-

critical initialisations may confer some benefits. For example,

Saxe et al. (2014) note that just off of criticality, the spectrum of

the input-output Jacobian can be well behaved, which has been

linked to improvements in training and generalisation (Penning-

ton et al., 2017). This leads us to the following question.

Question: If dropout limits the depth to which networks can
train, does critical initialisation still matter? Given that stable

signal propagation at extreme depths is no longer a concern, are

there alternative initialisations that might perform better than the

critical initialisation?

To investigate the above research question, we conduct a large-

scale randomised control trial (RCT)—an approach borrowed

from the medical community—to compare training speed and

generalisation for ReLU neural networks with dropout for dif-

ferent initialisations. We consider multiple datasets, training

algorithms, dropout rates and combinations of hyperparameters

to avoid confounding effects. To the best of our knowledge, this

is the first application of RCTs in a deep learning context. A

statistical analysis of our results leads to the following insight.

Answer: There is no statistically significant difference be-
tween the critical initialisation and a wide neighbourhood of
non-critical initialisations, as measured by training speed and
generalisation. In our experiment we find that this also applies

to standard ReLU networks without dropout, for which the crit-

ical initialisation is the popular “He” initialisation (He et al.,

2015). Our findings seem to indicate that networks of moderate

depth (less than 20 layers) are in fact very insensitive to initiali-

sation. In addition, we conclude that exploring the initialisation

landscape around criticality in the hope of finding previously

undiscovered benefits, is unlikely to be a fruitful enterprise.

2. Background

We model the expected value of a target variable y conditioned

on an input x, i.e. E(y|x), using a fully-connected feedforward

neural network with dropout. Given an input x0 ∈ R
D0 , we can

define this neural network recursively as

xl = φ(h̃l), spaceh̃l = Wl
(
xl−1 � ε

l−1

1 − θ
)
+ bl, (1)

for l = 1, ..., L, where L is the total number of hidden layers,

� denotes element-wise multiplication, and ε l ∼ Bern(1 − θ)
is a Bernoulli noise vector, corresponding to a dropout rate

θ. The dimensionality of hidden layer l is denoted as Dl, and

activations at each layer are computed element-wise using φ(a) =

ReLU(a) = max(0, a). The initial weights Wl ∈ R
Dl×Dl−1 and

1.0 1.2 1.4 1.6 1.8 2.0
Weight variance (σ2

w)

0.0

0.1

0.2

0.3

0.4

0.5

D
ro
p
ou
t
ra
te

(θ
)

(σ2
w > 2(1− θ))

Vanish
(σ2

w < 2(1− θ))

σ2
w = 2(1− θ)

Critical initialisation

Critical init

He init

Explode

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Weight variance (σ2

w)

0

200

400

600

800

1000

N
um

b
er

of
la
ye
rs
(L

)

σ2
w(α) σ2

w(β)

OverflowUnderflow

L4

L3 L2 L1 R1R2 R3 R4 E1

E2

Design dependent alternative initialisations

Var depth bound (�ν)

Critical init (C)

Alt init interval

Smaller alt inits (L1-L4)

Larger alt inits (R1-R4)

Extreme inits (E1-E2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dropout rate (θ)

2

4

6

8

10

12

14

N
um

b
er

of
la
ye
rs
(L

)

Trainable

Untrainable

Network depth limits

Corr depth bound (�ρ)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Weight variance (σ2

w)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
ro
p
ou
t
ra
te

(θ
)

Symmetric initialisation intervals

C±σ2
w(α)

Critical init

10−18 10−9 100

σ2
w

0.25

0.50

0.75

θ

(a) (b)

(c) (d)

Fig. 1. Choosing network depth and initialisation. (a): Critical initialisa-
tion boundary separating regimes of vanishing or exploding variance sig-
nal propagation at large depth. (b): An illustration of the region that allows
stable variance (beige) and correlation (black bordered beige) information
to propagate through the entire network. (We choose a depth L = 100

for ease of visualisation, although this depth is too deep for training with
dropout). Alternative non-critical initialisations L1–L4 (blue), C (green),
R1–R4 (orange), E1–E2 (red) are sampled from this region. (c): The depth
to which networks with dropout are trainable for different dropout rates
(dashed purple line). (d) Symmetrical interval containing L1–L4 and R1–
R4 as a function of the dropout rate: the (beige) region around criticality
represents the set of trainable initialisations.

biases bl ∈ R
Dl are sampled i.i.d. from zero-mean Gaussian

distributions with variances σ2
w/Dl−1 and σ2

b, respectively.

We focus on ReLU because of its widespread use and em-

pirical success and consider the fully-connected setting since

conclusions for these networks often generalise to other archi-

tectures, e.g. convolutional networks (He et al., 2015; Xiao et al.,

2018). Schoenholz et al. (2017) also hypothesise that the signal

propagation behaviour of many different architectures is likely

to be governed by the fully-connected case.

2.1. Mean field theory for signal propagation

Poole et al. (2016), Schoenholz et al. (2017) and Pretorius

et al. (2018) use mean field theory to analyse fully-connected

feedforward neural networks at initialisation. For large layer

widths, each pre-activation (the linear combination of the in-

coming connections from the previous layer) at initialisation in

any given layer of the network represents a large sum of i.i.d.

random variables. According to the central limit theorem, this

sum will tend to a Gaussian distribution in the limit of infinite

width. Using the above observation, the mean field approach

is to fit Gaussian distributions over all the pre-activation units

through moment matching to describe the behaviour of wide

random neural networks at initialisation.

In more detail, consider two inputs x0
1

and x0
2
. Denote the

scalar pre-activation at unit j in layer l for input x0
1

as h̃l,1
j . For

fully-connected ReLU networks with dropout, Pretorius et al.

(2018) derive the joint distribution over the pre-activations in

expectation over the network parameters and the noise as

p
(
h̃l,1

j , h̃
l,2
j

)
= N(0, Φ̃l),
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where

Φ̃l =

[
νl

1
κl

κl νl
2

]
.

The layer-wise evolution of the terms in the covariance matrix

Φ̃l, are given by

νl1 =
σ2

w

2(1 − θ)ν
l−1
1 + σ

2
b (2)

κl =
σ2

w

2
κl−1

(
g(ρl−1) +

1

2

)
+ σ2

b (3)

ρl = κl/
√
νl

1
νl

2
(4)

where

g(ρl−1) =
1

πρl−1

(
ρl−1 sin−1

(
ρl−1

)
+

√
1 − (ρl−1)2

)

with initial variance ν0
1
=

x0
1
·x0

1

D0 and covariance κ0 =
x0

1
·x0

2

D0 . The

above quantities are derived in the large width limit, but in

practice tend to hold for finite widths of moderate size (Poole

et al., 2016; Schoenholz et al., 2017; Pretorius et al., 2018).

Critical initialisation. A fixed point of the variance recurrence

in (2) is given by

{σ2
w, σ

2
b} = {2(1 − θ), 0},

which ensures that signal propagation variances are preserved

during the forward pass of a ReLU network with dropout (Preto-

rius et al., 2018). This network parameter setting is referred to

as the critical initialisation. Figure 1(a) shows the relationship

between the critical initialisation and the dropout rate. Away

from criticality, the variance signal tends to vanish or explode. If

the dropout rate θ is zero, the initialisation reduces to the popular

“He” initialisation for ReLU networks (He et al., 2015).

Trainable depth. Consider the following proposition due to

Schoenholz et al. (2017):

Proposition 1: At initialisation, a necessary condition
for training any neural network is that the information
from the input layer should be able to reach the output
layer.

Pretorius et al. (2018) analyse the evolution of the input vari-

ances and correlations, as given in (2) and (4), to establish when

this information propagation requirement is violated. Let α and

β represent the smallest and largest positive values representable

on a modern machine. The depth at which numerical instability

issues (underflow or overflow) arise from the variances described

in (2) for non-critical initialisations is bounded by

�ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ln
(
α

ν0

)
ln

(
σ2

w
2(1−θ)

) , if σ2
w < 2(1 − θ)

ln
(
β

ν0

)
ln

(
σ2

w
2(1−θ)

) , if σ2
w > 2(1 − θ).

(5)

An example of these bounds are shown in Figure 1(b) as purple

dashed lines. The depth bounds around criticality are finite but

large, exceeding typical depths for most modern deep neural

networks used in practice. However, even if single input infor-

mation can propagate to large depths, the correlation between

inputs, described in (4), converge to degenerate levels over a

much shorter depth horizon (Pretorius et al., 2018). This can

limit the network’s ability to train, since all discriminatory in-

formation is lost during forward propagation. Furthermore, the

rate of convergence in correlation is invariant to initialisation,

but increases as more dropout is applied. As a result, inputs to a

dropout network tend to convey similar information at shallower

depths compared to unregularised networks. The bound that

characterises convergence in correlation is

�ρ = −6/ ln

[
(1 − θ)
π

(
sin−1(ρ∗) +

π

2

)]
, (6)

where ρ∗ denotes the converged correlation and the factor 6 is an

ad-hoc factor, which seems to provide a good fit to experimental

data, but is as yet unexplained (Schoenholz et al., 2017; Pretorius

et al., 2018). Figure 1(c) plots the theoretically predicted train-

able depth using (6) for different dropout rates. Note that these

depths are much shallower than those for variance dynamics.

3. Experimental setup

We conduct a large-scale controlled experiment using net-

works of trainable depth to compare the effect of initialisation

on training speed and generalisation for ReLU networks with

dropout. We explore the space around criticality by selecting al-

ternative initialisations whose values theoretically satisfy Propo-

sition 1. Our final aim is to test whether there exists a statistically

significant difference, as measured by training speed and gen-

eralisation, between the different initialisations. To answer this

question, we use a systematic randomised control trial method-

ology with hypothesis testing.

3.1. Controlled experiments using neural networks: a ran-
domised control trial approach

Inspired by causal discovery in medical research, we consider

a hypothesis a priori and conduct a “randomised control trial”

(RCT) (Kendall, 2003) using neural networks. In an ordinary

randomised control trial a random sample, representative of the

full population, is split into two groups. One group receives

some form of an intervention, such as a new drug. The other

group, referred to as the control group, receives no intervention.

The purpose of the two groups is to control for all confounding

effects that are unrelated to the intervention of interest. The

groups are then monitored by collecting data over time. Once

the study has been completed, a test for statistical significance

can be applied to ascertain if there exists a difference between

the two groups, as measured by a quantitative metric of interest.

If a statistical significant difference is detected, the intervention

is confirmed as being the cause. In this paper, we aim to test

for differences in initialisation of fully-connected ReLU neural

networks with dropout.

To begin, consider the following design space:
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Ω-design space: We define the neural network design
space Ω as the space consisting of different possible
combinations of design components used to construct
an algorithm for classification using a fully-connected
ReLU neural network with dropout. Specifically, the
design space is given by the following Cartesian prod-
uct

Ω = X ×D ×W × R × B × O ×M×L
where the component sets divide into (1) dataset X,
(2) network topology: depth D, width W, (3) dropout
rate R, and (4) training procedure: batch size B, opti-
miser O, momentum M, and learning rate L.

We adapt the RCT approach for analysing neural network ini-

tialisation as follows. First, we randomly generate a collection

of different neural network algorithms by sampling from the

design space, or “population,” of possible neural networks. For

example, a 10-layer ReLU network trained on MNIST, where

each layer is 256 units wide, with a dropout rate of 0.5, op-

timised using RMSprop with zero momentum and a learning

rate of 5 × 10−4 and batches of size 128, corresponds to the 8-

tuple: (MNIST, 10, 256, 0.5, 128,RMSprop, 0, 5 × 10−4). Next,

we construct identical “groups” by using multiple copies of the

sampled designs. Each group in the experiment is then assigned

a different initialisation scheme. Finally, we test the following

hypothesis related to a given metric:

Null hypothesis: Given a metric τ, let μcrit(τ) denote
the group mean associated with the critical initialisa-
tion and μa(τ), the mean associated with an alterna-
tive initialisation a ∈ A ⊂ I, where I is the set of
all possible initialisations, and A is our chosen set of
alternative initialisations. Then the null hypothesis to
be tested is

H0 : μcrit(τ) = μa(τ),∀a ∈ A. (7)

We discuss our methodology for selecting alternative initialisa-

tions in Section 3.2.

If the null hypothesis is rejected, we have strong evidence

to indicate that the performance of the critical initialisation is

significantly different from those of alternative initialisations. If

H0 cannot be rejected, the perceived difference is not considered

statistically significant. Figure 2 summarises this approach to

studying the effect of initialisation in neural networks.

Sample
design subspace

Statistical analysis
Hypothesis testing

Inference
Population behaviour

RCT

������

������

��������

�

"Groups" "Interventions"

��	 
 ��	��� � ������ ��

���������	

�
��������������� ��

Fig. 2. Randomised control trial approach to analysing the effect of initial-
isation in neural networks.

Metrics. Our metrics of interest are training speed and generali-

sation performance. Specifically, we define training speed (τs)

as the accuracy achieved on the training set at the 100th epoch,

and generalisation (τg) as the highest accuracy achieved on the

test set over the course of training. For example, μcrit(τs) denotes

the mean training speed associated with the critical initialisa-

tion, where a higher mean accuracy at epoch 100 indicates faster

training.

Sampling algorithm designs. For our experiment groups, we

sample 1120 different designs. These designs are drawn ran-

domly from Ω, which we construct by forming the Cartesian

product of the following discrete sets for dataset, depth, width,

dropout rate, batch size, optimiser, momentum and learning rate:

X = {MNIST,FashionMNIST,CIFAR-10,CIFAR-100}
D = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20}
W = {400, 600, 800}
R = {0, 0.1, 0.3, 0.5}
B = {32, 64, 128, 256}
O = {SGD,Adam,RMSprop}
M = {0, 0.5, 0.9}
L = {10−3, 10−4, 10−5, 10−6}

For a given dropout rate, we limit the sampled depths in D to

only the settings that would allow useful correlation information

to reach the output layer, i.e. d ≤ �ρ,∀d ∈ D. We also include

network depths of 15 and 20 when no dropout is being applied.

We sample 70 designs for each dropout rate and dataset combi-

nation for a large enough diversity in network architecture and

optimisation. To ensure a balanced set of network designs, we

simply duplicate each group of designs for every dropout rate in

R, as well as for each dataset. A full description of this process

is presented in Appendix A. Finally, each network is trained for

500 epochs on MNIST (LeCun et al., 1998), FashionMNIST

(Xiao et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky and

Hinton, 2009), using the full training set for each.

3.2. A network design dependent set of alternative initialisations
We ensure that our networks preserve short range correlation

information by limiting their depth. To develop a principled

approach towards exploring the initialisation space around crit-

icality, we now ask: for a fixed depth, what is the range of

initialisations around criticality that will remain numerically sta-

ble until the output layer? In other words, for which σ2
w in (5) is

�ν ≥ �ρ. We can find these bounds for alternative initialisations

by solving for σ2
w in (5), which gives

σ2
w(α) = inf

{
σ2

w ∈ R>0

∣∣∣∣∣�ν ≥ �ρ, σ2
w < 2(1 − θ)

}

= 2(1 − θ)
(
α

ν0

)1/�ρ
[lower bound] (8)

σ2
w(β) = sup

{
σ2

w ∈ R>0

∣∣∣∣∣�ν ≥ �ρ, σ2
w > 2(1 − θ)

}

= 2(1 − θ)
(
β

ν0

)1/�ρ

[upper bound] (9)
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In our experiments, we use 32-bit floating point precision,

such that α = 1.1754944×10−38 in (8) and β = 3.4028235×1038

in (9). An example interval for possible alternative initialisations

bounded by σ2
w(α) and σ2

w(β) is shown in Figure 1(b). Note that

the interval is not symmetric. This is because although the signal

vanishes and explodes at the same rate, the critical initialisation

is typically much closer to α than to β. This causes the interval

to be wider to the right. To cover this entire space around

criticality would be computationally infeasible. Therefore, we

focus on sampling alternative initialisations around criticality as

a function of the dropout rate.

Specifically, we first sample a core set of initialisations within

the interval C ± σ2
w(α) centred around the critical initialisation

(C), with logarithmic spacing between samples (see Appendices

B and C for more detail). This symmetric interval is illustrated by

the dashed black lines in Figure 1(d) for different dropout rates.

Note that the interval becomes narrower for larger dropout rates.

The inset in Figure 1(d) plots the left side of the interval close

to zero on a log-scale. The core set of alternative initialisations

for the fixed depth in Figure 1(b) are shown as blue dashed

lines (below criticality, marked L1-L4) and orange dashed lines

(above criticality, marked R1-R4). Finally, we explore further

to the right by sampling halfway, as well as close to the end of

the interval, between criticality and σ2
w(β). These more extreme

initialisations are depicted in red (marked E1 and E2).

3.3. Statistical comparison methodology
The null hypothesis H0 can be tested using an omnibus test,

which is specifically designed for multiple comparisons (Demšar,

2006). If the null hypothesis is rejected in this setting, there is

evidence that at least one of the competing initialisations is sig-

nificantly different from the rest. We use the Iman-Davenport ex-

tension (Iman and Davenport, 1980) of the non-parametric Fried-

man rank test (Friedman, 1937) as recommended by Demšar

(2006) and García et al. (2010). We describe this test below in

the context of comparing different initialisations.

Friedman (Friedman, 1937): For a given metric τ and a

set of competing initialisations I, the Friedman test first ranks

initialisations i ∈ I in terms of their mean performances μi(τ)
and then computes a test statistic using these ranks. An average

rank is assigned to tied initialisations. In more detail, let rdi

denote the rank for a specific design d (sampled from Ω) using

initialisation i. We denote the mean rank over the set of all

sampled designs Δ ⊂ Ω, as R̄i =
1
|Δ|

∑|Δ|
d=1

rdi. The Friedman test

statistic under the null hypothesis of no difference is

χ2
F =

12|Δ|
|I|(|I| + 1)

⎛⎜⎜⎜⎜⎜⎜⎝
|I|∑
i=1

R̄2
i −

|I|(|I| + 1)2

4

⎞⎟⎟⎟⎟⎟⎟⎠ ,
and is approximately χ2 distributed with |I| − 1 degrees of free-

dom.

Iman-Davenport (Iman and Davenport, 1980): It has been

shown that the Friedman test can be a poor approximation to the

χ2 distribution. Therefore, the Iman-Davenport test modifies the

Friedman test as follows

FID =
(|Δ| − 1)χ2

F

|Δ|(|I| − 1) − χ2
F

,

to more accurately approximate an F distribution with (|I| − 1)

and (|I| − 1)(|Δ| − 1) degrees of freedom.

If we reject H0, we may next ask whether there exists specific

differences between the critical and the alternative initialisations.

For this purpose we perform multiple pairwise tests.

It is important to note, however, that when conducting mul-

tiple pairwise comparisons with popular two-sample tests, a

significant difference might be detected simply by chance. To

illustrate this, consider the probability of rejecting the null hy-

pothesis when it is in fact true. This is known as a type I error.

The null hypothesis is usually rejected if the probability of a

type I error—the p-value—is less than some specified signifi-
cance level, typically set at 5%. However, it is insufficient to

separately control for type I errors for each individual pairwise

comparison. In our case, pairwise comparisons between the

critical and the alternative initialisations (L1–L4, R1–R4, E1,

E2) result in a total of 10 comparisons. At a significance level

of 5%, a satisfactory probability of not making a type I error in

a single comparison is γ = 1 − p(reject H0|H0 is true) = 95%.

However, the probability of not making a type I error across
all comparisons is actually γ10 ≈ 60%, which is much lower

than what was previously considered acceptable. Therefore, we

guard against type I errors in multiple tests by using post-hoc
tests that aim to adjust the significance level to control the family-
wise error—the probability that at least one type I error is made

among multiple tests (García et al., 2010; Santafe et al., 2015).

The specific post-hoc test we use is the Finner test (Finner, 1993)

as recommended by Garcia and Herrera (2008) and García et al.

(2010). The specifics of this test are given below.

Finner (Finner, 1993): Let pi, i = 1, ..., i∗, ..., |I|, denote

ordered p-values obtained from multiple pairwise compar-

isons corresponding to the null hypotheses of no mean dif-

ference H01, ...,H0i∗ , ...,H0|I|. Using the Finner test, we reject

H01, ...,H0i∗ , where

i∗ = min
{
i|pi > 1 − γi/(|I|−1)

}
.

3.4. Summary of experimental setup

We aim to test for differences in initialisation by conducting

a large scale randomised control trial experiment using neural

networks. We begin by sampling 70 neural network algorithm

designs from the design space Ω for each dropout rate and

dataset combination, for a total of 1120 designs. To form groups

in our experiment, we make 11 identical copies of the 1120

designs. Note that this is a core aspect of our approach. We

ensure within-group variation by sampling different designs,

but then duplicate this collection of designs to form identical

groups, one for each “intervention”, i.e. initialisation. For

each group, we assign a different initialisation—either critical

initialisation (C), or one of the 10 alternative initialisations (L1–

L4, R1–R4, E1–E2). All designs are then trained, resulting in a

total of 70 × 4 × 4 × 11 = 12320 trained neural networks. Using

these results, we test our hypothesis—that no difference exists

between the various initialisations in terms of training speed and

generalisation—using omnibus and post-hoc statistical tests.

To provide an analogy in the context of drug testing: our

approach is akin to selecting a large random sample of human
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Fig. 3. Density fits for the different initialisations. (a): training speed. (b): generalisation.

Table 1. Post-hoc tests for training speed and generalisation. The symbol ∗ indicates a significant p-value (less than 5%) and † indicates a large effect size.

Training speed – H0 : μcrit(τs) = μa(τs), a ∈ {Li,Ri, E1, E2}4i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0 0.1338 0.857 0.4003 0.6479 0.0677 ∗3.95 × 10−6 ∗3.33 × 10−15 ∗2.4 × 10−9 ∗2.4 × 10−9

Effect size −0.2512 −0.0648 −0.0287 −0.0069 0.0094 0.0202 0.0147 −0.0048 †−1.1055 †−1.1019

Generalisation – H0 : μcrit(τg) = μa(τg), a ∈ {Li,Ri, E1, E2}4i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0 0.0545 ∗0.0033 ∗0.0418 0.1226 ∗9.23 × 10−6 ∗4.44 × 10−16 ∗0 ∗0 ∗0
Effect size −0.2389 −0.0716 −0.0412 −0.0103 −0.0016 0.0102 0.0049 −0.0145 †−1.1708 †−1.1787

participants, duplicating (cloning) them to form identical groups,

and then administering a different drug to each group. To have

exact copies of a representative sample to test on is an ideal case

for an experimenter, since (1) within-group variation controls

for confounding effects, and (2) having identical groups ensures

that if differences between groups are detected, it can only be

as a result of the drug. Here we are fortunate to be dealing

with software entities and not human beings, which allows us

the luxury of this ideal setup (see Appendix E for a further

discussion on the validity of the RCT approach).

4. Results

A visualisation of our findings is presented in Figure 3. For

each initialisation, we plot densities summarising the results for

(a) training speed and (b) generalisation. Visually our analysis

seems to indicate that the average effect on training speed and

generalisation for the critical initialisation is quite similar to

the average effect of alternative initialisations, except at the

extremes. To make this conclusion more concrete, we conduct a

statistical analysis of the results.

Statistical analysis.1 Using the Iman-Davenport omnibus

test, we reject the null hypothesis of no difference between the

different initialisations for both training speed and generalisation,

with a p-value equal to 2.2 × 10−16 (practically zero). This is

1Although the results appear to be multimodal, our non-parametric tests

are based on ranking and therefore do not make assumptions regarding the

underlying distribution. Our tests are therefore still appropriate.

somewhat unsurprising, since there are clear differences between

the initialisations closer to criticality and those at the extremes

(E1 and E2). Therefore, given that we have rejected H0, we also

conduct post-hoc tests.

Table 1 provides pairwise comparisons between the critical

initialisation and the alternatives. For mean training speed, we

find that only the initialisations at the extremes, i.e. close to

σ2
w(α) and σ2

w(β), give significantly different results. These

include initialising very close to zero (L4) and very large initiali-

sations (E1 and E2). For the initialisations around criticality the

differences are not statistically significant. For generalisation,

it seems that the alternative initialisations are more sensitive to

deviations from criticality (only R1 and L3 indicate no statisti-

cally significant difference). However, given the large scale of

our study we are able to detect very fine differences. Therefore,

even when differences are significant, it is important to consider

the sizes of their effects.

Effect sizes. The purpose of computing effect sizes is to

gauge whether statistically significant differences in effects are

actually meaningful as measured by their magnitude. For a

metric τ, we define the effect size for an alternative initialisation

a ∈ A, as da(τ) = [μa(τ) − μcrit(τ)]/sdcrit(τ), where sdcrit(τ) is

the standard deviation of τ for the critical initialisation. This

definition of effect size for a given quantity is often referred to

as Cohen’s d (Cohen, 1988). In our context, a value of d = 1

can be interpreted as a difference in effects equal to one standard

deviation away from the mean of criticality. Effect sizes are

typically considered to be large, i.e. meaningful, for d ≥ 0.8.

The effect sizes for all the alternative initialisations are given

in Table 1, where the direction of an effect is indicated by its
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sign (negative indicating a worse performance when compared

to criticality). Effect sizes larger than 0.8 in absolute value

are marked with the † symbol. As suggested by the plots in

Figure 3, the majority of initialisations around criticality with

statistically significant differences in generalisation, as shown

in Table 1, have negligible effects sizes. The only meaningful

effects are again at the extremes. Finally, we note that the

above findings also hold when just considering standard ReLU

networks without dropout (shown in Appendix D).

5. Conclusion

At large depth, critical initialisation for neural networks is

often considered crucial for success in training and generalisa-

tion. However, recent work has shown that dropout, a popular

regularisation strategy, limits the depth to which networks can be

trained. Given this depth limit, we explore whether initialising

at criticality still matters or whether it is possible that alternative,

non-critical initialisations (less suited for stable signal propa-

gation at extreme depth) provide any previously undiscovered

benefits over critical initialisation. We conducted a large-scale

controlled experiment by training over 12000 neural networks.

A systematic statistical analysis of training speed and generali-

sation performance showed that, for a wide range of alternative

initialisations around criticality, there is no statistically signif-

icant difference between these initialisations and the critical

initialisation. Our analysis provides strong evidence that, for

moderately deep feedforward ReLU networks (as well as those

whose depth is constrained by dropout), there is little to be

gained by searching for alternative initialisation schemes.

We emphasize the value of the methodology presented in this

paper. Initialisation aside, the methodology can be followed in

a generic way to rigorously test the effects of any design com-

ponent of interest associated with a particular machine learning

algorithm. Since statistical rigour is often lacking in empirical

machine learning research, we hope that this approach might

serve as a useful template for more rigorous investigations.
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Appendix

A. Pseudo random design construction

A.1. Initial / stage-one designs
First we construct incomplete neural network designs by tak-

ing the random Cartesian product of the form:

Ω∗ =W×B × O ×M×L. (A.1)

To ensure balanced designs are created (in the sense that the
design space contains an equal number of each item in any of
the above sets), we do not sample from the sets with a uniform
random probability of selecting each element, but rather concate-
nate random permutations of each set and pair configurations
across this. This process is best illustrated with a small example:

Suppose we only have two hyper-parameter choices: the width
of the hidden layers and the learning rate. We would then want to
generate pairs of layer-width-learning-rate samples. Our method
is to:

1. concatenate random permutations of each set:
Ŵ =

[
permute (W) , . . . , permute (W)

]
=

[600, 400, 800, 800, 600, 400, 600, 400] (for example)
L̂ =

[
permute (L) , . . . , permute (L)

]
=[

10−4, 10−3, 10−5, 10−6, 10−3, 10−6, 10−5, 10−4
]

(for exam-
ple)

2. sequentially pair these concatenated sets:
Ω

(i)
∗ =

(
Ŵ(i), L̂(i)

)
∴ Ω

(0)
∗ =

(
600, 10−4

)
; Ω

(1)
i =

(
400, 10−3

)
; etc

We then duplicate these combinations for each dropout rate
we wish to test. Subsequently, we generate the set of viable
correlation information preserving depths based on the dropout
rate that is present in each configuration. We use the same setup
as above to pair viable depths with incomplete combinations to
form complete combinations.

Note that Adam does not support momentum. Thus, when
Adam and momentum values were paired, the momentum pa-
rameter was ignored when creating the network.
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Fig. A.1. Discrete trainable depth boundary. The depth to which networks
with dropout are trainable for different dropout rates (dashed purple line).
Discrete depths for each dropout rate is shown by the dashed orange line.
When creating networks in practice, the discrete bound should be consid-
ered.

A.2. Complete / stage-two designs
A process identical to the above is followed to match in-

complete designs Ω∗ with viable network depths based on the
dropout rate of the group. We construct depth setsDθ ⊂ D such
thatDθ only contains depths to which correlation information
can propagate for the given dropout rate θ –see Figure A.1 for a
graphical representation of this and note that, since we are work-
ing with networks with discrete numbers of layers, we follow
the discretised boundary. We then concatenate permutations of
this set and use this to complete the designs and form our final
designs Ω. Let us illustrate this by continuing the above example
for θ = 0.7:

1. construct D0.7 = {2, 3, 4, 5, 6, 7} using (6) (we omit net-
works with 0 and 1 hidden layers to ensure some measure
of expressiblity)

2. concatenate random permutations ofD0.7:
D̂0.7 =

[
permute (D0.7) , . . . , permute (D0.7)

]
=

[6, 3, 7, 2, 5, 4, 2, 3, 6, 5, 4, 7] (for example)
3. sequentially pair this concatenated set with the incomplete

designs:
Ω(i) =

(
Ω

(i)
∗ , D̂

(i)
0.7, 0.7

)
∴ Ω(0) =

(
600, 10−4, 6, 0.7

)
; Ω(1) =

(
400, 10−3, 3, 0.7

)
; etc

These four design sets, one for each value in R, are then
duplicated 44 times (once for each combination of initialisation
candidate inA and dataset in X).

B. Method for generating network design dependent initialisa-
tions

Inputs:

• θ: dropout rate

• L: depth of the network

• S : the number of candidates on either side of critical, within
the core group, to be generated

• E: the number of “extreme” candidates (those far greater
than critical) to be generated

• β: the largest positive value that can be represented given
the floating point precision of the current computer

• α: the smallest positive value that can be represented given
the floating point precision of the current computer

Steps:

1. calculate σ2
critical = 2(1 − θ)

2. calculate σ2
w (β) using (10)

3. generate the set of “extreme” samples, σ2
extreme:

3..1 select the first “extreme” candidate such that it is
within the depth boundary:
σ2

extreme,E = 0.9σ2
w (β)

3..2 recursively calculate the subsequent "extreme" can-
didates such that they are logarithmically spaced:
σ2

extreme,e = 1
2σ

2
extreme,(e+1) for e ∈ {1, 2, ..., E − 1}

4. calculate σ2
w (α) using (9)



5. generate the set of logarithmically spaced samples less than
critical, σ2

left:
σ2

left,s = σ2
critical −

0.9
2s−1 (σ2

critical − σ
2
w (α)) for s ∈ {1, 2, ..., S }

6. generate the set of samples just greater than critical, σ2
right,

by reflecting σ2
left about the critical initialisation:

σ2
right,s = σ2

critical−(σ2
le f t,s−σ

2
critical) = σ2

critical+
0.9
2s−1 (σ2

critical−

σ2
w (α)) for s ∈ {1, 2, ..., S }

The set of candidate initialisations is then{
σ2

left, σ
2
critical, σ

2
right, σ

2
extreme

}
.

C. Design and corresponding initialisation examples

Table C.1 shows 12 sampled designs and their corresponding
initialisations. These samples are representative of our full set
of design samples and give a good idea of typical network pa-
rameters. While there appears to be no difference between core
initialisation values across samples with the same dropout rate,
this is actually not the case. Changes are simply typically too
small to be seen with only 3 decimal places. This is due to the
rate of change of σ2

w(α) being very low for networks of shallow
to moderate depth (roughly 20 hidden layers or less).

D. Additional results

In this section we provide additional statistical analyses per
dropout rate as well as with zero dropout. These results are
given in Tables D.1, D.2, D.3 and D.4.

E. On the validity of the RCT approach

We performed two auxiliary studies to ensure the effectiveness
of the RCT setup.

Firstly, we wanted to ensure the methodology was set up
correctly and could identify known performance differences.
To achieve this, we created a smaller scale scenario very sim-
ilar to the study described in the main text but instead using
initialisation as “intervention”, we use the activation function.
Networks with non-linear activation functions are more expres-
sive and should be able to outperform their linear counterparts.
Furthermore, the ReLU activation function does not suffer from
saturation or vanishing gradients and typically outperforms the
sigmoid when using random Gaussian initialisation. These are
well established results, frequently demonstrated in the literature.
Therefore, we decided to construct an RCT where the interven-
tions are the following activations: linear, sigmoid, and ReLU.
Each network was initialised critically and trained on MNIST
for 1955 iterations using a batch size of 128. This RCT consisted
of 1761 trained networks.

The results of the above experiment are exactly as expected
and are given in Figure E.1. ReLU networks performed best
overall. The performance of linear networks were capped sig-
nificantly below that of ReLU networks. Finally, the sigmoidal
networks were able to perform better than linear networks and
as well as ReLU networks in the best case. However, the dis-
tribution over performance for the sigmoid exhibits a long tail
towards low accuracy due to vanishing gradient issues, causing
network training to stall. Furthermore, pairwise comparisons
with post-hoc tests between ReLU and the other activations yield
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Fig. E.1. Best test accuracy distribution per activation function. The test
RCT confirms the validity of this setup as it clearly confirms well known
results: (1) ReLU networks typically outperform linear and sigmoidal net-
works, (2) the best performing sigmoidal networks outperform linear net-
works and perform comparatively to ReLU networks, but are typically
more difficult to train due to vanishing gradients.

p-values that are practically zero, indicating significantly differ-
ent mean performances with meaningful effects sizes (−2.65 for
linear and −8.42 for sigmoid).

After confirming the validity of our RCT setup, we aimed
to control for more sophisticated training procedures, such as
learning rate decay. Learning rate decay is expected to have
a complex temporal interaction with other design components
during training and poses a challenge as a potential confounder
for the RCT to control. We theorise that adding any mechanism
that generally improves performance, such as learning rate decay,
should have an average effect (taken over sampled designs) that
is roughly equal across groups.

To test this, we construct two RCTs nearly identical to the
above. All networks make use of the ReLU activation function
and the interventions in this case are initialisation schemes: He
(He et al., 2015), Xavier (Glorot and Bengio, 2010) and Orthogo-
nal (Saxe et al., 2014). One of these RCTs makes use of learning
rate decay and the other does not. In this way, we can compare
the statistical findings of each and confirm whether they agree.
If the test results do agree, it means that the RCT has success-
fully controlled for the confounding effects of learning rate in
both cases, i.e. with and without decay. Figure E.2 shows best
test accuracy distributions (a) without and (b) with learning rate
decay. It is clear that although learning rate decay may improve
the overall performance of all groups, the relative performance
differences between groups remain roughly the same. Table
E.1 gives the test results for each RCT. The conclusions closely
match between the two trials. Therefore, we conclude that the
RCT as described and performed in the main text provides a
very general approach to isolating the effects of a particular
intervention.

A final possible objection to this setup is that samples might
not always be independent due to correlations between selected
hyperparameters. This could be the case when sampling across
a coarse grid for a single hyperparameter. However, in our setup,



Table C.1. 12 example sets of sampled designs and their corresponding initialisations.

– Example designs –

design index dataset depth width rate batch size optimiser momentum learning rate

0 CIFAR-10 12 800 0.0 256 Adam 0.0 10−5

1 FashionMNIST 15 800 0.0 64 SGD 0.5 10−6

2 MNIST 4 400 0.0 256 RMSprop 0.0 10−5

3 CIFAR-10 2 400 0.5 256 RMSprop 0.0 10−5

4 CIFAR-100 3 800 0.5 64 SGD 0.5 10−6

5 FashionMNIST 4 800 0.5 256 Adam 0.0 10−5

6 CIFAR-10 7 600 0.3 256 Adam 0.0 10−3

7 CIFAR-100 4 600 0.3 64 SGD 0.5 10−6

8 FashionMNIST 5 400 0.3 256 RMSprop 0.0 10−5

9 CIFAR-10 3 600 0.1 32 SGD 0.5 10−4

10 MNIST 8 600 0.1 32 SGD 0.5 10−4

11 CIFAR-10 4 600 0.1 128 Adam 0.0 10−3

– Initialisations –

design index L4 L3 L2 L1 C R1 R2 R3 R4 E1 E2

0 0.201 1.101 1.550 1.775 2.000 2.225 2.450 2.899 3.799 1.464 × 103 2.926 × 103

1 0.205 1.103 1.551 1.776 2.000 2.224 2.449 2.897 3.795 3.346 × 102 6.671 × 102

2 0.200 1.100 1.550 1.775 2.000 2.225 2.450 2.900 3.800 3.865 × 109 7.731 × 109

3 0.100 0.550 0.775 0.887 1.000 1.113 1.225 1.450 1.900 8.301 × 1018 1.660 × 1019

4 0.100 0.550 0.775 0.888 1.000 1.112 1.225 1.450 1.900 3.142 × 1012 6.283 × 1012

5 0.100 0.550 0.775 0.888 1.000 1.112 1.225 1.450 1.900 1.933 × 109 3.865 × 109

6 0.140 0.770 1.085 1.243 1.400 1.557 1.715 2.030 2.660 2.013 × 105 4.026 × 105

7 0.140 0.770 1.085 1.243 1.400 1.557 1.715 2.030 2.660 2.706 × 109 5.412 × 109

8 0.140 0.770 1.085 1.243 1.400 1.557 1.7154 2.030 2.660 3.204 × 107 6.408 × 107

9 0.180 0.990 1.395 1.598 1.800 2.002 2.205 2.610 3.4204 5.655 × 1012 1.131 × 1013

10 0.180 0.990 1.395 1.598 1.800 2.002 2.205 2.610 3.420 5.309 × 104 1.062 × 105

11 0.180 0.990 1.395 1.598 1.800 2.002 2.205 2.610 3.420 3.479 × 109 6.958 × 109

Table D.1. No dropout – θ = 0: Post-hoc tests for training speed and generalisation for no dropout (θ = 0). The symbols ∗ indicate a significant p-value and
† a large effect size.

Training speed – H0 : µcrit(τs) = µa(τs), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0 1.99 × 10−11 3.07 × 10−5 0.0864 0.0529 9.68 × 10−5 8.89 × 10−6 4.71 × 10−7 ∗0 ∗0
Effect size −0.6024 −0.1854 −0.1124 −0.0434 0.0382 0.0716 0.0774 0.0602 †−1.1085 †−1.1009

Generalisation – H0 : µcrit(τg) = µa(τg), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0 ∗0.0033 0.8549 0.7927 0.1846 ∗0.0018 ∗7.20 × 10−6 ∗3.49 × 10−14 ∗0 0
Effect size −0.5224 −0.1592 −0.0975 −0.0325 −0.0027 0.0077 −0.0032 −0.0374 †−1.0008 †−1.0191



Table D.2. Dropout – θ = 0.1: Post-hoc tests for training speed and generalisation for dropout with rate θ = 0.5. The symbols ∗ indicate a significant p-value
and † a large effect size.

Training speed – H0 : µcrit(τs) = µa(τs), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0 ∗0.0203 0.9219 0.6552 0.9395 0.2258 ∗0.0021 ∗2.59 × 10−8 ∗0 ∗0
Effect size −0.2578 −0.0723 −0.0189 0.0015 0.0311 0.0261 0.0202 −0.0009 †−1.1328 †−1.1209

Generalisation – H0 : µcrit(τg) = µa(τg), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0 0.4475 0.8743 0.7033 0.7874 0.5100 ∗0.0193 ∗1.41 × 10−6 ∗0 ∗0
Effect size −0.3091 −0.0976 −0.0650 −0.0237 0.0139 0.0236 0.0221 0.0167 †−1.1503 †−1.1572

Table D.3. Dropout – θ = 0.3: Post-hoc tests for training speed and generalisation for dropout with rate θ = 0. The symbols ∗ indicate a significant p-value
and † a large effect size.

Training speed – H0 : µcrit(τs) = µa(τs), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0.0051 0.0727 0.0727 0.2097 0.1885 ∗0.0090 ∗1.49 × 10−6 ∗4.88 × 10−14 ∗0 ∗0
Effect size −0.1348 −0.0281 −0.0020 −0.0009 −0.0066 −0.0047 −0.0124 −0.0336 †−1.1267 †−1.1304

Generalisation – H0 : µcrit(τg) = µa(τg), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0.0409 ∗0.0018 ∗0.0075 ∗0.0409 0.3975 ∗0.0296 ∗1.03 × 10−5 ∗6.88 × 10−14 ∗0 ∗0
Effect size −0.1144 −0.0416 −0.0074 0.0039 0.0035 0.0093 0.0128 −0.0113 †−1.2549 †−1.2575

Table D.4. Dropout – θ = 0.5: Post-hoc tests for training speed and generalisation for dropout with rate θ = 0. The symbols ∗ indicate a significant p-value
and † a large effect size.

Training speed – H0 : µcrit(τs) = µa(τs), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value 0.1170 ∗7.46 × 10−5 ∗0.0075 0.0843 0.1188 ∗0.0002 ∗1.63 × 10−8 ∗2.66 × 10−14 ∗0 ∗0
Effect size −0.0491 0.01421 0.0105 0.0119 −0.0227 −0.0073 −0.0210 −0.0404 †−1.1158 †−1.1171

Generalisation – H0 : µcrit(τg) = µa(τg), a ∈ {Li,Ri, E1, E2}
4
i=1

L4 L3 L2 L1 R1 R2 R3 R4 E1 E2

Adjusted p-value ∗0.0009 ∗6.18 × 10−6 ∗0.0016 0.0591 0.2637 ∗0.0010 ∗1.03 × 10−5 ∗5.08 × 10−12 ∗0 ∗0
Effect size −3.37 × 10−2 4.44 × 10−3 1.01 × 10−5 8.92 × 10−3 −2.04 × 10−2 4.63 × 10−4 −1.18 × 10−2 −2.64e − 02 †−1.2796 †−1.2843
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Fig. E.2. Comparison of RCTs with and without learning rate decay. Best test accuracy distributions per initialisation are shown. It is clear that although
learning rate decay improves the overall performance of all groups, the relative performance between groups remains the same.

Table E.1. Statistical tests using learning rates with and without decay:
Post-hoc tests for generalisation using and not using learning rate decay.
Comparisons are between He and Xavier and He and orthogonal initialisa-
tion with the null hypothesis H0 of no difference. The relative differences
as detected by the tests remain the same between the two approaches, thus
the RCT has successfully isolated only the effects of the initialisation.

Generalisation
With decay Orthogonal Xavier

Adjusted p-value 0.1972 ∗0.0904
Effect size 0.0124 −0.1176

Without decay Orthogonal Xavier

Adjusted p-value 0.9183 ∗0.0067
Effect size 0.0156 −0.1130

we randomly sample over multiple grids of hyperparameters for
each design (“participant in our study”). Thus for correlations be-
tween designs to persist, they must do so simultaneously across
multiple hyperparameters (dimensions of the design space) to
influence the results. Given the high-dimensionality of the de-
sign space, we feel it safe to treat each design as an independent
sample from the population.


