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Abstract—This research presents the idea of activity fusion into
existing Pose Estimation architectures to enhance their predictive
ability. This is motivated by the rise in higher level concepts found
in modern machine learning architectures, and the belief that
activity context is a useful piece of information for the problem
of pose estimation. To analyse this concept we take an existing
deep learning architecture and augment it with an additional
1x1 convolution to fuse activity information into the model. We
perform evaluation and comparison on a common pose estimation
dataset, and show a performance improvement over our baseline
model, especially in uncommon poses and on typically difficult
joints. Additionally, we perform an ablative analysis to indicate
that the performance improvement does in fact draw from the
activity information.

Index Terms—pose estimation, computer vision, fully convolu-
tion neural networks, context fusion

I. INTRODUCTION

Human Pose Estimation (HPE) is a widely studied field of
Machine Learning focused on finding the joint positions of
humans in an image. Initially researchers developed models
which functioned through the use of hand crafted features,
which yielded some success, however the incredible complex-
ity of the problem limited the viability of such methods. Some
examples of pose estimation annotations can be seen in Figure
1, composed of the predictions of our final model on images
randomly selected from the test set.

Over time, since the inception of neural networks, and
specifically Convolutional Neural Networks (CNNs), models
began to shift towards fully learned knowledge without the
need for human crafted features or prior information. CNNs
enabled models to effectively handle image data due to the
nature of their design, which suited HPE and propelled model
accuracies and speeds, with networks becoming larger and
more carefully structured. Architectures such as DeepPose [17]
and Stacked Hourglass [10] were forerunners of deep learning
for HPE.

The more complex structures that fell under deep learning
began enabling models to capture higher level concepts such
as whole objects and bodies, above local features or individual
limbs [12, 16, 17], improving their accuracies. This indicates
that modern architectures are capable of utilising these con-
cepts, and designing them with this in mind can yield high
performing models. Following on from that, we predict that

the use of contextual information within pose estimators can
further improve performance.

In humans, different activities generally tend to contain
markedly different poses, and in turn different poses tend to
be found more amongst certain activities, and so we choose
activity as our contextual information of choice. Our goal here
is to determine whether knowing an image contains a certain
activity can drive the model to certain biases that improve
its ability to estimate poses. For example, knowing an image
comes from a rugby game may inform a pose estimator that it
will likely encounter more running, diving, and kicking, rather
than sitting.

However, we also need to consider how images are cate-
gorised to activities, which is not straightforward. Using one
set of activities may be more reasonable conceptually, where
using another may better segment poses but be less useful.
For example, using “Playing soccer” is more practical than
decomposing it into “Running”, “Kicking”, and “Tackling”,
even though the latter decomposition may better separate the
poses we expect to see.

Even finding an effective way to fuse this activity informa-
tion into the current deep learning networks available is not
a trivial design choice due to the complex nature of modern
architectures. Above that, where to provide this information
to models requires some thought as well. We hope to address
at least some of these concerns through this research.

The remainder of the paper is structured as follows: Section
II explores some of the existing work in the field of pose
estimation, as well as related concepts of context fusion
in imagery. Section III then covers the architectural design
choices for the research. Section IV provides detail on how our
chosen models were trained, followed by the results thereof in
Section V, including an ablative analysis of our method. We
then provide some concepts for future work in Section VI,
followed by our conclusion in Section VII.

II. RELATED WORK

Early models of HPE utilised largely parts based models
[13, 21], which were successful at the time but fall well short
of the accuracies enjoyed by modern deep learning networks,
and are not well suited to higher level conceptual learning.
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Fig. 1. Some annotated examples from the test set, indicating the complexity of the problem, and the large variety of poses the model is capable of handling.
The effect of having the target in the center of the image can also be noticed in images where there are several people, even in close proximity. Images are
from the MPII dataset [2].

Fig. 2. A visualisation of the original Stacked Hourglass architecture, taken from Newell et al. [10].

Modern networks are far better suited to the task, and fall
largely into one of two categories, namely regression based
or heatmap based models. DeepPose [17] was a forerunning
regression based model. It utilised a holistic method to deter-
mine initial pose estimates, and then followed up with a series
of cascading CNNs to refine predictions on a per-joint basis.

On the other hand, models such as the Stacked Hourglass
model [10] utilise heatmaps entirely for joint predictions.
The Hourglass model takes advantage of contractions and
expansions, as well as residuals, to find a good balance
between holistic, global features, and smaller, localised details
in images. Wei et al. [19] developed a similar concept of a
repeated sequence of sub-CNN modules which each produce
a heatmap that is passed on to the next module, inspired by
[17]. This structure also displayed improvements in the ability
of the model to capture both global and local contextual pose
information.

Some approaches also utilised model-based learning to
restrict pose estimates to realistic spaces. Sun et al. [14]

implemented a bone-based representation that allowed for
learning of skeletal structure, rather than directly predicting
joint positions. They also adapted their loss functions to
account for errors specific to joints, and errors caused by
misalignment of bones between the root and current joint. Both
these alterations successfully increased accuracy over model-
free methods seen before. Bourached et al. [4] utilise a model-
based generative architecture to try improve out-of-distribution
poses, enhancing the models ability to generalise, rather than
focus on more accurate predictions for known distributions.

Rather than using repeated stages of differing refinements,
Chen et al. [5] attempt to ensure realistic poses by utilising
a GAN system, where adversaries are used to determine how
reasonable the generated pose and confidence maps are. An ab-
lative study indicates the GAN structure is indeed contributory
to accuracy improvements. Bin et al. [3] also utilise a GAN
network to augment inputs and make them easier to predict on,
yielding the best performance achieved on the MPII dataset.

As for the concept of activity fusion, it appears that the



available literature is relatively sparse. Rafi et al. [11] explores
the concept of semantic and contextual information by utilising
a depth-based pose estimator which is capable of identifying
objects in the scene and using them for context, however this
only used a small set of objects. Vu et al. [18] also uses
contextual scene information in its estimation process which
improved performance, however the model is only applicable
for head estimations, whereas our focus is on full body poses.

Utilising depth information in their approach, Jalal et al. [8]
extracts skeletal information in order to produce an activity
estimate, however their activity classifications are much finer
grained than those utilised here, using classes such as walking
or sitting rather than exercising. Rather than depth, Gowda
[6] uses RGB imagery and extracts poses to be used for
broader activity estimates, which is more relevant to the topic,
and indicates there is a possible relationship of significance
between pose and activity.

Lan et al. [9] explores a similar concept of utilising contex-
tual information around an image, however in their use case
it is applied to road image segmentation rather than human
poses. Their approach still yielded favourable results, and is
encouraging for our concept.

III. ARCHITECTURE

The utilised architecture was based off of the Stacked
Hourglass model [10] with some added layers for the activity
fusion. The Stacked Hourglass model was selected because of
its high base accuracy, inherently flexible modular design, and
balance at finding global and local pose cues. It also maintains
the same shape of features throughout the majority of the
model, specifically 64×64×256, making testing various fusion
sites more straightforward.

Because the Hourglass network is already designed with
capturing global context in mind, it was also of interest to
see if explicitly providing the context would have a significant
impact, or if the model itself was already capable of extracting
the context in some sense.

We use the final version of the Stacked Hourglass model
initially presented in [10] as our baseline, composed of eight
glasses, and utilising intermediate supervision for training. A
rough visualisation of the original network can be seen in
Figure 2.

Our baseline model still makes use of the initial down-
convolution segment of the network, as well as the inter-
mediate bottlenecks and final remapping convolutions, and
regularisation and frequent batch normalisation. We then had
three sets of models, each composed of an ablative model and
a contextual model. The ablative models were the same as our
baseline, however with a single extra one-by-one convolution
inserted at a specific point in the network. The contextual
model involved stacking the activity tensor on top of the
existing tensor in the model at the point, followed by a one-by-
one convolution, yielding the so called fused image that is then
propagated normally through the remainder of the network.

We make use of the one-by-one convolution in order to
correct the number of layers in the tensor after we have stacked

Fig. 3. The original hourglass block format. The input to the module comes
from previous layer of the network, and the block produces output for the
next block as well as an intermediate heatmap prediction.

Fig. 4. The context hourglass block used for our fusions. The input to the
module comes from the stacking of the activity tensor and the previous layer
in the regular network. The ablative version leaves out the activity tensor
stacking.

our activity onto the previous output. Throughout the majority
of the network there are 256 channels in the output of the
layers, and so stacking our 21 channel activity tensor brings
the tensor to 277 channels. In order to minimise the changes
needed to the network, we then convolve the tensor back down
to 256 layers. This method also ideally allows the convolution
to learn an effective mapping to merge our context into the
tensor, without having to rely on the existing layers in the
network. A diagram of this context block can be seen in Figure
4, compared to the original hourglass block in Figure 3.

We utilise both an ablative and contextual version to verify
that any possible changes in the accuracy of the model are due
to the impact of our activity fusion, rather than the increase in
the size of the model over the baseline. Any increase in size or
alteration to the flow of the network may be significant enough
to noticeably improve the network’s ability to learn features,
regardless of whether we provide activity context or not. Only
testing our contextual augmentations would not reveal the
source of improvement. This means we need to test both the
contextual augmentation, as well as an ablative version without
the activity, to determine if any accuracy changes are resultant
from the one-by-one convolution itself, from the contextual
information, or from both. If our contextual augmentation
outperforms our ablative model, we can have confidence that
the improvement is owing to the context itself.

For simplicity we refer to the three different augmented
networks as A-, B-, and C-Form, lettered from left-to-right
according to their injection points, as can be seen in Figure
5. A-Form has the fusion before the first hourglass, B-Form
before the fourth, and C-Form before the eighth. Their match-
ing ablative models are referred to as A-, B-, and C-Form



Ablative. Each line in the figure indicates a position where
we tested our augmentation. Note that only a single fusion
point was used at a time for each model.

The decision of how to fuse the activity was made difficult
by the convolutional nature of the network, which stopped us
from simply concatenating on a one-hot encoded vector to our
input. To get around this our context took the form of a one-
hot encoded activity tensor of size 64× 64× 21, where 21 is
the number of activities present in the dataset, and 64 × 64
is the shape of the image features as they move through the
network.

IV. TRAINING

Training was performed in a similar manner to that of the
original paper [10] for the MPII Human Pose dataset [1] only.
The MPII dataset provides approximately 25k images (2.5k
of which are withheld as their own hidden test set), leaving
22.5k images for use. Of those, approximately 18k (80%) were
used for training, with the remaining split evenly between a
validation and test set of 2.25k (10%) each.

The dataset provides a 2D ground-truth pose with joint
visibility flags, an approximate scale, and an approximate
center position, among other data not relevant to our anal-
ysis, for each person within an image. Images also have an
activity classification which is used for our context, which
many other datasets do not provide, making MPII particularly
valuable. While MPII provides more fine grained activity sub-
classifications than the 21 activity categories utilised, we did
not use them as our context tensors would become intractably
large, and many of the sub-classifications had few or no
samples.

Because images can contain more than one person, we
follow the method of [10] by cropping the image around
the center of the target so the model knows which person
to estimate on, The images are cropped based on the provided
scale and the provided center coordinates of the target, and
the crop is then scaled to 256 × 256. Cropped images also
undergo some additional rotation (in [−30, 30]) and scaling
(in [0.75, 1.25]) to provide augmentation to the dataset.

One issue encountered with the dataset was that utilising
the scale provided for each person did not always result in
the full pose being in frame. The scale value indicates a box
of width 200px around the center of the target, however even
using 1.5× the scale occasionally resulted in extremities such
as ankles or wrists not appearing in the final crop, which may
lead to a decrease in accuracy and increases the difficulty of
identifying the already challenging joints. Regardless, utilising
the scale value as-is has been the approach taken by several
papers that utilise the MPII dataset [3, 10, 15, 20], and so we
follow the same approach.

The cropping and augmentation can also result in black
pixels appearing in the final image provided to the network,
as black background pixels can be included from outside the
bounds of the image. Obviously this is not very realistic,
however the complex networks are likely capable of learning to
ignore this anomaly. As a possible alternative, mirror padding

could be used when cropping, however, again, the simple
background inclusion is the approach taken by several papers
[3, 10, 15, 20], and so we use the same method.

The baseline model was provided with images cropped
around the center of the person with small random rotations
and scaling modifications, and a heatmap was generated for
each joint of the target pose as ground-truth for the model. The
augmented models were provided both with the image crop,
and the one-hot encoded tensor for the activity representation.

All models were trained with an MSE loss function over the
ground-truth heatmap and predicted heatmap set. The model
makes heavy use of batch normalisation [7] to improve training
speed and performance. This allowed us to use a relatively
high learning rate of 2.5−4 with the RMSprop optimiser, taken
from the original Stacked Hourglass paper [10]. We utilised
our validation set to select the best model as that with the
lowest validation loss at any point of training.

Training of the models took approximately three days using
an RTX3080 and a batch size of 8, which was the largest we
could achieve given the complexity of the network. This meant
a prediction time of 60ms per image. This was for both our
baseline model and our augmented model set, indicating that
our context pipeline has a negligible overhead.

V. RESULTS

While it does not imply an increase or decrease in accuracy,
it should be noted that results were evaluated using our own
withheld test set comprised of the released annotations, not
the official MPII test set. This is due to the now publicly
available test set not having associated activities, and attempts
at getting activity annotations being unsuccessful. We utilised
the common PCKh@0.5 metric, which represents the percent-
age of correct keypoints, where a correct keypoint is defined
as being within a threshold, specifically half the normalised
distance between the top of the neck and the top of the head,
of the ground-truth keypoint.

A. Evaluation

Our final total accuracy for the best model, the C-Form
model, was 90.3%, an improvement of 2.7 percentage points
over our baseline model’s performance of 87.6%. The contex-
tual information was particularly impactful on some conven-
tionally difficult joints such as ankles, knees, and wrists, where
the contextual model improved over the baseline by 7.6%,
3.3%, and 1.5% respectively. The accuracies of the different
models can be seen in Table I.

In terms of per-activity accuracies, our C-Form model
showed noticeable improvements on most activities, faring
better in activities with more data points. The average activity
improvement was 2.5%. The apparent variance in improve-
ments per activity is likely due to the nature of the activities
and their compilations. For example, our model saw the
largest improvement in the “Water Activities” classification of
6.3%, where the poses are very different from those found in
other activities, with some subjects being in unusual stances,
obscured in scuba gear, or even upside down. A comparison



Fig. 5. The augmented network, with lines indicating the three tested fusion points. The input to the fusion modules come from the activity tensor and the
previous layer before the insertion point.

TABLE I
JOINT AND TOTAL ACCURACIES OF DIFFERENT NETWORKS WHEN RUN ON OUR OWN TEST SET.

Model Head Neck Torso Pelvis Shoulder Elbow Wrist Hip Knee Ankle PCK@0.5
Baseline 91.6 97.2 98.0 92.7 93.5 91.1 88.7 88.7 83.2 55.9 87.6

A-Form 93.5 98.1 99.1 93.7 95.3 92.1 90.1 90.8 86.0 58.8 89.4
A-Form Ablative 92.8 97.7 98.8 94.2 94.6 91.7 89.9 90.6 86.4 60.9 89.3

B-Form 94.0 97.9 99.3 94.5 95.1 92.4 90.1 91.3 86.9 63.3 90.0
B-Form Ablative 92.2 98.1 99.0 94.2 95.0 92.5 89.9 90.7 86.9 60.8 89.5

C-Form 93.7 98.0 99.2 95.3 96.0 92.7 90.2 91.7 86.5 63.5 90.3
C-Form Ablative 92.4 96.1 97.1 94.1 93.2 88.0 85.2 88.4 78.8 56.8 86.2

Fig. 6. The different activity accuracies for our baseline (blue), B-Form
Ablative (orange), and best augmented model, the C-Form model (green).
Activities are sorted left to right by the number of images in the test set,
ranging from 600+ (leftmost) to fewer than 10 (rightmost).

on this activity between the Baseline and C-Form model can
be seen in Figure 7. The “Miscellaneous” and “Bicycling”
classifications on the other hand showed minimal improve-
ment, likely due to the relatively random grouping, and already
common poses that require minimal context, respectively. The
different per-activity accuracies can be seen in Figure 6.

Our C-Form model also shows consistent improvement over
the baseline when evaluating at varying PCKh thresholds,
having a higher accuracy at every value. This indicates that
the performance improvement is actually caused by overall
better predictions, rather than by chance that a set of keypoints
moved within the threshold distance only for a specific value.

This can be seen in Figure 8.
This indicates that our method of activity fusion may very

well be useful if our activities are structured well enough
to segment very different poses and cluster similar ones.
Naturally this is in itself a challenging task, but nevertheless
means there may be room for improvement.

Interestingly, our results indicate some level of sensitivity
of the method to the fusion position. Our ablative models
experienced a sharp decline in performance towards the end
of the model, with the C-Form actually performing worse than
our baseline. Alternatively, our contextual models performed
progressively better with fusions towards the end of the model.
Only providing context at the beginning of the network may
be too early to enable the model to effectively utilise the
information for the final predictions, with the signal from the
context having diminished by the time it reaches the later
hourglasses.

In comparison to state of the art methods, our model seems
to perform slightly below the state of the art accuracies
reported on the MPII test set [2]. Again, this is not an entirely
useful comparison however, as our research was unable to
make use of the official test set, and so our true test result
is unknown. Nevertheless, the intent of the research was to
indicate the usefulness of activity fusion, which was apparent
in our noticeable accuracy improvements.

B. Ablative Experiments

All of our contextual models fairly significantly outper-
formed the baseline model in their overall accuracy, however



Fig. 7. Images from our test set showcasing how the C-Form model (bottom) is better capable of handling the relatively uncommon poses that fall under the
“Water Activities” classification, compared to the Baseline model (top).

Fig. 8. The different accuracies when varying PCKh thresholds for our
baseline, best ablative model, and best contextual model

we needed to perform an ablative test to ensure the contextual
information itself is actually contributory to our results.

Our testing indicated that adding the additional one-by-one
convolutions does, in some cases, increase the performance
of the network, namely the A-Form Ablative and B-Form
Ablative models. However, performance degrades in the C-
Form Ablative model, and so clearly the increase in the C-
Form contextual model’s accuracy is not only attributable to
the additional convolution.

The best ablative model, the B-Form Ablative, showed a
performance improvement of 1.9% over the baseline. While
such a margin may simply be caused by variability in training,
the consistent trend amongst the different augmentation sets
seems to indicate at least some level of impact by both the
architectural changes, as well as the provision of context. The
overall accuracies for each model can be seen in Table II.

It should be noted that the C-Form Ablative model also
consistently performed worse than the baseline model, which
is unusual as the model could simply learn an identity mapping
and have no affect on our predictions. This drop in accuracy
could possibly be due to the degrading of gradients during

TABLE II
TOTAL ACCURACIES FOR EACH MODEL ON OUR OWN TEST SET.

Model Accuracy
Baseline 87.6
A-Form 89.4
A-Form Ablative 89.3
B-Form 90.0
B-Form Ablative 89.5
C-Form 90.3
C-Form Ablative 86.2

back-propagation, as the Stacked Hourglass makes extensive
use of residuals, and adding extra convolutions without skip
layers may hinder this.

VI. FUTURE WORK

While we have explored the basic concept of activity fusion
in this report, there are already numerous apparent avenues to
continue analysing in various domains.

In terms of the model utilised, this paper focused on a
relatively conceptually simple deep learning model, however
in the future we could rather make use of even newer state-
of-the-art performers. Additionally we could design our own
network centered around the concept of activity fusion.

We can also perform more rigorous testing of our results,
performing cross-fold validation to account for the official
test set not being usable, which would eliminate the concern
of random variance. Furthermore we could analyse how our
activity affects the features our model learns and makes use
of, should it have a significant impact.

Exploring more methods of encoding and fusing our context
would also be useful, as we only focused on straightforward
one-hot encoding with concatenation and a 1× 1 convolution
to fuse the information. Alternatives could involve using auto-
encoders before providing the input to the network, or other
latent space methodologies. We could also investigate different



methods of fusing involving a more thorough merging strategy
rather than just a single convolution layer.

Finally we could explore the usefulness of context in other
deep learning fields. While pose estimation seems like a useful
field for context provision, there may be many others, such as
image segmentation, or translation systems.

VII. CONCLUSION

In this paper we explored the concept of fusing contextual
activity information into the existing Stacked Hourglass model.
We show that even with rudimentary organising of images
into activities, and using straightforward fusing methods, our
method is capable of providing performance gains over a base-
line model. Above this our method introduced no significant
overhead into the training or prediction process.

Our method was capable of improving accuracy on typically
difficult joints, and is especially useful in activity classifica-
tions where poses are unusual in comparison to the available
training data. We also provide various avenues for further
exploration, and are hopeful that context fusion is a viable
addition to improving deep learning models in the field and
beyond.
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