
Raw Material Selection for Object Construction
Jason Perlow1, Benjamin Rosman1,2, Bradley Hayes3 and Pravesh Ranchod1

Abstract—An important step in the construction of novel
objects is the ability to recognise combinations of raw materials
which are likely to be useful. We aim to exploit the intuition
that the visual characteristics of candidate raw materials provide
useful cues to their potential combinations. Toward this end, we
present a Siamese neural network based model that is able to
recognise unseen raw materials present in objects given a list
of candidate material images. We demonstrate the utility and
efficacy of our model within two domains. The first being a proof-
of-concept within Minecraft where we predict the combinations
of objects that will result in a target object. The second, more
realistic domain, uses the ShapeNet 3D model dataset where
we attempt to recover the materials present in a model. We
empirically demonstrate that our model is able to learn from a
subset of object material pairs and generalise to unseen objects,
materials, texture packs. Under these conditions of high visual
variation, we show that our model outperforms chance and
baseline methods.

I. INTRODUCTION

For a construction agent to select the raw materials nec-
essary to construct a novel object, it may need to recognise
classes of raw materials present in the object that it has not
seen before. To achieve this, the agent would need to perform
recognition beyond fixed classes and transfer knowledge from
familiar raw materials and object classes to novel raw material
and object classes.

As a step towards creating such an agent, we propose a
model that performs recognition by making use of the general
visual relationship between a given material and an object it
needs to construct. The model learns the general visual relation
by being given a subset of objects and materials which allows
the model to compare unseen objects and materials without
additional training.

For example, consider the case shown in Figure 1 where
previous observations of the material on the top left can be
used to create the tool on the top right. By analogy, the agent
can then predict that the materials on the bottom left are
necessary to create the tool on the bottom right. In such a case,
the agent has not seen the target tool nor one of the materials.
By learning to recognise the similarities between the first tool
and its material, it can use this similarity knowledge to select
appropriate unseen materials for unseen tools.

1are with the School of Computer Science and Applied Mathematics,
University of the Witwatersrand, Johannesburg, South Africa. Corresponding
author: jason.perlow@students.wits.ac.za

2is with the Council for Scientific and Industrial Research, Pretoria, South
Africa.

3is with the Department of Computer Science, University of Colorado
Boulder, USA.

+

Fig. 1. (Top) Source domain - Construction of iron shears. (Bottom) Target
domain - Constructing an iron pickaxe from raw materials.

A. Visual Similarity

We propose a model inspired by the recognition of visual
similarities between required materials and a desired object
that an agent needs to construct. This allows an agent to
construct unseen objects more quickly than trying all possible
materials available, by solely using features based on their
visual appearance. In particular, we present a method for an
agent to recognise the required unseen raw material images
and link them to corresponding novel object images. This
capability provides an agent with an increased degree of
resourcefulness in unseen environments [1].

B. Domains

We demonstrate the efficacy of visual similarities to perform
material selection in two domains. The first involves tool
construction in the sandbox adventure game and reinforcement
learning domain Minecraft [2]. The second domain is that
of material recognition performed on 3D furniture models
from the ShapeNet dataset [3]. The ShapeNet domain aims
to demonstrate the applicability of our method beyond an
adventure game and show that it could, in the future, form
part of a real-world model for an agent capable of object
construction.

In the Minecraft domain we test our model’s ability to find
the visual features necessary to perform tool construction. We
use the crafting (inventory item combination) mechanic from
Minecraft. In Minecraft, raw materials can be mined from the
environment and combined or crafted into food, tools and other
objects that can be used in the game. We focus our attention
only on selecting necessary ingredients and ignore the position
and quantity of materials on the in-game crafting grid or table.

As an example of determining the recipe of the tool by
finding the most plausible raw material combination, consider
possible recipes in Figure 2. Even though both the tool and
material are unseen, from inspection of Figure 2, a human
without any Minecraft experience can see that the third combi-
nation is most likely. It is precisely this intuition derived from
visual features (such as shape and colour) that we successfully
model in this paper.



+
?

?

?

+

+

Fig. 2. Possible inventory item ingredients for crafting a diamond hoe. Note
the visual similarity of the third row (the correct pair) and the tool. This
intuition inspires our model. Best viewed in colour.

To further motivate the adaptivity of our method to visual
variation we also consider generalisation to tool images of
unseen visual style. Since the chosen domain of Minecraft is
restricted in the visual variety of available items, we mitigate
the limitations of the default dataset, the vanilla texture pack,
by selecting a variety of additional texture packs. For example
we use the LB Photorealism texture pack (see Figures 1 and 5),
which has images with a more realistic appearance compared
to the vanilla texture pack (see Figure 2).

Building on the intuition of the Minecraft domain, we
exploit the same visual similarities between objects and their
constituent materials in the ShapeNet domain. As shown in
Figure 3, in the ShapeNet domain we aim to determine
the presence of raw materials in a given 3D object model
by matching a list of 3D model textures with rendered 3D
models that contain exactly one of those textures. This domain
therefore assumes that textures correspond to raw materials
such as fabric, light and dark wood (shown in Figure 3).
Here we test the ability of our model to generalise to unseen
materials once trained on a constrained subset of material
object pairs.

∈select M∈ s.t. M

Fig. 3. Possible materials for building a bench. Best viewed in colour.

Our primary contribution in this work is a Siamese neu-
ral network-based model that predicts the probability of a
construction/crafting success given component raw material
images. In the Minecraft domain, these are M1 and M2 from
an inventoryM. More formally, for a particular target or goal
object G ∈ G, the model generates a series of mappings, which
when ranked, approximate the crafting procedure that maps
two inventory items to a goal item:

M2 → G (1)

To find the correct crafting policy π given G, we invert the

crafting model to yield

π : G →M2. (2)

However, in the ShapeNet domain we wish to find a single
material and thus considerM instead ofM2 in Equations (1)
and (2).

We show that our model successfully extracts visual features
from the appropriate raw materials that best match the visual
features of the object to be constructed, allowing for more
rapid object production than competing methods.

To the best of our knowledge, this is the first such model
using visual similarity transfer to accelerate vision-based ob-
ject construction from component parts, and in doing so we
provide a benchmark for future work to compare against
within Minecraft and ShapeNet domains.

II. BACKGROUND

Our model is inspired by Siamese neural networks, a class
of neural network that includes multiple identical subnet-
works in its architecture, particularly well suited for finding
similarity. Siamese neural networks include popular network
architectures such as the convolutional neural network (CNN)
[4], which we utilize in our work.

A. Siamese Networks

Siamese networks have multiple neural network branches
with shared weights that produce vectors that are fed into a
similarity metric [5]. A common similarity metric is the cosine
similarity cos(·, ·) which is proportional to the angle between
two vectors. Since the neural network branches are typically
CNNs, the output y of the whole model can be stated as

y = cos(CNNw(x1), CNNw(x2)), (3)

where x1 and x2 are images and w are weights which
are shared between the two CNN branches. Conceptually, a
Siamese network therefore extracts the same features from two
images and compares them to determine their visual similarity.

B. Training

Since the Siamese network outputs a scalar similarity,
training reduces to a regression problem. We update weights
such that a loss function is minimised between the ground truth
ȳ and output y of the network. We use the cosine embedding
loss as defined in the Torch machine learning library [6], given
by

loss(y, ȳ) =

{
1− y, ȳ = 1
max(0, y −m), ȳ = −1

(4)

where m is a margin.

III. METHODS

To predict the materials needed to create objects we intro-
duce two models. The first model is intended to be a simple
performance baseline and conceptual starting point for the
more complex second model. Both approaches require raw
materials and desired object images as inputs, and both output



the correlation of input-output pairs to indicate a successful or
unsuccessful construction.

Our ShapeNet model is a simplification of our Minecraft
model in that it only detects single materials and therefore
has one branch where the Minecraft models have two.

A. Pixel Correlation

As a reasonable baseline we use the intuition of correlating
the relative pixels in each image. To this end, we propose a
model which sums the raw pixels of inventory item sprites
M1 and M2 and then measures the cosine similarity with the
sprite image of the goal tool we wish to construct, G. This
addition network (AddNet) is therefore stated formally as

AddNet(M1,M2, G) = cos(M1 +M2, G). (5)

To find the best images to use to construct a particular goal,
we execute the model on all possible policies, being unique
pairs from the inventoryM. To find the combination of items
that have the highest similarity with the tool we want to
construct, correlations are ranked and crafting attempts are
made until a correct recipe is found. The aim of the model
is therefore to reduce the number of crafting queries and thus
crafting attempts needed to produce a tool. The optimal policy
predicted by the model is therefore

π(G) = arg max
i,j

AddNet(Mi,Mj , G). (6)

Item pairs can include two of the same image for the
situation where a recipe only has a single ingredient. AddNet
is commutative, which models the fact that order does not
matter in crafting.

B. Visual Similarity

We now build on from the intuition of AddNet, by extracting
visual similarities from the raw images. This gives rise to the
full Minecraft model: an extension of AddNet using convolu-
tional branches with shared weights. The convolutional layers
and similarity metric of the model bear a strong resemblance
to Siamese networks. However, as shown in the architecture
diagram in Figure 4, the outputs of the two input convolutional
layers are added before the similarity metric is used. We use

cos

M1

G

CNN CNN

CNN

M2

Fig. 4. Minecraft model architecture (in grey) with example input and output.

CNN branches to map the sprites onto a Euclidean space so
they can be more easily added and correlated as vectors. This

mapping is interpreted as visual feature extraction and there-
fore takes the sum of the visual features from the ingredients
and correlates them with visual features of the goal.

Since we want the model to output composition correlations,
model weights are optimised such that it outputs 1 when
ingredients are predicted to successfully craft and -1 when they
do not. When training our Minecraft model, the sum of the
embedded ingredient vectors are expected to share similarities
with the embedded goal item and are therefore regressed to 1
whereas recipes that are dissimilar are regressed to -1.

As with AddNet, all possible unique pairs are fed into the
model to produce crafting correlations. Crafting attempts are
then made based on ranked crafting correlations.

In the case of ShapeNet our model instead becomes a
simple Siamese network that merely correlates visual features
extracted from candidate materials, using a CNN, with the
object that needs to be constructed.

C. Justification of Methods

Both AddNet and CraftNet use the cosine similarity metric.
A motivation for this metric is that it is invariant to the
magnitude of both vectors. This is important in the case where
a tool needs two of the same ingredient. Here, the cosine
between the sum of two identical images M1 + M1 and
another image M2 is the same as the cosine between a single
image M1 and the other image M2. Since we represent single
ingredient recipes as M1 + M1 where M1 is the ingredient,
this cosine property models the intuition that crafting both one
or two ingredients should have the same result.

Empirical tests have determined that a Siamese neural
network outperforms a monolithic image classification type
CNN on visual analogy problems [7]. Since our model is
inspired by Siamese neural networks and deals with visual
analogy problems, we draw inspiration from these results.
Furthermore, by having separate branches for each input, the
model does not prematurely mix data from separate images
until the addition and cosine operations are performed. This
is in contrast to a monolithic CNN model which would add
images from different materials in early convolutional layers.

A key assumption of our full model is that extracted visual
features from the materials can be added and then correlated
with the features from the final product. We therefore focus our
attention on object construction where, from inspection, visual
similarities between objects and their respective materials do
appear to exist.

IV. EXPERIMENTS

For Minecraft, we evaluate both of our models on a total
of seven experiments, using different sets of raw materials,
goal tools, and sprite texture packs. The experiments use
increasingly sparse data. In particular, experiments 1–3 each
exclude individual categories of tools, materials and texture
packs (representing different styles) from training data re-
spectively. Training data is further reduced in experiments 4–
7, where we exclude combinations of two of these unseen
categories. In addition to decreasing training data, we also



change the orientation of test images compared to training
images. The experiments are therefore constructed to test the
robustness of our model against increasing degrees of unseen
data and visual variation. In all experiments baseline methods
are benchmarked against chance which uniformly samples
from available remaining materials.

A. Minecraft Data

Out of the many inventory items in Minecraft, we focus on
experiments that craft a subset of all items. Namely, we focus
on tools made from wood, stone, iron, gold and diamond1. The
ingredients that can be used to make these tools include refined
materials and their respective ores. The dataset then has a total
of 26 tools and 11 ingredients. Tools and ingredients in vanilla
Minecraft are represented by 32×32 pixel colour images or
sprites. For the purpose of our experiments we resized all
sprites to 32×32 pixel images and pixels were scaled between
0 and 1, but were not adjusted for brightness or contrast. Sprite
samples from different texture packs are shown in Figure 5.

Arestian's
Dawn

LB
Photorealism

1.9
vanilla

Faithful

Fig. 5. Examples from the texture packs used as training data in experiments.
In experiments 4, 5 and 7, two of the texture packs were unseen.

B. Minecraft Model

In the seven experiments, CraftNet is a two layer con-
volutional and one dense layer based model with ∼ 200k
parameters trained on different tool sets as shown in Table
I. For example in experiment 6, we train the model on sprites
from all four texture packs which are shears together with
wood, iron and stone hoes, axes and swords. We then test
AddNet and CraftNet on the remaining tools and materials
from all texture packs to determine the generalisation of the
model.

In addition to tool and material constraints, in experiments
3, 5 and 7, we perform experiments similar to the other four
experiments but train the model on two texture packs (vanilla
1.9 Minecraft texture pack and Arestian’s Dawn) and test it
on the remaining two (Faithful and LB Photorealism). For
example, in experiment 3, we train on all tools and materials
from these two texture packs and test the model on the
remaining two texture packs. Sample sprites from all four
texture packs are shown in Figure 5. When a model makes
a prediction input images are drawn from the same texture
pack so visual similarities can be detected.

Since crafting can be successful or unsuccessful, we used
both positive and negative training pairs. In experiments where

1These are defined in http://minecraft.gamepedia.com/Tools.

TABLE I
TOOL MATERIAL TYPES USED AS TRAINING DATA IN THE FIRST 6

EXPERIMENTS. EXPERIMENT 7 USES THE SAME TOOLS AS EXPERIMENT 6,
BUT IS ONLY TRAINED ON TWO TEXTURE PACKS, SIMILAR TO

EXPERIMENTS 4 AND 5.
Wood Stone Iron Gold Diamond

Axe 1–6 1–6 1–6 1,3 1,3
Hoe 1–6 1–6 1–6 1,3 1,3
Sword 1–6 1–6 1–6 1,3 1,3
Pickaxe 2–4 2–4 2–4 3,6 3,6
Shovel 2–4 2–4 2–4 3,6 3,6
Shears none none 1–6 none none

materials are excluded, excluded materials and the ingredients
used to make them are also excluded from negative training
pairs. Many more item combinations cannot be crafted than
can be crafted. To remedy this, in each training round we
randomly select a different subset of 10 items from the
oversampled class so the model is both exposed to the whole
undersampled class while not being overwhelmingly exposed
to data from the oversampled class.

Recipe ground truths were collected from the Minecraft
Wiki2. The recipes can consist of mappings between one or
two inventory items and a single tool.

A key goal of the proposed model is to generalise material
recommendations to novel tools where the model has not
seen materials, tool types or graphical styles. To quantify
generality we measure the average number of failed attempts
taken to craft all unseen tools. This average is then normalised
by dividing it by 64, the maximum possible failed attempts,
yielding a mean recall metric. The results of the 7 experiments
are summarised in Table II and in particular, the results of
experiment 7 are shown in Figure 6. In Figure 6 the proportion
of unseen test tools correctly crafted is measured at k, a
threshold of the number of failed crafting attempts, namely
Recall at Top-k [7]. For this Figure, results for the same tool
from different texture packs are averaged together while the
chance model is averaged over 100 trials and has error bars
of one standard deviation.

Fig. 6. A comparison of the number of crafting attempts needed to craft test
tools between chance, the proposed model and the baseline in experiment 7.
“Flipped” refers to the more difficult case of some of the sprites being flipped
along the vertical axis.

2http://minecraft.gamepedia.com/



TABLE II
MEAN RECALL OF CRAFTNET COMPARED TO THE ADDNET BASELINE AND CHANCE. EXPERIMENT RESULTS FOR FLIPPED SPRITES ARE IN

PARENTHESIS. STANDARD DEVIATION ERRORS ARE SHOWN FOR CHANCE EXPERIMENTS. BEST RESULTS ARE IN BOLD.
Unseen Data AddNet CraftNet Chance
1. Tools 0.674 (0.395) 0.826 (0.806) 0.481±0.296 (0.542±0.315)
2. Materials 0.612 (0.301) 0.777 (0.717) 0.572±0.289 (0.507±0.272)
3. Texture packs 0.742 (0.531) 0.855 (0.848) 0.529±0.260 (0.432±0.272)
4. Tools & texture packs 0.691 (0.506) 0.855 (0.852) 0.430±0.332 (0.565±0.315)
5. Materials & texture packs 0.775 (0.598) 0.851 (0.832) 0.490±0.292 (0.581±0.294)
6. Materials & tools 0.655 (0.441) 0.812 (0.817) 0.555±0.268 (0.568±0.308)
7. Materials, tools, & texture packs 0.737 (0.557) 0.860 (0.880) 0.501±0.285 (0.484±0.287)

In all experiments, CraftNet performed on average better
than AddNet and chance. However, as shown in Figure 6,
in the particular case of experiment 7, in terms of the steps
to craft tools, CraftNet performed comparably to AddNet for
some tools. That is, for easy tools where there is a high degree
of visual overlap the baseline and the proposed model are
comparable. An example of this are wooden tools where the
wooden planks sprite overlaps with the head of the tools and
will therefore correlate well.

Even when some of the input sprites are flipped along their
vertical axis, CraftNet does not decrease in performance and
still performs better than chance despite having not being
trained on flipped sprites (with the exception of shovels in
the LB Photorealism texture pack). This is in sharp contrast
to AddNet which under the same conditions is comparable
with chance when attempting to craft any item. A possible
reason for this is that, as shown in Figure 7, flipped sprites
often do not overlap with the goal item thus demonstrating
the fragility of AddNet. These results further indicate that
the proposed CraftNet model is robust against visual variation
compared to the AddNet baseline which fails under simple
image perturbations.

+

M1 M2 G

cos

Fig. 7. An example of poorly overlapping flipped ingredient sprites resulting
in poor AddNet performance.

C. ShapeNet Data

From the ShapeNetCore dataset we select categories of
objects that an assembly agent could plausibly construct from
raw materials, such as chairs, tables and cabinets while ex-
cluding categories like aeroplanes, bottles and mugs. We also
balance the data such that there no more than 500 samples per
category. We render objects from all eight cardinal views using
the provided ShapeNet viewer3 and resize rendered images and
textures to 128×128 images. In an attempt to model material
selection in objects, we focus our attention on objects that
are largely covered by textures since the appearance of most
3D models are determined by both textures and internal mesh
data. As shown in Figure 8, after rendering, we filter out such
models by swapping out textures for first blue then red textures
and comparing renderings. When there is a large Euclidean

3http://github.com/ShapeNet/shapenet-viewer

distance between images, the appearance of the 3D model is
likely largely determined by textures and is therefore included
in our experiments. This filtering process yields a total of 1008
models.

accept

reject

Fig. 8. Change of textures in models to measure the impact of textures
on visual appearance. (Top) Minimal change - Reject. (Bottom) Significant
change - Accept. Best viewed in colour.

D. ShapeNet Model

Similar to the Minecraft model, each branch in the ShapeNet
model has two convolutional layers followed by one dense
layer which together have a total of ∼ 250k parameters.
Similar to Minecraft we hold back 20% of all materials and test
on the remaining 80%. As an example we hold back a wood
texture during training and require the model to recognise
wood in an object. We also randomise weights as an additional
benchmark to see if our model does indeed transfer knowledge
from seen classes to unseen classes. We also compare our
model against colour histogram features to see if our model
learns additional features beyond simple colour matching. The
results of these experiments are measured with mean recall are
shown in Table III. The trained model performed better than
chance, our baseline model, a colour histogram baseline and
a full model with randomised weights.

V. RELATED WORK
Related to our proposed model is work that uses affor-

dances, visual analogies and neural networks in a planning
or classification setting.

Humans use affordances that are visual cues encoded in
the environment which afford a particular action and thus
enable the person to interact with unfamiliar objects [8]. This
relates to the presented work which uses visual features since
affordances are a type of visual feature used in a planning
context. Affordances have been used in Minecraft to prune
possible actions in a similar way to how we use visual
similarities to prune the list of possible recipes [9].



TABLE III
MEAN RECALL OF THE TRAINED SHAPENET MODEL COMPARED TO RANDOMLY INITIALISED WEIGHTS, OUR CORRELATION BASELINE AND CHANCE.

STANDARD DEVIATION ERRORS ARE SHOWN FOR RANDOMISED EXPERIMENTS. BEST RESULTS ARE IN BOLD.

Unseen Data Baseline Colour Histogram Random Weights Model Chance
Materials 0.522 0.525 0.559±0.256 0.751 0.497±0.332

Our proposed framework also has similarities with affor-
dance based tool and grasping research. An example is using
hard-coded affordance features to cluster the grasping types of
3D tool models [10]. This allows for the detection of grasping
configurations of unseen tools, which is similar to the proposed
method which uses visual similarities to construct objects.
Other examples include learning how to use affordances such
that a robotic arm can interact with novel objects using a real-
world robotic arm [11] and a simulated one [12].

Another body of research on which the framework of this
paper is based is that of visual analogies [13]. Sadeghi et
al. [7] use a Siamese network to predict visual relations of
objects in the following form: given a visual mapping A→ B,
find x in the relationship C → x . This is related to the
presented material selection problem in that we want to find
mappings between combinations of materials and objects given
prior analogous mappings. Inspiration for image addition in
our Minecraft model and baseline comes from Reed et al.
[14], who performed image additions using an additive CNN
with a decoder to predict the visual appearance of video game
character sprites in unseen orientations.

Neural network based models are also used in the field
of material recognition. Material recognition is related to the
material selection in the presented work. However, work in
material recognition has mainly focused on recognition with
fixed material classes [15]. This is in contrast to the presented
work which recognises materials by being shown an example
and is therefore not restricted to fixed classes. Unlike material
recognition we demonstrate the ability to transfer to new
materials. Furthermore unlike previous material recognition
work, we apply our method to full isolated objects and not
full scenes or patches within a scene [16].

VI. CONCLUSION

We have shown that our proposed models outperform
chance as well as an image correlation baseline in two domains
consisting of varying object types and visual appearance.
Since the baseline is more sensitive to simple perturbations
than our proposed models, the addition of CNN-based feature
extraction layers in the presented models are necessary.

Since the LB Photorealism texture pack and the ShapeNet
rendered models have realistic images, they hint at the possi-
bility of a real-world object construction agent. However, even
in these datasets, objects are still not completely realistic. They
sometimes have intentionally exaggerated colour (e.g., bright
blue for diamond tools and materials). Also, even in realistic
sprites and rendered 3D models, there is no background clutter
which would exist in real domains.

The combinatorial nature of the material search algorithm
means that the model needs to operate on many inputs, O(n2),

before ranking can take place. To remedy this we could use
a two-level ranking process inspired by the Learning to Rank
literature [17]. Namely, a coarse filter would first rank groups
of materials, and then would apply the proposed method to
refine the results within top ranking groups.

REFERENCES

[1] J. T. Balint and J. M. Allbeck, “Macgyver virtual agents: using ontolo-
gies and hierarchies for resourceful virtual human decision-making,”
in Proceedings of the 2013 International Conference on Autonomous
agents and multi-agent systems, 2013, pp. 1153–1154.

[2] K. Aluru, S. Tellex, J. Oberlin, and J. MacGlashan, “Minecraft as an
experimental world for ai in robotics,” in AAAI Fall Symposium, 2015.

[3] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at
Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[5] J. Bromleyh, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah, “Signature
verification using a “siamese” time delay neural network,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no. 04,
pp. 669–688, 1993.

[6] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Idiap, Tech. Rep., 2002.

[7] F. Sadeghi, C. L. Zitnick, and A. Farhadi, “Visalogy: Answering
visual analogy questions,” in Advances in Neural Information
Processing Systems 28. Curran Associates, Inc., 2015, pp. 1882–
1890. [Online]. Available: http://papers.nips.cc/paper/5777-visalogy-
answering-visual-analogy-questions.pdf

[8] J. J. Gibson, The Ecological Approach to Visual Perception. Psychology
Press, 1986.

[9] G. Barth-Maron, D. Abel, J. MacGlashan, and S. Tellex, “Affordances
as transferable knowledge for planning agents,” in 2014 AAAI Fall
Symposium Series, 2014.

[10] T. Mar, V. Tikhanoff, G. Metta, and L. Natale, “Multi-model approach
based on 3D functional features for tool affordance learning in robotics,”
IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids), pp. 482–489, 2015.

[11] B. Ridge, D. Skočaj, and A. Leonardis, “Self-supervised cross-modal
online learning of basic object affordances for developmental robotic
systems,” in Robotics and Automation (ICRA), 2010 IEEE International
Conference on, 2010, pp. 5047–5054.

[12] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in 7th
IEEE International Conference on Development and Learning, 2008,
pp. 91–96.

[13] B. M. Stafford, Visual analogy: Consciousness as the art of connecting.
MIT Press, 2001.

[14] S. Reed, Y. Zhang, Y. Zhang, and H. Lee, “Deep visual analogy-making,”
in Advances in Neural Information Processing Systems, 2015, pp. 1252–
1260.

[15] C. Liu, L. Sharan, E. H. Adelson, and R. Rosenholtz, “Exploring features
in a beyesian framework for material recognition,” in Computer Vision
and Pattern Recognition (CVPR), 2010, pp. 239–246.

[16] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recognition in
the wild with the materials in context database,” Computer Vision and
Pattern Recognition (CVPR), 2015.

[17] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien, “Efficient
query evaluation using a two-level retrieval process,” in Proceedings
of the twelfth international conference on Information and knowledge
management, 2003, pp. 426–434.


