
Quantisation and Pruning for Neural Network
Compression and Regularisation

Kimessha Paupamah
School of Computer Science

and Applied Mathematics
University of the Witwatersrand

Johannesburg, South Africa
kimessha.paupamah1@students.wits.ac.za

Steven James
School of Computer Science

and Applied Mathematics
University of the Witwatersrand

Johannesburg, South Africa
steven.james@wits.ac.za

Richard Klein
School of Computer Science

and Applied Mathematics
University of the Witwatersrand

Johannesburg, South Africa
richard.klein@wits.ac.za

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Deep neural networks are typically too computation-
ally expensive to run in real-time on consumer-grade hardware
and low-powered devices. In this paper, we investigate reducing
the computational and memory requirements of neural networks
through network pruning and quantisation. We examine their ef-
ficacy on large networks like AlexNet compared to recent compact
architectures: ShuffleNet and MobileNet. Our results show that
pruning and quantisation compresses these networks to less than
half their original size and improves their efficiency, particularly
on MobileNet with a 7× speedup. We also demonstrate that
pruning, in addition to reducing the number of parameters in a
network, can aid in the correction of overfitting.

Index Terms—deep learning, neural networks, compression,
regularisation, pruning, quantisation

I. INTRODUCTION

Designing deep and complex neural networks is common
practice for effective performance on various applications,
particularly visual tasks like image classification [1]. As neural
networks become larger and deeper, more computational re-
sources are required to train and store them, making it increas-
ingly more difficult to deploy these networks on the consumer-
grade hardware, mobile and embedded devices in use today.
In addition to requiring a large amount of computational
resources, deep neural networks take up tremendous amounts
of energy, leaving a large carbon footprint. For example, [2]
show that training certain deep natural language processing
(NLP) models can result in as much CO2 emissions as five
cars in their lifetime. Small, powerful neural networks would
help overcome these problems.

We can employ methods of neural network compression
to obtain small and efficient neural networks which consume
much less energy and can consequently be deployed to devices
with limited computing capabilities. Large neural networks
often contain many redundant parameters that have no impact
on the network [3]. Removing or pruning these redundant
parameters result in networks with lower complexity. Quan-
tisation is a further approach to reduce the size of neural
networks by lowering the number of bits required to represent
parameters. Another approach to obtain small networks is to

This work is based on the research supported in part by the National
Research Foundation of South Africa (Grant Numbers: 118075 and 117808).

directly build smaller, efficient network architectures. These
compact architectures, like MobileNet [4] and ShuffleNet
[5], perform computationally efficient operations and produce
networks that are small in size, which makes them easy to
deploy on mobile and embedded devices.

These approaches of obtaining smaller networks fall into
two categories: either reduce the size of large networks,
or directly train small, compact networks. The aim of this
work is to compare these two approaches and examine their
sensitivity to compression techniques in terms of accuracy,
size, and inference time. Furthermore, we examine the effects
of pruning as a means of correcting overfitting. We conduct
our experiments on the CIFAR-10 [6] and FashionMNIST [7]
datasets. We find that overfitted networks benefit from pruning,
and that compact architectures outperform large, compressed
networks.

II. BACKGROUND

This section aims to provide the background necessary for
understanding neural network compression and the methods
thereof. We give a brief overview of neural networks and
convolutional neural networks, followed by a discussion on
separable convolutions then network pruning and quantisation.

A. Neural Networks

A typical feedforward neural network is composed of a
number of artificial neurons which are organised into layers,
the first being the input layer while the last being the output
layer. The layers between are the hidden layers, which form
the capacity of the network. Neurons that reside in a layer
are linked to neurons in the subsequent layer by weighted
connections. These weights form the parameters of the neural
network.

An artificial neuron performs some mathematical operation,
usually by taking the dot product of the input connections
and passing it through some activation function to fire an
output through an output connection, consequently weighting
the connection [8]. These output connections form the input
connections for neurons in the subsequent layer and so the
output is propagated to other connected neurons to give the

ar
X

iv
:2

00
1.

04
85

0v
1 

 [
cs

.L
G

] 
 1

4 
Ja

n 
20

20



final output of the network. This process is called a forward
pass or forward propagation.

A neural network is trained by learning its parameters.
A common method for learning the parameters of a neural
network is through backpropagation [9]. First, a forward pass
of the network occurs to predict the final output, and a
loss function is used to measure the error of the prediction.
Optimisation techniques like gradient descent are used to
minimise the loss and find optimal weights for the connec-
tions; however, the partial derivatives of the loss function are
required. Backpropagation is a method used to compute these
partial derivatives by propagating the loss from the output layer
back through the network to the input layer and computing
how each neuron contributes to the loss.

B. Convolutional Neural Networks

Convolutional neural networks are similar to feedforward
neural networks, except their layers are composed of con-
volutional layers which have a height, width and depth. A
convolutional layer performs convolutions with input to extract
features, and so has of a set of filters (or weights) which
are learnt during training [8]. Mathematically, a convolution
operation with an image can be described by

(I ∗K)[i, j] =

m−1∑
p=0

n−1∑
q=0

I[i− p, j − q]K[p, q] (1)

for an image I, of size M ×N , and kernel K, of size m×n.
The image is convolved with a kernel by sliding the kernel
across each pixel in the image and taking the dot product of the
kernel elements and the pixel values aligned with the kernel.
We convolve a stack of kernels, or filter, of the same depth
as the number of colour channels in the image. A number of
filters can be convolved with the image, each producing an
output channel.

The convolutional layer arranges neurons in a three-
dimensional grid. Neurons in the convolutional layer are only
connected to a local region of the input. This region is called
the receptive field of a neuron and is the same size as the filter
used. These neurons work similarly to neurons in feedforward
networks by convolving the filter with a local region of the
input, then passing it through an activation function to give
output channels which are stacked together to form a feature
map. Other popular layers in a convolutional neural networks
include Batch Normalisation [10] and Dropout [11] layers.

C. Separable Convolutions

Consider an input size of win × hin × d, convolved with a
filter of size N×k×k×d, to give a feature map of size wout×
hout×N . This standard convolution has a computational cost
of win × hin × d × N × k × k. We look at reducing this
computational cost with depthwise separable convolutions and
group convolutions.

1) Depthwise Separable Convolutions: Depthwise separa-
ble convolutions [12] first perform a depthwise convolution
followed by a pointwise convolution. Depthwise convolutions
perform convolutions along the input channels separately. Each

filter is sliced into d separate k×k kernels, and each kernel is
then convolved with its own input channel. The output of each
convolution is stacked together to form an output layer of size
wout×hout×d×N . To transform this output layer to a single
feature map of size wout×hout×N , a pointwise convolution
is performed by convolving this layer with a 1 × 1 × d filter
N times. This process is illustrated in Fig. 1 using one filter
(N = 1). The total computation cost can be calculated as
(win × hin × d× k× k) + (win × hin × d×N) which results
in a significant reduction in computation.

2) Group Convolutions: Group convolutions [13] operate
by dividing filters into different groups, with each filter group
being convolved with a different part of the input layer of a
certain depth. A filter can be divided into g separate groups
along its depth. This results in g groups, with each group
consisting of N/g separate filters of size k × k × d/g. The
same is done to the input layer to get g separate layer groups
of win×hin×d/g. Each N/g group is convolved with an input
layer group of the same depth, to get an output layer of size
wout × hout ×N/g. These resulting output layers from each
group convolution are stacked together to obtain the resultant
feature map. Fig. 2 illustrates this with two groups (g = 2).
The filters and input layer are divided into two groups: the first
filter group convolves with the first half of the input, while
the second filter group convolves with the second half of the
input. Grouped convolutions reduces the computational cost to
g×(win×hin×d/g×N/g). Since the convolutions are divided,
group convolutions also allow for efficient computation as each
convolution can be handled in parallel, on a separate GPU for
instance.

D. Network Pruning

The general procedure for pruning a trained neural network
is locating which parameters have no significant impact on

Fig. 1: Example of a depthwise separable convolution on an
RGB image with N = 1



Fig. 2: Example of a group convolution with g = 2

the network and then removing those redundant parameters.
The network is then retrained after this pruning process so
that the remaining parameters in the network are adjusted to
compensate for those removed. In this work, we focus on
iterative pruning as introduced in [14]. This iterative procedure
is a three-step method. The first step of the method fully trains
the neural network to learn the parameters (or connections).
Once the network is fully trained, the second step of the
method is to learn which connections in the network are
important. These important connections are learnt iteratively,
where an iteration involves pruning connections with weights
below a threshold and then retraining the network. The thresh-
old value is found manually, by determining which layers
are sensitive to pruning. After this pruning stage, neurons
which have no input or output connections are also removed,
and hence all further connections to and from the pruned
neuron are removed. This results in a sparse neural network,
with the unimportant connections pruned away and important
connections preserved. The final step of this method is to
retrain the resulting sparse network. During the retraining
stages, the weights are not re-initialised to ensure that gradient
descent finds a good solution. This is also computationally
cheaper since there is no need to backpropagate through the
entire network.

E. Network Quantisation

Network quantisation is a method of reducing the precision
of weights and activations in neural networks by lowering the
number of bits to represent these quantities [15]. This is a
quick and efficient way to reduce a network’s size without the
need for retraining. We can quantise a parameter x according
to the mapping

Q(x,∆, z) = round(
x

∆
+ z). (2)

This maps floating-point values to integers, which in turn
lowers the number of bits required to represent a parameter.
The scale (∆) indicates the step size of the quantiser, while
a floating-point zero maps to an integer z, the zero-point, so
that zero can be quantised with no error.

III. RELATED WORK

Early pruning methods like Optimal Brain Damage [16] and
Optimal Brain Surgeon [17] pruned shallow, fully-connected
networks based on saliency values, which indicate the ef-
fect of a parameter on the training error. These values are

computed by approximating the Hessian matrix which is
computationally expensive for the large, deep networks in
practice today. Recent works have studied pruning larger and
deeper neural networks. An iterative pruning method which
results in sparse networks is introduced in [14]. ThiNet [18]
introduces a filter pruning technique which removes entire
filters in convolutional neural networks. The authors propose
a method using a least-squares approach to find channels
corresponding to unimportant filters. These weak channels in
the next layer of a network are found and their corresponding
filters in the current layer are pruned away. This thins down
the original wider network and reduces the computational
cost compared to magnitude pruning. Additionally, no sparsity
is introduced into the network, and so the original network
structure remains intact. Bayesian Compression [19] introduce
a Bayesian approach to pruning. Sparsity inducing priors are
used to prune entire weight structures rather than individual
parameters. This results in very sparse networks with high
compression rates.

Other means of reducing the number of weights or parame-
ters in neural networks are methods of weight sharing and
quantisation. Weight sharing methods allow weights within
layers of the network to be shared, while quantisation simply
represents weights with a lower number of bits. This leads to a
more accelerated network with reduced complexity. HashNets
[20] is a neural network architecture that operates by grouping
weights together into hash buckets using a hash function. The
assignment of weights to connections are determined by a
hash function so that all connections grouped to the same
hash bucket share the same weight. Deep Compression [21]
employs both weight sharing and quantisation as an additional
compression method after pruning networks. This is done by
clustering all the weights within a layer, then approximating
each weight to the closest cluster centroid, lowering the
number of bits needed to store each weight.

There has also been interest in building efficient architec-
tures. Like MobileNet and ShuffleNet, these compact archi-
tectures perform several varieties of convolutions to reduce
computational cost. GoogLeNet [22] allows for the increase
in depth and width of a network while maintaining a constant
computational cost. The architecture uses Inception modules
which combines convolutions at different scales to help with
dimensionality reduction. SqueezeNet [23] designs very small
networks with bottleneck layers that squeeze input and ex-
pands it afterwards.

IV. METHODOLOGY

We have outlined two approaches of obtaining small net-
works: reducing the size of large networks through network
compression or directly building small and efficient compact
architectures. We compare these two opposing ideas to ob-
tain an understanding of each method and which to employ
in practice. Our comparison also examines the response of
compression on small, compact architectures in an effort to
understand how they are impacted. Additionally, we investi-
gate the effects of correcting overfitted networks with pruning,



to determine whether pruning can be used as an effective
regularisation technique. This section outlines our approach to
neural network compression and the overfitting of networks.

A. Datasets and Network Architectures

We test our experiments on the CIFAR-10 [6] and Fashion-
MNIST [7] datasets. We choose to use AlexNet [13] as our
large network as it contains tens of million parameters and can
fit onto the hardware available to us. AlexNet is an eight-layer
deep network, containing five convolutional layers followed by
three fully-connected layers. For our compact architectures we
use the improved state-of-the-art MobileNetV2 [24] and Shuf-
fleNetV2 [25] architectures. The MobileNetV2 architecture
falls under the class of MobileNet architectures, and similarly
the ShuffleNetV2 architecture falls under the class of Shuf-
fleNet architectures, and so shall be referred to as MobileNet
and ShuffleNet respectively. MobileNet’s input layer is fully
convolutional, followed by eighteen inverted residual block
hidden layers, which perform depthwise separable convolu-
tions. The output layer is a single fully connected layer to
perform classification. ShuffleNet’s architecture is composed
of three stages, each having a repeated stack of inverted
residual blocks, which perform pointwise group convolutions
with channel shuffling followed by a depthwise convolution,
and then another pointwise convolution. The input layer of
the network is fully convolutional, while the output layer is a
single fully-connected layer. These networks were trained from
scratch and used as our reference networks in our experiments.
They were trained with a batch size of 50 and optimised
using stochastic gradient descent with a momentum of 0.9
on both datasets. The learning rate decayed during training,
with AlexNet starting with a learning rate of 0.001 while
MobileNet and ShuffleNet started with a learning rate of 0.01.
Our experiments implemented in PyTorch [26] and run them
on Nvidia GeForce GTX 1060 Ti and 1080 Ti GPUs. The
source code is available online.1

B. Network Compression

To compress our networks, we first iteratively prune them.
A pruning iteration consists of pruning parameters that have
no impact on the network then retraining the resulting sparse
network. The pruned parameters are those with the smallest
weights, and the number of parameters removed is determined
by the network’s sensitivity to pruning.

Our pruned models are further compressed by applying per-
channel quantisation [15]. Per-channel quantisation lowers the
bits used to represent parameters along the depth (or channels)
of a layer. Applying quantisation results in minor accuracy loss
with a smaller network size, and a speedup in terms of training
and inference time.

C. Overfitting

To overfit our networks, we remove all regularisation layers
and train our networks until we completely learn our training
data. In particular, we remove the Dropout layers from all

1https://github.com/kpaupamah/compression-and-regularisation

three networks and remove the BatchNorm layers from both
MobileNet and ShuffleNet. Training our networks until we see
a decrease in our validation accuracy, and an increase in train
accuracy (of at least 99.9%), we can declare our networks as
overfitted. We attempt to correct overfitting by pruning these
networks for a better test accuracy than that of the overfitted
networks.

V. NEURAL NETWORK COMPRESSION

We tested our compression experiments on both the CIFAR-
10 and FashionMNIST datasets. The number of parameters
to remove from each network were determined through sen-
sitivity scans, as illustrated in Fig. 3 (CIFAR-10) and Fig. 4
(FashionMNIST). We note that the sensitivity scans were done
to find how many of the smallest weights could be removed
without negatively impacting the network’s performance, and
so the networks were retrained with early-stopping and not
fully retrained. MobileNet, ShuffleNet and AlexNet performed
best with sensitivities of 0.4, 0.3 and 0.5 respectively, on
CIFAR-10. With FashionMNIST, MobileNet responded well
to a sensitivity of 0.7, while ShuffleNet could be pruned with
a sensitivity of 0.35, and AlexNet performed best with a
sensitivity of 0.9. These sensitivities were used in the final
experiments.

Iteratively pruning each network on both datasets give our
results in Table I. We then quantise the resulting pruned
networks to get our final compressed networks shown in
Table II. We retrained the pruned networks with uniformly
re-initialising the parameter weights and with fine-tuning (re-
training from the pruned parameter weights) the parameters.
AlexNet did not respond well to re-initialisation and so the
remaining parameters had to be fine-tuned. The compact
architectures performed better with re-initialisation compared
to fine-tuning, and so we retrained them with uniform re-
initialisation.

We find that MobileNet and ShuffleNet are quite sensitive
to pruning as shown in Fig. 3. These compact networks are

Fig. 3: Sensitivity of pruning networks trained on CIFAR-10



TABLE I: Network pruning on CIFAR-10 and FashionMNIST

Network
Accuracy (%) Total Parameters Compression Rate

CIFAR10 FashionMNIST CIFAR10 FashionMNIST CIFAR10 FashionMNIST

MobileNet – Reference 91.31 90.75 2.2M 2.2M — —
MobileNet – Pruned 91.53 90.43 671K 1.1M 1.6× 3.3×

ShuffleNet – Reference 93.36 90.36 1.2M 1.2M — —
ShuffleNet – Pruned 93.05 90.09 879K 815K 1.4× 1.5×

AlexNet – Reference 93.54 91.61 57M 57M — —
AlexNet – Pruned 90.91 90.34 28M 5M 2× 10×

TABLE II: Network quantisation of pruned models trained on CIFAR10 and FashionMNIST

Network
Accuracy (%) Size (MB) Inference Time (ms)

CIFAR10 FashionMNIST CIFAR10 FashionMNIST CIFAR10 FashionMNIST

MobileNet – Reference 91.31 90.75 8.7 8.7 34.80 1.70
MobileNet – Quantised 90.59 90.07 2.9 2.9 4.74 0.30

ShuffleNet – Reference 93.36 90.36 4.9 4.9 11.67 0.73
ShuffleNet – Quantised 81.29 89.78 1.8 1.8 23.15 0.61

AlexNet – Reference 93.54 91.61 217.6 217.6 22.13 6.70
AlexNet – Quantised 90.06 90.27 54.6 54.6 5.23 4.90

Fig. 4: Sensitivity of pruning networks trained on FashionM-
NIST

small and their parameters are less likely to be redundant.
AlexNet, on the other hand, is a much larger network and
proves to be less sensitive to pruning, indicating many redun-
dant parameters. We removed 90% of AlexNet’s parameters
when trained on FashionMNIST and 50% of its parameters
when trained on CIFAR-10, without a significant reduction
in accuracy. We find that we get better compression rates on
networks trained on FashionMNIST compared to CIFAR-10
largely due to FashionMNIST containing grayscale images
of smaller size, and so network complexity can significantly
be reduced. Quantising the pruned versions of MobileNet
and AlexNet trained on CIFAR-10 resulted in a considerable
reduction of in physical size and inference time, also without
a significant loss in accuracy as shown in Table II. Quanti-

sation worked particularly well on MobileNet, leading to a
7.3× speedup from 34.80ms to 4.74ms on CIFAR-10 and
a 5.7× speedup from 1.70ms to 0.30ms on FashionMNIST.
Surprisingly, ShuffleNet trained on CIFAR-10 did not respond
well to quantisation: while its size decreases, it suffers a very
large accuracy loss with an increase in its inference time. This
is possibly due to its more complex architecture and small size,
leading quantisation to add more overhead overall.

VI. NEURAL NETWORK REGULARISATION

We trained our networks to overfit FashionMNIST as it
required significantly less training time and computational
resources compared to CIFAR-10. Once our networks com-
pletely overfitted the training data with over 99.9% training
accuracy, we pruned each network until the test accuracy
started to decrease. The results are from overfitting and then
pruning each network are shown in Table III. MobileNet,
ShuffleNet and AlexNet were pruned with sensitivities 0.1,
0.15 and 0.6 respectively.

Table III demonstrates that pruning is a means to correct
overfitting. The parameters pruned away results in a higher test
accuracy than that of the overfitted network. This allows the
network to generalise better and obtain a higher test accuracy
overall. An advantage of using pruning as a regularisation
technique is that it can be applied after training, rather than
during training as there could be uncertainty as to whether
regularisation is needed.

VII. CONCLUSION

Across both compact and large networks we demonstrated
that pruning is an effective regularisation technique to correct
overfitting. We have shown that the compact networks Mo-
bileNet and ShuffleNet are still receptive to network pruning
as a means of compression and the correction of overfitting,



TABLE III: Overfitted and pruned networks trained on Fash-
ionMNIST

Network Accuracy (%) Total Parameters

MobileNet – Reference 90.75 2.2M
MobileNet – Overfitted 90.55 2.2M
MobileNet – Pruned 91.26 1.76M

ShuffleNet – Reference 90.36 1.2M
ShuffleNet – Overfitted 89.71 1.2M
ShuffleNet – Pruned 91.01 1M

AlexNet – Reference 91.61 57M
AlexNet – Overfitted 91.32 57M
AlexNet – Pruned 92.11 22M

despite having relatively few parameters compared to larger
networks such as AlexNet. We found that quantisation sig-
nificantly decreased the size and computational requirements
of AlexNet and MobileNet, but negatively impacted the per-
formance of a more complex ShuffleNet architecture. Com-
pared to a large, compressed network, we find that compact
architectures consume less memory and storage, has better
accuracy with faster training and inference times, and yet can
still benefit from compression techniques with relatively few
parameters. Our results suggest that employing compact archi-
tectures are more promising to compressing large networks.

VIII. FUTURE WORK

This work focused on an iterative pruning method which
introduced sparsity into networks. Pruning techniques like
filter pruning do not introduce sparsity into the networks
allowing them to maintain their original structure, leading to a
smaller model size with faster inference times. Filter pruning
removes entire filters from convolutional layers but leaves
the fully-connected layers untouched. A future direction of
research would be to explore the compression rates between
these two methods and examine the trade-offs between sparse
networks and non-sparse networks.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[2] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP (2019),” arXiv preprint
arXiv:1906.02243.

[3] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148–2156.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[5] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[6] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, vol. 55, 2014.

[7] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[9] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[12] L. Sifre, “Rigid-motion scattering for image classification,” Ph.D. dis-
sertation, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[14] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural networks,” in Advances in neural infor-
mation processing systems, 2015, pp. 1135–1143.

[15] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[16] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[17] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[18] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[19] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through L0 regularization,” in Proceedings of the International
Conference on Learning Representations, 2017.

[20] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in International Conference
on Machine Learning, 2015, pp. 2285–2294.

[21] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proceedings of the International Conference on Learning
Representations, 2016.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[25] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 116–131.

[26] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors
and dynamic neural networks in python with strong gpu acceleration,”
PyTorch: Tensors and dynamic neural networks in Python with strong
GPU acceleration, vol. 6, 2017.


	I Introduction
	II Background
	II-A Neural Networks
	II-B Convolutional Neural Networks
	II-C Separable Convolutions
	II-C1 Depthwise Separable Convolutions
	II-C2 Group Convolutions

	II-D Network Pruning
	II-E Network Quantisation

	III Related Work
	IV Methodology
	IV-A Datasets and Network Architectures
	IV-B Network Compression
	IV-C Overfitting

	V Neural Network Compression
	VI Neural Network Regularisation
	VII Conclusion
	VIII Future Work
	References

