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Abstract

We propose world value functions (WVFs), a type of goal-
oriented general value function that represents how to solve
not just a given task, but any other goal-reaching task in an
agent’s environment. This is achieved by equipping an agent
with an internal goal space defined as all the world states
where it experiences a terminal transition. The agent can then
modify the standard task rewards to define its own reward
function, which provably drives it to learn how to achieve
all reachable internal goals, and the value of doing so in the
current task. We demonstrate two key benefits of WVFs in
the context of learning and planning. In particular, given a
learned WVF, an agent can compute the optimal policy in
a new task by simply estimating the task’s reward function.
Furthermore, we show that WVFs also implicitly encode the
transition dynamics of the environment, and so can be used
to perform planning. Experimental results show that WVFs
can be learned faster than regular value functions, while their
ability to infer the environment’s dynamics can be used to
integrate learning and planning methods to further improve
sample efficiency.

Introduction
A grand challenge of artificial intelligence is to create gen-
eral agents capable of solving a wide variety of tasks in
the real world. To accomplish this, we require a general
decision-making framework that models agents’ interaction
with the world, and a sufficiently general representation to
capture the knowledge agents acquire. Reinforcement learn-
ing (RL) (Sutton, Barto et al. 1998) is one such framework
and although it has made several major breakthroughs in
recent years, ranging from robotics (Levine et al. 2016) to
board games (Silver et al. 2017), these agents are typically
narrowly designed to solve only a single task.

In RL, tasks are specified through a reward function from
which the agent receives feedback. Most commonly, an
agent represents its knowledge in the form of a value func-
tion, representing the sum of future rewards it expects to re-
ceive. However, since the value function is directly tied to
one single reward function (and hence task), it is definition-
ally insufficient for constructing agents capable of solving a
wide range of tasks.
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In this work, we seek to overcome this limitation by
proposing world value functions (WVFs), a goal-oriented
knowledge representation that encodes how to solve not only
the current task, but also any other goal-reaching task. In
the literature, agents with such abilities are said to possess
mastery (Veeriah, Oh, and Singh 2018), and we prove that
WVFs do, in fact, possess this property in deterministic en-
vironments. Importantly, WVFs are a form of general value
function (Sutton et al. 2011) that can be learned from a sin-
gle stream of experience; no additional information or mod-
ifications to the standard RL framework are required.

WVFs have several desirable properties, which we for-
mally prove in the deterministic setting. In particular, we
show that (i) given a learned WVF, any new task can be
solved by estimating its reward function, which reduces the
problem to supervised learning; and (ii) WVFs implicitly en-
code the dynamics of the world and can be used for model-
based RL. Experimental results in the Four Rooms domain
(Sutton, Precup, and Singh 1999) validate our theoretical
findings, while demonstrating that not only can WVFs be
learned faster than regular value functions, they can also be
leveraged to perform Dyna-style planning (Sutton 1990) to
improve sample efficiency.

Preliminaries
We model an agent’s environment as a Markov Decision
Process (MDP) (S,A, P,R), where (i) S is the state space,
(ii) A is the action space, (iii) P (s, a, s′) are the transition
dynamics of the world, and (iv) R is a reward function,
bounded by [RMIN, RMAX], representing the task the agent
must solve. Note that in this work, we focus on environ-
ments with deterministic dynamics, but put no restrictions
on their complexity.

The agent’s aim is to compute a policy π from S
to A that optimally solves a given task. This is often
achieved by learning a value function that represents the
expected return obtained under π starting from state s:
V π(s) = Eπ [

∑∞
t=0 r(st, at, st+1)]. Similarly, the action-

value function Qπ(s, a) represents the expected return ob-
tained by executing a from s, and thereafter following π.
The optimal action-value function is given by Q∗(s, a) =
maxπ Q

π(s, a) for all states s and actions a, and the opti-
mal policy follows by acting greedily with respect to Q∗ at
each state.



World Value Functions
We now introduce world value functions (WVFs), which
provably encode how to reach all achievable goals. We first
define the internal goal space G ⊆ S of the agent as all states
where it experiences a terminal transition.

Different from other goal-oriented approaches where
goals are specified by the environment, here the goal an
agent wishes to achieve is chosen by itself. The agent’s aim
now is to simultaneously solve the current task, while also
learning how to achieve its own internal goals. To do so, the
agent can define its own goal-oriented reward function R̄,
which extends R to penalise itself for achieving goals it did
not intend to:

R̄(s, g, a, s′) :=

{
R̄MIN if g ̸= s and s′ is absorbing
R(s, a, s′) otherwise,

where R̄MIN is a large negative penalty that can be derived
from the bounds of the reward function (Nangue Tasse,
James, and Rosman 2020). Intuitively, the penalty R̄MIN
adds one bit of information to the agent’s rewards, and we
will later prove this is sufficient for the agent to learn how to
achieve its internal goals in the current task.

The agent must now compute a world policy π̄ : S ×
G → Pr(A) that optimally reaches its internal goal states.
Given a world policy π̄, the corresponding WVF is defined
as Q̄π̄(s, g, a) := Eπ̄

s′

[
R̄(s, g, a, s′) + V̄ π̄(s′, g)

]
, where

V̄ π̄(s, g) := Eπ̄
[∑∞

t=0 R̄(st, g, at, st+1)
]
.

Since the WVF satisfies the Bellman equations,
Q̄∗(s, g, a) can be learned using any suitable RL algo-
rithm, such as Q-learning (see Algorithm 1).

Properties of World Value Functions
While a learned WVF encodes the values of achieving all
internal goals, it can still be used to solve the task in which it
was learned. Theorem 1 below demonstrates that the current
task’s reward and value function can be recovered by simply
maximising over goals:

Theorem 1. Let M = (S,A, P,R) be a deterministic
task with optimal action-value function Q∗ and optimal
world action-value function Q̄∗. Then for all (s, a, s′) in
S × A × S, we have (i) R(s, a, s′) = max

g∈G
R̄(s, g, a, s′),

and (ii) Q∗(s, a) = max
g∈G

Q̄∗(s, g, a).

As a result, the optimal policy for the cur-
rent task can be obtained by computing π∗(s) ∈
argmaxa∈A

(
maxg∈G Q̄∗(s, g, a)

)
.

Having established WVFs as a type of task-specific gen-
eral value function (GVF) (Sutton et al. 2011), we next prove
in Theorem 2 that they do indeed have mastery—that is, they
learn how to reach all achievable goal states in the world. We
first formally define mastery as follows:

Definition 1. Let Q̄∗ be the optimal world action-value
function for a task M . Then Q̄∗ has mastery if for all
g ∈ G reachable from s ∈ S \ {g}, there exists an opti-
mal world policy π̄∗(s, g) ∈ argmax

a∈A
Q̄∗(s, g, a) such that

π̄∗ ∈ argmax
π̄

P π̄
s (sT = g), where P π̄

s (sT = g) is the prob-

ability of reaching g from s under a policy π̄.

Theorem 2. Let Q̄∗ be the optimal world action-value func-
tion for a task M . Then Q̄∗ has mastery.

Algorithm 1: Q-learning for WVFs

Initialise: WVF Q̄, goal buffer G, learning rate α
foreach episode do

Observe initial state s ∈ S and sample g ∈ G
while episode is not done do

a←

{
argmax

a∈A
Q̄(s, g, a) w.p. 1− ε

a random action w.p. ε
Execute a, observe reward r and next state s′

if s′ is absorbing then G ← G ∪ {s}
for g′ ∈ G do

r̄ ← R̄MIN if g′ ̸= s and s ∈ G else r

δ ←
[
r̄ +max

a′
Q̄(s′, g′, a′)

]
− Q̄(s, g′, a)

Q̄(s, g′, a)← Q̄(s, g′, a) + αδ
s← s′

Finally, we note that while GVFs can also be used to con-
struct goal-oriented value functions, questions remain open
as to the origins of goals and how to define goal-specific
rewards. WVFs are a subset of GVFs that answer these
questions—goals are simply states with terminal transitions,
while goal rewards are specified by R̄. Answering these
questions in this way confers several advantages, which we
desribe below.

Planning with World Value Functions
If the agent’s goal space coincides with the state space
(G = S), then an optimal WVF will implicitly encode the
dynamics of the world. We can then estimate the transition
probabilities for each s, a ∈ S × A using only the reward
function and optimal WVF. That is, P (s, a, s′) for all s′ ∈ S
can be obtained by simply solving the system of Bellman op-
timality equations given by each goal g ∈ S: Q̄∗(s, g, a) =∑

s′∈S p(s, a, s′)
[
R̄(s, g, a, s′) + V̄ ∗(s′, g)

]
. In practice, if

the transition probabilities are known to be non-zero only in
a neighbourhoodN (s) of state s (as is common in most do-
mains), then we only require that the WVF be near-optimal
for s′, g ∈ N (s)×N (s).

Multitask Transfer with World Value Functions
We now show the advantage of WVFs under the assump-
tion that an agent may be faced with solving several tasks
within the same world. In other words, we assume that all
tasks share the same state space, action space and dynamics,
but differ in their reward functions. Formally, we define the
world as a background MDP M0 = (S0,A0, P0, R0) with
its own state space, action space, transition dynamics and
background reward function. Any individual task M is de-
fined by a reward function Rτ

M (s, a) that is non-zero only



for transitions entering terminal states. The reward func-
tion for the resulting MDP is then simply RM (s, a, s′) :=
R0(s, a, s

′) +Rτ
M (s, a). We denote the set of all such tasks

asM, and the corresponding set of optimal WVFs as Q̄∗.
One immediate result is that if tasks share the same back-

ground MDP, then their WVFs share the same world policy.
That is, the agent has the same notion of goals and how to
reach them, regardless of the current task. Similarly, if we
require that the world policies be the same across tasks, then
we have that the tasks must come from the same world. This
is formalised by Theorem 3 below.
Theorem 3. Let Q̄∗ be the set of optimal world Q̄-value
functions with mastery of tasks inM. Then for all s ̸= g ∈
S × G,

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M1

(s, g, a)

⇐⇒
π̄∗(s, g) ∈ argmax

a∈A
Q̄∗

M2
(s, g, a) ∀M1,M2 ∈M.

Since all tasks inM share the same dynamics (and conse-
quently the same world policy), their corresponding WVFs
can be written as Q̄∗

M (s, g, a) = G∗
s,g,a + R̄τ

M (s′, a′) for
some s′, a′ ∈ S ×A, where G∗

s,g,a is a constant across tasks
that represents the sum of rewards starting from s and taking
action a up until g, but not including the terminal reward.
Using this fact, Theorem 4 shows that the optimal value
function and policy for any task can be obtained zero-shot
from an arbitrary WVF given the task-specific rewards:
Theorem 4. Let Rτ

M be the given task-specific reward func-
tion for a task M ∈ M, and let Q̄∗ ∈ Q̄∗ be an arbitrary
WVF. Let ˜̄VM (s, g) be the estimated WVF of M given by

max
a∈A

Q̄∗(s, g, a) +

(
max
a∈A

Rτ
M (g, a)−max

a∈A
Q̄∗(g, g, a)

)
.

Then, (i) for all g ∈ G reachable from s ∈ S ,
V̄ ∗
M (s, g) = ˜̄VM (s, g). (ii) V ∗

M (s) = max
g∈G

˜̄V (s, g), and

π∗
M (s) ∈ argmax

a∈A
Q̄∗(s, argmax

g∈G

˜̄VM (s, g), a).

This has several important implications for transfer learn-
ing. Most importantly, an agent can learn an arbitrary WVF
with unsupervised pretraining and then solve any new task
by simply estimating the reward function (from experience
or demonstrations).

Experiments
We empirically validate the properties of WVFs in the Four
Rooms domain (Sutton, Precup, and Singh 1999), where
an agent is required to reach various goal positions. The
agent can move in any of the four cardinal directions at each
timestep (with reward−0.1), but colliding with a wall leaves
it in the same state. The agent also has a “done” action that
can choose to terminate at any position (with reward 10 if it
is the goal of the current task). For each of the experiments
below, we consider the case where the agent’s goals are the
entire state space (G = S).

Learning World Value Functions
To verify that WVFs can be learned with standard model-
free algorithms, we train an agent using Q-learning on a task
where it must learn to navigate to either the middle of the
top-left or bottom-right rooms. Figure 1a shows the learned
WVF, which is generated by plotting the value functions for
every goal position and displaying them at their respective
xy positions. Note how the values with respect the “top-left”
and “bottom-right” goals are high (red), reflecting the high
rewards the agent receives for reaching the goals it intended
to achieve. Figure 1b shows a close-up view of the learned
WVF around the “top-left” goal. We can observe from the
value gradient of the plots that the WVF does indeed learn
how to reach all positions in the gridworld. We can then
maximise over goals to obtain the regular value function and
policy (Figure 1c).

Finally, we plot the returns obtained during the learning
of both the WVF and regular value function, with results
given by Figure 1d. Interestingly, this result indicates that it
is more sample efficient to learn a WVF, despite the fact that
it has an additional dimension that must be learned. We the-
orise this is due to the induced goal-directed exploration of
Algorithm 1, which is far superior to ε-greedy exploration.
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Figure 1: (a) Learned WVF. (b) Close-up view of the WVF
for “top-left” goal. (c) Inferred values and policy for solv-
ing the current task. (d) Returns during training for both
WVFs and regular value functions. Returns are calculated
by greedy evaluation at the end of each episode. Mean and
standard deviation over 25 random seeds are shown.

Multitask Transfer with World Value Functions
Having learned the WVF for the above task, we now show
that it can be used to solve subsequent tasks by combining
the WVF with the task-specific rewards as per Theorem 4.
Critically, this means that any new task an agent might face



(a) Navigating to the hallways. (b) Navigating to the bottom of the grid.

Figure 2: From left to right on each figure: The task specific rewards, the inferred WVF using Theorem 4, and the inferred
values and policy from maximising over goals for (a) reaching any of the hallways, and (b) reaching the bottom of the grid.

can simply be solved by estimating its reward function, re-
ducing the RL problem to a supervised learning one. We
consider two new tasks: navigating to any of the hallways,
and navigating to the bottom of the grid. Figures 2a and 2b
illustrate the reward functions and subsequent WVFs and
policies for these two tasks respectively. Importantly, given
the reward functions (which can be estimated from data),
the optimal policies can immediately be computed without
further learning.

Planning with World Value Functions

Finally, we demonstrate that the transition probabilities can
be inferred from the learned WVF. Figures 3 (left) and (mid-
dle) respectively show the transitions inferred by solving
the Bellman equations with s′, g ∈ S × S and s′, g ∈
N (s)×N (s). For each, we infer the next state probabilities
for taking each cardinal action at the center of each room,
and place the corresponding arrow in the state with highest
probability. The red arrows in Figure 3 (left) correspond to
incorrectly inferred next states, which is a consequence of
the learned WVF not being near optimal at all states for all
goals. Figure 3 (middle) shows that in practice, if the WVF
is not near-optimal, we can still infer dynamics by using
s′, g ∈ N (s) × N (s). Figure 3 (right) shows sample tra-
jectories for following the optimal policy using the inferred
transition probabilities. The gray-scale color of each arrow
corresponds to the normalised value prediction for that state.

Finally, we also demonstrate that these inferred dynamics
can be used to improve planning by integrating WVFs into a
Dyna-style architecture (Sutton 1990). Our approach is illus-
trated by Algorithm 2 in the Appendix, where we combine
both model-free and model-based updates to learn the WVF.
Importantly, since the dynamics are inferred from the WVF,
using them to plan (Dyna-style) at the start of training is
detrimental, since the WVF will make incorrect predictions.
We mitigate this by computing the mean-squared error of the
Bellman equations using the inferred next state, MSE =

1
|N (s)|

∑
g∈N (s)

(
Q̄(s, g, a)−

[
R̄(s, g, a, s′) + V̄ (s′, g)

])
,

and only use the WVF to plan when the error is less than
a threshold (MSE ≤ 10−5). We compare our approach
to Q-learning for both WVFs and regular value functions,
as well as Dyna for regular value functions. The results in
Figure 3d illustrate that sample efficiency can be greatly
improved by integrating the planning capabilities of WVFs.
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Figure 3: (a–b) Inferred one-step transitions. Red arrows in-
dicate incorrect predictions. (c) Imagined rollouts using the
learned WVF. (d) Returns during training for both WVFs
and regular value functions, with and without planning.
Mean and standard deviation over 25 random seeds are
shown.

Conclusion
We introduced a new form of goal-oriented value func-
tion that encodes knowledge about how to solve all pos-
sible goal-reaching tasks in the world. This value function
can be learned in a sample efficient manner, and can subse-
quently be used to infer the dynamics of the environment for
model-based planning, or solve new tasks zero-shot given
just their terminal rewards. An obvious path for future work
is to extend these results to the stochastic high-dimensional
setting. While prior work has demonstrated that WVFs can
be learned with neural networks (Nangue Tasse, James, and
Rosman 2020), planning in high-dimensional environments
is still an open challenge; WVFs may provide a promising
avenue for unifying both learning and planning in this space.
Overall, our work is a step towards more general agents ca-
pable of solving any new task they may encounter.



References
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1): 1334–1373.
Nangue Tasse, G.; James, S.; and Rosman, B. 2020. A
Boolean Task Algebra for Reinforcement Learning. Ad-
vances in Neural Information Processing Systems, 33.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676): 354.
Sutton, R.; Barto, A.; et al. 1998. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge.
Sutton, R.; Modayil, J.; Delp, M.; Degris, T.; Pilarski, P.;
White, A.; and Precup, D. 2011. Horde: A scalable real-time
architecture for learning knowledge from unsupervised sen-
sorimotor interaction. In The 10th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2,
761–768.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211.
Sutton, R. S. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Machine learning proceedings 1990, 216–
224. Elsevier.
van Niekerk, B.; James, S.; Earle, A.; and Rosman, B. 2019.
Composing Value Functions in Reinforcement Learning. In
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97, 6401–6409. PMLR.
Veeriah, V.; Oh, J.; and Singh, S. 2018. Many-goals rein-
forcement learning. arXiv preprint arXiv:1806.09605.

Proofs of theoretical results
Theorem 1. Let M = (S,A, P,R) be a deterministic
task with optimal action-value function Q∗ and optimal
world action-value function Q̄∗. Then for all (s, a, s′) in
S × A × S, we have (i) R(s, a, s′) = max

g∈G
R̄(s, g, a, s′),

and (ii) Q∗(s, a) = max
g∈G

Q̄∗(s, g, a).

Proof.

(i):

max
g∈G

R̄M (s, g, a, s′)

=

{
max{R̄MIN, RM (s, a, s′)}, if s ∈ G
max
g∈G

RM (s, a, s′), otherwise.

= RM (s, a, s′)

(R̄MIN ≤ RMIN ≤ RM (s, a, s′) by definition).

(ii): Each g in G can be thought of as defining an
MDP Mg := (S,A, P,RMg

) with reward function

RMg (s, a, s
′) := R̄M (s, g, a, s′) and optimal action-

value function Q∗
Mg

(s, a) = Q̄∗
M (s, g, a). Then using

(i) we have RM (s, a, s′) = max
g∈G

RMg
(s, a, s′) and from

van Niekerk et al. (2019, Corollary 1), we have that
Q∗

M (s, a) = max
g∈G

Q∗
Mg

(s, a) = max
g∈G

Q̄∗
M (s, g, a).

Theorem 2. Let Q̄∗ be the optimal world action-value func-
tion for a task M . Then Q̄∗ has mastery.

Proof. Let each g in G define an MDP Mg with reward func-
tion

RMg
:= R̄M (s, g, a, s′)

for all (s, a, s′) in S ×A× S. Define

π∗
g(s) ∈ argmax

a∈A
Q∗

M,g(s, a) for all s ∈ S.

If g is reachable from s ∈ S \ {g}, then we show that fol-
lowing π∗

g must reach g. Since π∗
g is proper, it must reach a

state g′ ∈ G such that the transition (g′, π∗
g(g

′), s′) is termi-
nal. Assume g′ ̸= g. Let πg be a policy that produces the
shortest trajectory to g. Let Gπ∗

g and Gπg be the returns for
the respective policies. Then,

Gπ∗
g ≥ Gπg

=⇒ G
π∗
g

T−1 +RMg (g
′, π∗

g(g
′), s′) ≥ Gπg ,

where G
π∗
g

T−1 =

T−1∑
t=0

RMg
(st, π

∗
g(st), st+1)

and T is the time at which g′ is reached.

=⇒ G
π∗
g

T−1 + R̄MIN ≥ Gπg , since g ̸= g′ ∈ G

=⇒ R̄MIN ≥ Gπg −G
π∗
g

T−1

=⇒ (RMIN −RMAX)D ≥ Gπg −G
π∗
g

T−1,

by definition of R̄MIN

=⇒ G
π∗
g

T−1 −RMAXD ≥ Gπg −RMIND,

since Gπg ≥ RMIND

=⇒ G
π∗
g

T−1 −RMAXD ≥ 0

=⇒ G
π∗
g

T−1 ≥ RMAXD.

But this is a contradiction, since the result obtained by fol-
lowing an optimal trajectory up to a terminal state without
the reward for entering the terminal state must be strictly less
than receiving RMAX for every step of the longest possible
optimal trajectory. Hence we must have g′ = g.



Theorem 3. Let Q̄∗ be the set of optimal world Q̄-value
functions with mastery of tasks inM. Then for all s ̸= g ∈
S × G,

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M1

(s, g, a)

⇐⇒

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M2

(s, g, a) ∀M1,M2 ∈M.

Proof. Let g ∈ G, s ∈ S \ {g}.
If g is reachable from s, then we are done since Q̄∗

M1
and

Q̄∗
M2

have mastery (Theorem 2).
If g is unreachable from s, then for all (a, s′) inA×S we

have

R̄M1
(s, g, a, s′) =

{
R̄MIN, if s′ is absorbing
rs,a,s′ , otherwise

where rs,a,s′ is the reward for the

non-terminal transition (s, a, s′)

= R̄M2(s, g, a, s
′)

=⇒ Q̄∗
M1

(s, g, a) = Q̄∗
M2

(s, g, a).

Theorem 4. Let Rτ
M be the given task-specific reward func-

tion for a task M ∈ M, and let Q̄∗ ∈ Q̄∗ be an arbitrary
WVF. Let ˜̄VM (s, g) be the estimated WVF of M given by

max
a∈A

Q̄∗(s, g, a) +

(
max
a∈A

Rτ
M (g, a)−max

a∈A
Q̄∗(g, g, a)

)
.

Then,

(i) for all g ∈ G reachable from s ∈ S , V̄ ∗
M (s, g) =

˜̄VM (s, g).

(ii) V ∗
M (s) = max

g∈G
˜̄V (s, g), and π∗

M (s) ∈

argmax
a∈A

Q̄∗(s, argmax
g∈G

˜̄VM (s, g), a).

Proof.

(i): Let g ∈ G be a goal reachable from state s ∈ S . If
g = s, then

max
a∈A

Q̄∗(s, g, a) +

(
max
a∈A

Rτ
M (g, a)−max

a∈A
Q̄∗(g, g, a)

)
= max

a∈A
Rτ (g, a) +

(
max
a∈A

Rτ
M (g, a)−max

a∈A
Rτ (g, a)

)
= max

a∈A
Rτ

M (g, a) = V̄ ∗
M (s, g)

If g ̸= s, then

max
a∈A

Q̄∗(s, g, a) +

(
max
a∈A

Rτ
M (g, a)−max

a∈A
Q̄∗(g, g, a)

)
= max

a∈A
[G∗

s,g,a +Rτ (g, amax)]+(
max
a∈A

Rτ
M (g, a)−max

a∈A
Rτ (g, a)

)
,

follows from Theorem 2 and Theorem 3
= max

a∈A
G∗

s,g,a +Rτ (g, amax)+

(Rτ
M (g, amax

M )−Rτ (g, amax))

= max
a∈A

[G∗
s,g,a + R̄τ

M (g, amax
M )] = V̄ ∗

M (s, g)

(ii): Follows directly from (i) above and Theorem 3.

Algorithms

Algorithm 2: Dyna for WVFs using inferred transi-
tion functions

Initialise: WVF Q̄, Reward function R, goal buffer
G, learning rate α

foreach episode do
Observe initial state s ∈ S and sample g ∈ G
while episode is not done do

a←

{
argmax

a∈A
Q̄(s, g, a) w.p. 1− ε

a random action w.p. ε
Execute a, observe reward r and next state s′

R(s, a, .)← r
if s′ is absorbing then G ← G ∪ {s}
for g′ ∈ G do

r̄ ← R̄MIN if g′ ̸= s and s ∈ G else r

δ ←
[
r̄ +max

a′
Q̄(s′, g′, a′)

]
− Q̄(s, g′, a)

Q̄(s, g′, a)← Q̄(s, g′, a) + αδ
repeat N times

s← random previous state
a← random previous action taken in s
r ← R(s, a, .)
s′ ← Solving N (s) Bellman equations
MSE ← 1

|N (s)|
∑

g∈N (s)(Q̄(s, g, a)−[
R̄(s, g, a, s′) + V̄ (s′, g)

]
)

if MSE ≤ threshold then
for g′ ∈ G do

r̄ ← R̄MIN if g′ ̸= s and s ∈ G
else r

δ ←
[
r̄ +max

a′
Q̄(s′, g′, a′)

]
−

Q̄(s, g′, a)

Q̄(s, g′, a)← Q̄(s, g′, a) + αδ
s← s′


