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Abstract

An open problem in artificial intelligence is how to learn and represent knowledge that is sufficient for a general agent
that needs to solve multiple tasks in a given world. In this work we propose world value functions (WVFs), which are
a type of general value function with mastery of the world—they represent not only how to solve a given task, but also
how to solve any other goal-reaching task. To achieve this, we equip the agent with an internal goal space defined as
all the world states where it experiences a terminal transition—a task outcome. The agent can then modify task rewards
to define its own reward function, which provably drives it to learn how to achieve all achievable internal goals, and
the value of doing so in the current task. We demonstrate a number of benefits of WVFs. When the agent’s internal
goal space is the entire state space, we demonstrate that the transition function can be inferred from the learned WVF,
which allows the agent to plan using learned value functions. Additionally, we show that for tasks in the same world, a
pretrained agent that has learned any WVF can then infer the policy and value function for any new task directly from
its rewards. Finally, an important property for long-lived agents is the ability to reuse existing knowledge to solve new
tasks. Using WVFs as the knowledge representation for learned tasks, we show that an agent is able to solve their logical
combination zero-shot, resulting in a combinatorially increasing number of skills throughout their lifetime.
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1 Introduction

The ultimate goal of artificial intelligence is to create general agents capable of solving multiple tasks in the world in
the same way that humans are able to. To achieve this, we need a general decision-making framework for agents that
interact with a world to solve tasks, and a sufficiently general knowledge representation for what those agents learn.
Reinforcement learning (RL) [2] is one such framework that has made several major breakthroughs in recent years,
ranging from robotics to board games, but these agents typically are narrowly designed to solve only a single task.

In RL, tasks are specified through a reward function from which the agent receives feedback. Most commonly, an agent
represents its knowledge in the form of a value function, which represents the sum of future rewards it expects to receive.
However, since the value function is directly tied to one single reward function (and hence task), it is definitionally
insufficient for constructing agents capable of solving a wide range of tasks. We seek to overcome this limitation by
proposing world value functions (WVFs), a knowledge representation that encodes how to solve not just the current task,
but any other task, in the world. In the literature, agents with such abilities are said to possess mastery [5]. Importantly,
WVFs are a form of general value function [3] that can be learned from a single stream of experience like standard value
functions—no additional information need be provided to the agent.

In this work, we define the WVF and demonstrate how it can be learned using standard RL algorithms. We then demon-
strate several advantages of learning such a representation. In particular, we show that (a) WVFs implicitly encode the
dynamics of the world and can be used for model-based RL; (b) having learned a WVF, any new task that an agent
encounters can be solved by estimating its reward function, reducing the problem to a supervised learning one; and (c)
WVFs can be composed with Boolean operators to produce novel and human-interpretable behaviours.

2 World Value Functions

We model the agent’s interaction with the world as a Markov Decision Process (MDP) (S,A, P,R), where (i) S is the
state space, (ii) A is the action space, (iii) P (s, a, s′) are the transition dynamics of the world, and (iv) R is a reward
function bounded by [RMIN, RMAX], representing the task the agent needs to solve. Note that in this work, we focus on
environments with deterministic dynamics, but put no restrictions on their complexity.

The agent’s aim is to compute a policy π from S to A that optimally solves a given task. This is often achieved
through a value function that represents the expected return obtained under π starting from state s: V π(s) =
Eπ [

∑∞
t=0 r(st, at, st+1)]. Similarly, a Q-value function Qπ(s, a) represents the expected return obtained by executing a

from s, and thereafter following π. The optimal Q-value function is given by Q∗(s, a) = maxπ Q
π(s, a) for all states s and

actions a, and the optimal policy follows by acting greedily with respect to Q∗ at each state.

2.1 A New Form of General Value Function Algorithm 1: Q-learning for WVFs

Initialise: WVF Q̄, goal buffer G
foreach episode do

Observe an initial state s ∈ S and sample a goal g ∈ G
while episode is not done do

a←

{
argmax

a∈A
Q̄(s, g, a) probability 1− ε

a random action probability ε

Take action a, observe reward r and next state s′

if s′ is absorbing then G ← G ∪ {s}
for g′ ∈ G do

r̄ ← R̄MIN if g′ ̸= s and s ∈ G else r

Q̄(s, g′, a)
α←−

[
r̄ +max

a′
Q̄(s′, g′, a′)

]
− Q̄(s, g′, a)

s← s′

We now introduce world value functions (WVFs), which
provably encode how to reach all achievable goals in a
world with arbitrary task rewards. We first define the
internal goal space G of the agent as all states where
it experiences a terminal transition. Importantly, the
goal the agent wishes to achieve is not specified by the
world, but rather chosen by itself. In order to simulta-
neously learn how to achieve the overall task goal and
the agent’s internal goals, the agent can define its own
reward function R̄, which extends the task rewards R
to simply penalise itself for achieving goals it did not
intend to:

R̄(s, g, a, s′) :=

{
R̄MIN if g ̸= s and s′ is absorbing
R(s, a, s′) otherwise,

where R̄MIN is a large negative penalty that can be derived from the bounds of the reward function [1]. We can think of
the penalty R̄MIN as adding one bit of information to the agent’s rewards, which we will later prove is sufficient for the
agent to learn how to achieve its internal goals and the value of achieving them in the current task. The overall goal of
the agent now is to compute a world policy π̄ : S × G → Pr(A) that optimally reaches its internal goal states. Given a
world policy π̄, the corresponding WVF is defined as follows:

Q̄π̄(s, g, a) := Eπ̄
s′
[
R̄(s, g, a, s′) + V̄ π̄(s′, g)

]
, where V̄ π̄(s, g) := Eπ̄

[ ∞∑
t=0

R̄(st, g, at, st+1)

]
.
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Since the WVF satisfies the Bellman equations, Q̄∗(s, g, a) can be learned using any suitable RL algorithm like Q-learning
(Algorithm 1). To show that a WVF does still encode knowledge of how to solve the task in which it was learned,
we prove that the regular task reward function and value function can be recovered by simply maximising over goals
(Theorem 1). The task policy can then be obtained as: π∗(s) ∈ argmaxa∈A

(
maxg∈G Q̄∗(s, g, a)

)
.

Theorem 1. Let M = (S,A, P,R) be a task with optimal Q-value function Q∗ and optimal world Q-value function Q̄∗. Then for
all (s, a) in S ×A, we have (i) R(s, a) = max

g∈G
R̄(s, g, a), and (ii) Q∗(s, a) = max

g∈G
Q̄∗(s, g, a).

Having established WVFs as a type of task-specific GVF, we prove in Theorem 2 that they do indeed have mastery—that
is, they learn how to reach all reachable goal states in the world. We formally define mastery as follows:

Definition 1. Let Q̄∗ be the optimal world Q-value function for a task M . Then Q̄∗ has mastery if for all g ∈ G reachable from
s ∈ S \ G, there exists an optimal world policy

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗(s, g, a) such that π̄∗ ∈ argmax
π̄

P π̄
s (sT = g),

where P π̄
s (sT = g) is the probability of reaching g from s under a policy π̄.

Theorem 2. Let Q̄∗ be the optimal world Q-value function for a task M . Then Q̄∗ has mastery.

Finally, if the agent’s goal space is the state space (G = S), then we can estimate the transition probabilities for
each s, a ∈ S × A using only the reward function and optimal WVF. That is, P (s, a, s′) for all s′ ∈ S can be
obtained by simply solving for them in the system of Bellman optimality equations given by each goal g ∈ S :
Q̄∗(s, g, a) =

∑
s′∈S p(s, a, s′)

[
R̄(s, g, a, s′) + V̄ ∗(s′, g)

]
. This shows that optimal WVFs implicitly encode the dynam-

ics of the world. In practice, if the learned WVF is sufficiently optimal in a neighbourhood N (s), then we only need
to consider s′, g ∈ N (s) × N (s) if the transition probabilities are known to be non-zero only in N (s), common in most
domains.
Experiment 2.1. Consider a 4-rooms gridworld where an agent may be required to visit various goal positions. The agent can move
in any of the four cardinal directions at each timestep (with reward −0.1), and also has a “done” action that it chooses to terminate
at any position (with reward 2 if it is a task goal). We train an agent on the task where it must learn to navigate to the middle of
the top-left or bottom-right rooms. Figure 1 (left) shows the learned WVF. The figure is generated by plotting the value functions for
every goal position (since G = S), and displaying it at their respective xy position. Note how the values with respect the “top-left”
and “bottom-right” goals are high (red), reflecting the high rewards the agent received for reaching those goals when it was trying to
reach them. Figure 1 (middle) shows a close up view of the learned WVF around the “top-left” goal. We can observe from the value
gradient of the plots that the WVF does indeed learn how to reach all positions in the gridworld. We can then maximise over goals to
obtain the regular value function and policy (Figure 1 (right)).

Finally, we demonstrate that the transition probabilities can be inferred from the learned WVF. Figures 2 (left) and (middle) respec-
tively show the transitions inferred by solving the Bellman equations with s′, g ∈ S × S and s′, g ∈ N (s) × N (s). For each, we
inferred the next state probabilities for taking each cardinal action at the center of each room, and placed the corresponding arrow in
the state with highest probability. The red arrows in Figure 2 (left) correspond to incorrectly inferred next states, which is a conse-
quence of the learned WVF not being near optimal at all states for all goals. Figure 2 (middle) shows that in practice, if the WVF is
not near-optimal, we can still infer dynamics by using s′, g ∈ N (s)×N (s). Figure 2 (right) shows sample trajectories for following
the optimal policy using the inferred transition probabilities. The gray-scale color of each arrow corresponds to the normalised value
prediction for that state.

Figure 1: Learned WVF (left), close up of WVF for “top-
left” goal (middle), and inferred values and policy (right).

Figure 2: Inferred transitions (left-middle) and imagined
rollouts using the learned WVF (right).

3 Benefits of WVFs across tasks in the same world

We now highlight some benefits of WVFs that are a natural result of assuming tasks come from the same world—that
is we assume that all tasks share the same state space, action space and dynamics, but differ in their reward functions.
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More specifically, we define the world as a background MDP M0 = ⟨S0,A0, P0, R0⟩with its own state space, action space,
transition dynamics and background reward function. Any individual task M is specified by a task-specific reward
function Rτ

M (s, a) that is non-zero only for transitions entering terminal states. The reward function for the resulting
MDP is then simply RM (s, a, s′) := R0(s, a, s

′) + Rτ
M (s, a). We denote the set of all these tasks asM and the set of their

corresponding optimal WVFs as Q̄∗.

Interestingly, this definition means that if tasks come from the same world, then their WVFs share the same world
policy—that is, the agent has the same notion of goals and how to reach them no matter the task.

Theorem 3. Let Q̄∗ be the set of optimal world Q̄-value functions with mastery of tasks inM. Then for all s ̸= g ∈ S × G,

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M1

(s, g, a) ⇐⇒ π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M2

(s, g, a) ∀M1,M2 ∈M.

Similarly, if we require that the world policies need to be the same across tasks, then we have that the tasks must come
from the same world as defined above. In a sense, this gives us a notion of task invariance (the world does not change
with changes in task) implying policy conservation (the world policy is constant across tasks), and vice-versa.

3.1 Zero-shot values and policies from rewards

Since each task M ∈ M share the same dynamics (and consequently the same world policy), their corresponding WVFs
can be written as Q̄∗

M (s, g, a) = G∗
s,g,a + R̄τ

M (s′, a′) for some s′, a′ ∈ S × A, where G∗
s,g,a is a constant across tasks that

represents the sum of rewards starting from s and taking action a up until g, but not including the terminal reward.
Using this fact, we can show that the optimal value function and policy for any task can be obtained zero-shot from an
arbitrary WVF given the task-specific rewards:

Theorem 4. Let Rτ
M be the given task-specific reward function for a task M ∈M, and let Q̄∗ ∈ Q̄∗ be an arbitrary WVF. Define

˜̄VM (s, g) := max
a∈A

Q̄∗(s, g, a) +

(
max
a∈A

Rτ
M (g, a)−max

a∈A
Q̄∗(g, g, a)

)
, the estimated WVF of M.

Then,

(i) for all g ∈ G reachable from s ∈ S, V̄ ∗
M (s, g) = ˜̄VM (s, g).

(ii) V ∗
M (s) = max

g∈G
˜̄V (s, g), and π∗

M (s) ∈ argmax
a∈A

Q̄∗(s, argmax
g∈G

˜̄VM (s, g), a).

This has several important implications for transfer learning. For example, one can learn an arbitrary WVF with unsu-
pervised pretraining, then solve any new task by only learning the reward function (from experience or demonstrations).
Experiment 3.1. Consider the 4-rooms domain introduced in Experiment 2.1 where the agent has learned the WVF for navigating
to the top-left or bottom-right rooms. Figure 3 shows the estimated WVFs, values and policy for each task, computed as per Theorem 4
using the given task rewards and the learned WVF for the bottom-left task. Notice how the WVFs look similar to the rewards. This
highlights the structural similarity between the task space and value function space which enables the zero-shot inference of task
policies from task rewards alone.

(a) Navigating to the hallways. (b) Navigating to the bottom of the grid.

Figure 3: Inferring values and policies zero-shot from goal rewards. From left to right on each figure: The given task
specific rewards, the inferred WVF using Theorem 4, and the inferred values and policy from maximising over goals.

3.2 Zero-shot logical composition

We recently proposed a framework for agents to apply logical operations—conjunction (∧), disjunction (∨) and negation
(¬)—over the space of tasks and WVFs [1]. We first define these logical operations over tasks and WVFs as follows (we
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omit the value functions’ parameters for readability):
RM1∨M2

:= max{RM1
, RM2

}; RM1∧M2
:= min{RM1

, RM2
}; R¬M1

:= (RMSUP
+RMINF

)−RM1
,

Q̄∗
M1
∨ Q̄∗

M2
:= max{Q̄∗

M1
, Q̄∗

M2
}; Q̄∗

M1
∧ Q̄∗

M2
:= min{Q̄∗

M1
, Q̄∗

M2
}; ¬Q̄∗

M1
:=

(
Q̄∗

SUP + Q̄∗
INF

)
− Q̄∗

M1
,

where Q̄∗
SUP is the goal-oriented value function for the maximum task RMSUP

where r = RMAX for all G. Similarly Q̄∗
INF

is goal-oriented value function for the minimum task RMINF
where r = RMIN for all G.

We then showed that the logical composition of WVFs produces exactly the WVF for the corresponding task composition
(Theorem 5 (i)). We further showed that when the task specific rewards are binary,M and Q̄∗ from homomorphic Boolean
algebras (Theorem 5 (ii)). This formally defines classical logic over the space of tasks and value functions.
Theorem 5. Let Q̄∗ be the set of optimal world Q̄-value functions for tasks inM. Then,

(i) for all tasks M1,M2 ∈M, we have Q̄∗
¬M1

= ¬Q̄∗
M1

, Q̄∗
M1∨M2

= Q̄∗
M1
∨ Q̄∗

M2
, and Q̄∗

M1∧M2
= Q̄∗

M1
∧ Q̄∗

M2
.

(ii) If the task specific rewards are binary, then (M,∨,∧,¬) and (Q̄∗,∨,∧,¬) are homomorphic Boolean algebras.

Experiment 3.2. Consider video game world where an agent must navigate a 2D world and collect objects of different shapes and
colours [4]. The state space is an 84× 84 RGB image, and the agent is able to move in any of the four cardinal directions. The agent
also possesses a pick-up action, which allows it to collect an object when standing on top of it. The positions of the agent and
objects are randomised at the start of each episode. We first use deep Q-learning (similarly to Algorithm 1) to learn two base tasks:
collecting blue objects and collecting squares. Figure 4a shows the values with respect to each goal of the learned WVF for collecting
blue objects, and maximising over goals gives us the regular value function (Figure 4b). We can then compose them to solve their
disjunction (OR), conjunction (AND) and exlusive-or (XOR), as shown in Figure 4c. In general, after learning n base tasks we can
solve all their 22

n

logical compositions, giving agents a super-exponential explosion of skills (Figure 4d).

(a) Learned WVF for col-
lecting blue objects.

(b) Inferred regular value
function for collecting Blue
objects.
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Figure 4: Experiments in a 2D domain where the agent needs to collect objects of various shapes and colors.

4 Conclusion

For an agent to learn how to solve multiple tasks in a given world from a single stream of experience, it should not
only encode knowledge about how to optimally solve the current task, but also how achieve agent-centric goals in the
world. We introduced WVFs as a principled knowledge representation that captures this idea. We then showed that
WVFs learned on any task have mastery of the world—they encode how to solve all possible goal-reaching tasks. This
results in agents that can infer the dynamics of the environment (which can be used for model based approaches like
planning), enables them to solve new tasks zero-shot given just their terminal rewards, and finally enables zero-shot
logical composition of learned skills (an important ability for the combinatorial explosion of skills in long-lived agents).
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