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Abstract—A major challenge in reinforcement learning is
specifying tasks in a manner that is both interpretable and
verifiable. One common approach is to specify tasks through
reward machines—finite state machines that encode the task to
be solved. We introduce skill machines, a representation that can
be learned directly from these reward machines that encode the
solution to such tasks. We propose a framework where an agent
first learns a set of base skills in a reward-free setting, and then
combines these skills with the learned skill machine to produce
composite behaviours specified by any regular language, such as
linear temporal logics. This provides the agent with the ability
to map from complex logical task specifications to near-optimal
behaviours zero-shot. We demonstrate our approach in both a
tabular and high-dimensional video game environment, where
an agent is faced with several of these complex, long-horizon
tasks. Our results indicate that the agent is capable of satisfying
extremely complex task specifications, producing near optimal
performance with no further learning. Finally, we demonstrate
that the performance of skill machines can be improved with
regular off-policy reinforcement learning algorithms when optimal
behaviours are desired.

I. INTRODUCTION

Reinforcement learning (RL) is a promising framework for
developing truly general agents capable of acting autonomously
in the real world. Despite recent successes in the field,
ranging from video games [1] to robotics [2], there are several
shortcomings to existing approaches that hinder RL’s real-world
applicability. One issue is that of sample efficiency—while it
is possible to collect millions of data points in a simulated
environment, it is simply not feasible to do so in the real
world. This inefficiency is exacerbated when a single agent
is required to solve multiple tasks (as we would expect of a
generally intelligent agent). Another issue arises when an agent
is required to solve a long horizon task in the presence of a
sparse learning signal. In this case, it is often near impossible
for the agent to solve the task, regardless of how much data
it collects, since the sequence of actions to execute before a
learning signal is received is too large [3]. However, this can
be mitigated by leveraging higher-order skills, which shorten
the planning horizon [4].

A desirable characteristic of generally intelligent agents is
their ability to reuse learned behaviours to solve new tasks
[5], preferably without further learning. One approach to
overcoming this challenge is to rely on composition, where
an agent first learns individual skills and then combines them
to produce novel behaviours. There are several notions of
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compositionality in the literature, such as temporal composition,
where skills are invoked one after the other [4], [6], and
concurrent composition, where skills are combined to produce
a new behaviour to be executed [7], [8], [9], [10].

Notably, recent work [11] has demonstrated how an agent
can learn skills that can be combined using Boolean operators,
such as negation and conjunction, to produce semantically
meaningful behaviours without further learning. An important
benefit of this compositional approach is that it provides a
way to address another key issue with RL: tasks, as defined
by reward functions, can be notoriously difficult to specify.
This may lead to undesired behaviours that are not easily
interpretable and verifiable. Composition that enables simpler
task specifications and produces reliable behaviours thus
represents a major step towards safe AI [12].

Unfortunately, these compositions are strictly concurrent and
cannot be chained to solve temporally-specified tasks. One
solution to this issue is reward machines—finite state machines
that encode the tasks to solve [13]. While this obviates the
sparse reward problem, the agent is still required to learn how
to solve a given task through environment interaction, and the
subsequent solution is monolithic, restricting its applicability
to new tasks and limiting the reliability of resulting behaviours.

In this work, we combine these two approaches to develop
an agent capable of zero-shot concurrent and temporal compo-
sition. We particularly focus on temporal logic composition,
such as linear temporal logic (LTL) [14], allowing agents to
sequentially chain and order their skills while ensuring certain
conditions are always or never met. We make the following
contributions: (a) we propose skill machines, a finite state
machine that can be autonomously learned by a compositional
agent, and which can be used to solve any task expressible
as a finite state machine without further learning; (b) we
prove that these skill machines are satisficing—given a task
specification, an agent can successfully solve it while adhering
to any constraints; and (c) we demonstrate our approach in
several environments, including a high-dimensional video game
domain. Having learned a set of base skills in a reward-free
setting, our results indicate that our method is capable of
producing near-optimal behaviour for a variety of long-horizon
tasks without further learning.

II. BACKGROUND

We model the agent’s interaction with the world as a Markov
Decision Process (MDP), given by (S,A, P,R, γ), where
(i) S ⊆ Rn is the n-dimensional state space; (ii) A is the
set of (possibly continuous) actions available to the agent;
(iii) P (s′|s, a) is the dynamics of the world, representing



the probability of the agent reaching state s′ after executing
action a in state s; (iv) R is a reward function bounded by
[RMIN, RMAX] that represents the task the agent needs to solve;
and (v) γ ∈ [0, 1] is a discount factor.

The aim of the agent is to compute a Markov policy π from
S to A that optimally solves a given task. Instead of directly
learning a policy, an agent will often instead learn a value
function that represents the expected return following policy π
from state s: V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at)]. A more useful
form of value function is the action-value function Qπ(s, a),
which represents the expected return obtained by executing
a from s, and then following π. The optimal action-value
function is given by Q∗(s, a) = maxπ Q

π(s, a) for all states s
and actions a, and the optimal policy follows by acting greedily
with respect to Q∗ at each state.

A. Logical Composition in the Multitask Setting

We are interested in the multitask setting, where an agent
is required to reach a set of goals in some goal space
G ⊆ S. We assume that all tasks share the same state
space, action space and dynamics, but differ in their reward
functions. We model this setting by defining a background
MDP M0 = ⟨S0,A0, P0, R0⟩ with its own state space, action
space, transition dynamics and background reward function.
Any individual task τ is then specified by a task-specific reward
function Rτ that is non-zero only for states in G. The reward
function for the resulting MDP is then simply R0 +Rτ .

Recent work [11] consider the case where Rτ ∈
{RMIN, RMAX} and develop a framework that allows agents to
apply the Boolean operations of conjunction (∧), disjunction (∨)
and negation (¬) over the space of tasks and value functions.
This is achieved by first defining the goal-oriented reward
function R̄ which extends the task rewards r to penalise an
agent for achieving goals different from the one it wished to
achieve:

R̄(s, g, a) :=

{
R̄MIN if g ̸= s and s is absorbing
R(s, a) otherwise,

(1)

where R̄MIN is a large negative penalty that can be derived
from the bounds of the reward function.

Using Equation 1, we can define the related goal-oriented
value function as:

Q̄(s, g, a) = R̄(s, g, a) + γ

∫
S
V̄ π̄(s′, g)P(s,a)(ds

′), (2)

where V̄ π̄(s, g) = Eπ̄

[∑∞
t=0 γ

tR̄(st, g, at)
]
.

If a new task can be represented as the logical expression
of previously learned tasks, then the optimal policy can
immediately be obtained by composing the learned goal-
oriented value functions using the same expression [11]. For
example, the union (∨), intersection (∧), and negation (¬) of
two goal-reaching tasks A and B can be solved as follows (we
omit the value functions’ parameters for readability):

Q̄∗
A∨B = Q̄∗

A ∨ Q̄∗
B := max{Q̄∗

A, Q̄
∗
B}

Q̄∗
A∧B = Q̄∗

A ∧ Q̄∗
B := min{Q̄∗

A, Q̄
∗
B}

Q̄∗
¬A = ¬Q̄∗

A :=
(
Q̄∗

SUP + Q̄∗
INF

)
− Q̄∗

A,

where Q̄∗
SUP and Q̄∗

INF are the goal-oriented value functions
for the maximum task (r = RMAX for all G) and minimum
task (r = RMIN for all G), respectively . Following recent work
[15], we refer to these goal-oriented value functions as world
value functions (WVFs).

B. Reward Machines

One difficulty with the standard MDP formulation is that
the agent is often required to solve a complex long-horizon
task using only a scalar reward signal as feedback from which
to learn. To overcome this, recent work [13] propose reward
machines (RMs), which provide structured feedback to the
agent in the form of a finite state machine. RMs encode a
reward function using a set of propositional symbols P that
represent abstract environment features as follows:

Definition 1 (Reward Machine). Given a set of propositional
symbols P , states S and actions A, a reward machine is a
tuple RPSA = ⟨U, u0, F, δu, δr⟩ where (i) U is a finite set of
states; (ii) u0 ∈ U is an initial state; (iii) F is a finite set
of terminal states; (iv) δu : U × 2P → U ∪ F is the state-
transition function; and (v) δr : U → [S ×A×S → R] is the
state-reward function.

RMs consist of a finite set of states U , each of which
represents a set of propositions that are true at a given
environment state. Transitions between RM states are governed
by δu, and the RM emits a reward function according to δr. A
particular instantiation of an RM that is used in practice is a
simple reward machine (SRM), which restricts the form of the
state-reward function to be δr : U × 2P → R [13]. In other
words, when a transition between u, u′ ∈ U is made, the SRM
emits a single scalar instead of a function (as in the case of
RMs).

To incorporate RMs into the RL framework, the agent must
be able to determine which abstract propositions are true at
any given state. To achieve this, the agent is equipped with
a labelling function L : S × A × S → 2P that assigns truth
values to the propositions based on the agent’s interaction with
its environment. The agent can then learn a policy in a new
decision process where the reward function in the original
MDP is replaced with the RM, which is defined by the tuple
⟨S,A, P, γ,P, L, U, u0, F, δu, δr⟩. The agent’s aim is now to
learn a policy over the joint MDP and RM state space π :
S × U → A, which can be achieved with standard algorithms
such as Q-learning [13].

III. LEVERAGING SKILL COMPOSITION FOR TEMPORAL
LOGIC TASKS

To describe our approach to temporal composition, we
use the Office Gridworld [13] as a running example. In the
environment, illustrated by Figure 1a, an agent (blue circle)
can move to adjacent cells in any of the cardinal directions.



It can also pick up coffee or mail at locations K or B
respectively, and it can deliver them to the office at location
x. Cells marked ✽ indicate decorations that are broken if the
agent collides with them, and cells marked A–D indicate the
centres of the corner rooms. The reward machines that specify
tasks in this environment are defined over 10 propositions:
P = {A,B,C,D,✽,K,B, x,B+, x+}, where the first 8
propositions are true when the agent is at their respective
locations, B+ is true when the agent is at B and there is
mail to be collected, and x+ is true when the agent is at x and
there is someone in the office.

A. Task Space

We now define the set of tasks to be considered. We first
introduce the concept of constraints C ⊆ P , which are the
set of propositions that an agent should avoid setting to true
and corresponds to the global operator G in a linear temporal
logic (LTL) specification. An example of a constraint might
be that the agent should complete a task, but avoid breaking
any decorations while doing so. We can now define the notion
of base (primitive) tasks, which will later be composed.

Definition 2 (Task Primitive). Let M = ⟨S0,A0, P0, R0⟩ be
a background MDP. We define a set of task primitives in this
domain asMG = {⟨S,A, P,R, γ⟩} with absorbing goal space
G = 2P and labelling function L, where

S := (S0 × 2C) ∪ 2P , A := A0 ×Aτ ;

P (⟨s0, c⟩, ⟨a0, aτ ⟩) :=

{
L(s0, a0, s

′
0) if aτ = 1

⟨s′0, c′⟩ otherwise
,

R(⟨s0, c⟩, ⟨a0, aτ ⟩) :=

{
Rτ ∈ {RMIN, RMAX} if aτ = 1

R0(s0, a0) otherwise.

where C is the set of constraints, Aτ = {0, 1} represents
whether or not to terminate a task, s′0 ∼ P0(·|s0, a0) and
c′ = c ∪ (c ∩ L(s0, a0, s

′
0)).

The above defines the tasks’ state space to be the product of
the environment state and the set of constraints, incorporating
the set of propositions that are currently true. The action space
is augmented with a terminating action following previous
works [6], [11], which indicates that the agent wishes to
achieve the goal it is currently at, and is similar to an option’s
termination condition [4]. The transition dynamics update the
environment state and constraints set to true when a regular
action is taken, and use the labelling function to return the set
of propositions achieved when the agent decides to terminate.
Finally, the agent receives the regular environment reward
when taking an action, but a task-specific goal reward when it
terminates. We will assume that the environment and task-
specific rewards are such that the optimal policies for all
tasks are guaranteed to attain desired reachable goal states—a
common example is to have a reward of 1 at desired goal states
and no rewards everywhere else.

Equipped with this definition, we can now define the set of
all tasks under consideration:

Definition 3 (Task space). The set of all tasks M is all linear
preferences over task primitives:

M =
{
⟨S,A, P,Rw, γ⟩ : Rw(s, a) =

|MG |∑
i=1

wiRi(s, a)

where
|MG |∑
i=1

wi = 1 and w ∈ R|MG |
}

This definition of task space provides a general notion
of tasks that are still grounded in achieving goals. It also
subsumes most definitions considered in the composition
literature, including Boolean algebra tasks [11] and linear
preference tasks [16]. Hence, we will restrict our attention
to reward machines whose rewards per state originate from the
defined task space (instead of arbitrary real-valued functions
that are not grounded in achieving goals in an environment). We
denote such reward machines as RMSA = ⟨U, u0, F, δu, δM⟩
where δM maps from RM states to task rewards.

B. Skill Machines

The goal space of a primitive task is defined by a set of
Boolean propositions. We can leverage prior work to solve
each individual task using a set of base primitive skills [11].
We therefore only need concern ourselves with how to solve
any task expressed as a linear combination of the primitive
tasks. Fortunately, Theorem 1 below demonstrates that a linear
combination of base skills does just this (proofs of all theorems
are presented in the Appendix).

Theorem 1. Let RMG be a vector of rewards for each primitive
task, and Q̄∗

G be the corresponding vector of optimal WVFs.
Then, for a task m ∈M with reward function Rw = w ·RMG ,
we have

Q̄∗
m = w · Q̄∗

G .

Proof.

Q̄∗
m(s, g, a) = Eπ̄∗

[ ∞∑
t=0

γtw · R̄MG (st, g, at)

]

= w · Eπ̄∗

[ ∞∑
t=0

γtR̄MG (st, g, at)

]
; since the

policies are independent of task [11][Lem 2].
= w · Q̄∗

G

We now have agents capable of solving any logical and
linear composition of tasks by learning a finite set of base
skills Q̄∗

G for task primitives MG . We refer to this basis set
of skills as skill primitives. Given this compositional ability
over skills, and reward machines that expose the structure of
tasks, agents can solve temporally extended tasks with little or
no further learning. To achieve this, we define a skill machine
(SM) as a representation of logical and temporal knowledge
over skills.



(a) Office Gridworld
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(b) Skill machine

Fig. 1: Illustration of (a) the office gridworld where the blue circle represents the agent and (b) the skill machine for the task
“deliver coffee and mail to the office without breaking any decoration” where the black dots labeled t represent terminal states.

Definition 4 (Skill Machine). Given a set of propositional
symbols P with constraints C ⊆ P , their corresponding skill
primitives Q̄∗

G and task space M, states S and actions A, a
skill machine is a tuple Q̄∗

MSA = ⟨U, u0, F, δu, δQ,wU ,wG⟩
where (i) U , u0, F , δu are defined as for reward machines;
(ii) wU : U × U → R is a preference function over state
transitions; (iii) wG : S × G → R is a preference function
over goals; and (v) δQ : S × U ×A → [S × A → R] is the
state-skill function defined by:

δQ(s, u, a) 7→
∑
g∈G

∑
u′∈U

wG(s, u, g)wU (u, u
′)Q̄∗

u,u′(s, g, a),

where Q̄∗
u,u′ is the WVF obtained by composing the skill

primitives Q̄∗
G according to the Boolean expression for the

transition δu = u′.

For a given state s in the environment and state u in the skill
machine, the skill machine uses its preference over transitions
wU and goals wG to compute a skill Q(s, a) := δQ(s, u, a)
that an agent can use to take an action a. The environment
then transitions to the next state s′ ← P (s, a) and the skill
machine transitions to u′ ← δu(u, L(s, a, s

′)). wU represents
cases where there is not necessarily a single desirable transition
to follow given the current SM state. This is illustrated by the
SM in Figure 1b, where mail and coffee are equally desirable
at the initial state. Similarly, wG represents cases where there
may be a single desirable task, but its goals are not necessarily
equally desirable given the environment state—for example
when the agent needs to first pick up coffee but there are two
coffee locations. Interestingly, there always exists a choice for
wU and wG that is optimal with respect to the corresponding
reward machine, as shown in Theorem 2.

Theorem 2. Let π∗(s, u) be the optimal policy for the cross-
product MDP between a reward machine and a task space M,
with C = P . Then there exists a corresponding skill machine

with a wG and wU such that

π∗(s, u, a) ∈ argmax
a

δQ(s, u, a),

where δQ is given by wG and wU as per Definition 4.

Proof. Let wU (u, ·) = 1
Nδu

where Nδu is the number of
possible RM transitions from u. Also let wG(s, u, ·) be
1 for the set of propositions g ∈ 2C that are satisfied
when following π∗(s, u), and zero everywhere else. Then
π∗(s, u) ∈ argmaxa δQ(s, u) since wU (u, u

′)Q̄∗
u,u′(s, g, a) is

optimal using Theorem 1 and optimal policies are assumed to
reach task goals.

Theorem 2 shows that skill machines can be used to solve
tasks without having to relearn action level policies. The next
section shows how an agent can approximate a skill machine
by planning over simple reward machines.

C. From Reward Machines to Skill Machines

In the previous section, we introduced skill machines and
showed that they can be used to represent the logical and
temporal composition of skills needed to solve reward machines.
We now show how for simple RMs their approximate SM can
be obtained zero-shot without further learning. To achieve this,
we first plan over the reward machine (using value iteration,
for example) to obtain Q-values for each transition. We then
select the skills for each SM state greedily. This process is
illustrated in Figure 2. While this only holds for cases where
the greedy skills are always satisfiable from any environment
state, this still covers many tasks of interest. In particular, this
holds for any RM with non-zero rewards of RMAX at accepting
transitions,1 as shown in Theorem 3.

Theorem 3. Let RMSA = ⟨U, u0, F, δu, δM⟩ be a satisfiable
simple reward machine with non-zero rewards RMAX only for

1Accepting transitions are transitions at which the high level task—described,
for example, by linear temporal logics—is satisfied.



(a) Reward machine (b) Value iterated RM (c) Skill machine

Fig. 2: The reward machine, value iterated RM and skill machine for the task “Deliver coffee to the office without breaking any
decoration”. This task is specified using LTL as (F (K∧X(F x)))∧ (G ¬✽)), where F = Finally,X = neXt,G = Globally
are LTL operators. The corresponding RM is obtained by converting the LTL into a finite state machine and then giving a
reward of 1 for accepting transitions and 0 otherwise. The black dots labeled t represent terminal states.

accepting transitions, and for which all valid transitions (u, u′)
are achievable from any state s ∈ S . Define the skill machine
Q̄∗

MSA = ⟨U, u0, F, δu, δQ,wU ,wG⟩ with

wU (u, u
′) :=

{
1 if u′ = argmaxu′′ Q∗(u, u′′),

0 otherwise

wG(s, u, g) :=

{
1 if g = argmaxg′ maxa

∑
u′ wU Q̄

∗
u,u′

2,

0 otherwise

where Q∗ is the optimal transition-value function for RPSA.
Then following the policy π∗(s, u) ∈ argmaxa δQ(s, u, a) will
reach an accepting transition.

Proof. This follows from the optimality of π∗(s, u) and Q∗,
since each transition of the RM is satisfiable from any
environment state.

Theorem 3 is critical as it provides soundness guarantees,
ensuring that the policy derived from the skill machine will
always satisfy the task requirements when it is possible
to do so. Finally, in cases where the composed skill δQ
obtained from the approximate SM is not sufficiently optimal,
we can use any off-policy algorithm to learn a new skill
Qnew few-shot. This is achieved by using the maximising
Q-values max{βQnew, (1 − β)δQ} in the behaviour policy
during learning. Here, β ∈ [0, 1] is a parameter that determines
how much of the composed policy to use. It can also be seen
as decreasing the potentially overestimated values of δQ, since
δQ is greedy with respect to both goals and RM transitions.
Algorithm 1 illustrates this process with Q-learning where
β = γ, which guarantees convergence since δQ will never
dominate the optimal Q-values in the max.

IV. EXPERIMENTS

A. Zero-shot temporal logics

We consider the Office Gridworld domain [13] depicted in
Figure 1a. This environment is used as a multitask domain,

Algorithm 1: Few-shot Q-learning using skill machines

Input : γ, α,P, L, U, u0, F, δu, δQ
Initialise : Q(s, u, a)
foreach episode do

Observe initial state s ∈ S and get initial u← u0

while episode is not done do
/* Using the composed skill δQ

in the behaviour policy */
a←
argmax

a∈A
(max{γQ(s, u, a), (1− γ)δQ(s, u, a)})

if Bernoulli(1-ϵ) = 1 else a random action
Take action a and observe next state s′

Get reward r ← δr(u)(s, a, s
′) and the next RM

state u′ ← δu(u, L(s, a, s
′))

Q(s, u, a)
α←− r if s′ is terminal or u′ ∈ F else[

r + γmax
a′

Q(s′, u′, a′)
]

s← s′

Task Description

1 Deliver coffee to the office without breaking any
decoration

2 Patrol rooms A, B, C, and D without breaking any
decoration

3 Deliver coffee and mail to the office without
breaking any decoration

4 Deliver mail to the office until there is no mail left,
then deliver coffee to office while there are people
in the office, then patrol rooms A-B-C-D-A, and
never break a decoration

TABLE I: Tasks in the Office Gridworld.

consisting of the four tasks described in Table I. We begin by
training the agent on all 10 base tasks of the Office Gridworld



(a) Room A (b) Room B

(c) Room C (d) Room D

(e) Decoration ✽ (f) Coffee K

(g) Mail B (h) Office x

(i) Mails present B+ (j) People present x+

Fig. 3: The policies (arrows) and value functions (heat map)
of the base primitive tasks in the Office Gridworld. These are
obtained by maximising over the goals of the learned WVFs.
All errors in the figures are due to training the WVFs for
200000 time steps, hence not to convergence.

(Figure 3) and then evaluating how long it takes it to learn a
policy that can solve all four tasks. The agent iterates through
the tasks, changing from one to the next after each episode.
In all of our experiments, we compare the performance of

skill machines with that of state-of-the-art RM-based learning
approaches like counterfactual RMs (CRM)—where the Q-
functions are updated with respect to all possible RM transitions
from a given environment state—and hierarchical RMs (HRM)—
where an agent learns options per RM state that are grounded
in the environment states [13]. Note that CRM and HRM are
theoretically capable of solving the multi-task problem setup
because they can use experience from solving one task to update
the policies for solving other tasks. However, skill machines
can additionally share both experience between tasks when
learning the skill primitives, as well as use the composition of
these primitives to generalise to more difficult tasks without
further learning.

We run 80 independent trials and report the average reward
per step across the four tasks in Table I. In addition to learning
all four tasks, we also experiment with Tasks 3 and 4 in
isolation. For these experiments, 80 independent trials are run
and the average reward per step computed. In the single task
domains, the difference between CRM, HRM, skill machines
and Q-learning should be less pronounced, since CRM, HRM
and skill machines now cannot leverage prior knowledge. Thus,
the comparison between multi-task and single-task learning in
this setting will evaluate the benefit of the compositionality
afforded by skill machines.

The results of these three experiments are shown in Figure
4. Regular Q-learning struggles to learn Task 3 and completely
fails to learn the hardest task (Task 4). Additionally, notice
that while QL and CRM can theoretically learn the tasks
optimally given infinite time, only HRM and SM are able to
learn hard long horizon tasks in practice. It is important to
note that we train all algorithms for the same amount of time
during these experiments and previous work [11] has shown
that learning the WVFs takes longer than learning task-specific
skills. In addition, the skill machines are being used to zero-shot
generalise to the office tasks using skill primitives. Thus using
the skill machines in isolation (labelled SM and shown in blue
on Figure 4) may provide sub-optimal performance compared
to the task-specific agents, since the skill machines have not
been trained to optimality and are not specialised to the domain.
Even under these conditions, we observe that skill machines
perform near-optimally in terms of final performance, and due
to the amortised nature of learning the WVF will achieve its
final rewards from the first epoch.

B. Few-shot Temporal Logics

It is possible to pair the skill machines with a learning
algorithm such as Q-learning to achieve few-shot generalisation.
From the results shown in Figure 4, it is apparent that skill
machines paired with Q-learning (labelled QL-SM and shown
in orange on Figure 4) achieves the best performance for both
the single-task and multi-task setting. While it is not clear
from the rewards that adding Q-learning provides significant
improvements to the skill machine, their trajectories show
that Q-learning does indeed improve on the skill machine
policies when they are not optimal (Figure 5). Additionally,
skill machines with Q-learning always begin with a significantly
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Fig. 4: Average returns during training in the Office Gridworld.

higher reward and converge on their final performance faster
than all benchmarks—except the zero-shot one which is (near)
optimal in all cases. The speed of learning is due to the
compositionality of the skill primitives with skill machines,
and the high final performance is due to the generality of
the learned primitives being paired with the domain specific
Q-learner. In sum, skill machines provide fast composition
of skills and achieve optimal performance compared to all
benchmarks when paired with a learning algorithm.

C. Moving Targets Domain

Fig. 6: Moving Targets domain

Task Description

1 Pick up any object. Repeat this forever.
2 Pick up blue then purple objects, then objects that

are neither blue nor purple. Repeat this forever.
3 Pick up blue objects or squares, but never blue

squares. Repeat this forever.
4 Pick up non-square blue objects, then non-blue

squares in that order. Repeat this forever.

TABLE II: Tasks in the Moving Targets domain. Objects
respawn in random positions when picked.

We now demonstrate our temporal logic composition ap-
proach in a canonical object collection domain with high
dimensional pixel observations [11] (Figure 6). The agent
here needs to pick up objects of various shapes and colors;
picked objects respawn at random empty positions similarly
to previous object collection domains [16]. There are 3 object
colours—beige, blue, purple—and 2 object shapes—squares,
circles. To learn the WVF for a given task primitive, we use
goal oriented Q-learning [11] where the agent keeps track of
reached goals and uses deep Q-learning [17] to update the
WVF with respect to all seen goals at every time step.

We first train the agent on three base task primitives: pick up
blue objects, pick up purple objects, and pick up squares. We
then use the learned skill primitives to solve multiple temporal
logic tasks. Figure 7 shows the average returns of the optimal
policies and SM policies for the four tasks described in Table II
with a maximum of 50 steps per episode. Our results show that
even when using function approximation with sub-optimal skill
primitives, the zero-shot policies obtained from skill machines
are very close to optimal on average. We also observe that for
very challenging tasks like Tasks 3 and 4 (where the agent must
satisfy difficult temporal constraints), the compounding effect
of the sub-optimal policies sometimes leads to failures. In such
cases, learning new skills few-shot by leveraging the SM would
guarantee convergence to optimal policies as demonstrated in
Section IV-B.
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Fig. 7: Average returns over 100 runs for tasks in Table II.



(a) Task 1 zero-shot (b) Task 2 zero-shot (c) Task 3 zero-shot

(d) Task 1 few-shot (e) Task 2 few-shot (f) Task 3 few-shot

Fig. 5: Agent trajectories using the skill machine without further learning (top) and with further learning (bottom).

V. RELATED WORK

One family of approaches to concurrent composition lever-
ages forms of regularisation to achieve semantically meaningful
disjunction [7], [9] or conjunction [18], [19]. Weighted compo-
sition has also been demonstrated; for example, previous work
[20] learn weights to compose existing policies multiplicatively
to solve new tasks. Approaches that leverage the successor
feature (SF) framework [21] are capable of solving tasks defined
by linear preferences over features [16]. Recent work [10]
shows that an SF basis can be learned that is sufficient to
span the space of tasks under consideration, and one can
also determine which policies should be stored in limited
memory so as to maximise performance on future tasks [22].
In contrast to these approaches, our framework allows for both
concurrent composition (with operators such as negation that
other approaches do not support) and temporal composition
such as LTL.

A popular way of achieving temporal composition is through
the options framework [4], [23]. Here, high-level skills are
first discovered and then executed sequentially to solve a task
[24], [25]. One can leverage the SF and options framework
and learn how to linearly combine skills, chaining them
sequentially to solve temporal tasks [6]. However, these options-
based approaches offer a relatively simple form of temporal
composition. By contrast, we are able to solve tasks expressed
through regular languages zero-shot, while providing soundness
guarantees.

Work has also centred on approaches to defining tasks
using human-readable logic operators. For example, one can
specify tasks using LTL, which is then used to generate a

standard reward signal for an RL agent [26], [27]. Some recent
works [28] show how to perform reward shaping given LTL
specifications, while others [29] develop a formal language that
encodes tasks as sequences, conjunctions and disjunctions of
subtasks. This is then used to obtain a shaped reward function
that can be used for learning. All of these approaches focus on
how an agent can improve learning given such specifications or
structure, but we show how an explicitly compositional agent
can immediately solve such tasks using WVFs without further
learning.

VI. CONCLUSION

We proposed skill machines—finite state machines that can
be learned from reward machines—that allow agents to solve
extremely complex tasks involving temporal and concurrent
composition. We demonstrated how skills can be learned and
encoded in a specific form of goal-oriented value function that,
when combined with the learned skill machines, are sufficient
for solving subsequent tasks without further learning. Our
approach guarantees that the resulting policy adheres to the
logical task specification, which provides assurances of safety
and verifiability to the agent’s decision making, important
characteristics that are necessary if we are to ever deploy
RL agents in the real world. While the resulting behaviour
is provably satisficing, empirical results demonstrate that the
agent’s performance is near optimal; further fine-tuning can
be performed should optimality be required, which greatly
improves the sample efficiency. We see this approach as a
step towards truly generally intelligent agents, capable of
immediately solving human-specifiable tasks in the real world
with no further learning.
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