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Abstract
The ability to produce novel behaviours from ex-
isting skills is an important property of lifelong-
learning agents. We build on recent work which
formalises a Boolean algebra over the space of
tasks and value functions, and show how this can
be leveraged to tackle the lifelong learning prob-
lem. We propose an algorithm that determines
whether a new task can be immediately solved
using an agent’s existing abilities, or whether the
task should be learned from scratch. We verify
our approach in the Four Rooms domain, where
an agent learns a set of skills throughout its life-
time, and then composes them to solve a combi-
natorially large number of new tasks in a zero-
shot manner.

1. Introduction
A major challenge in reinforcement learning (RL) is build-
ing general-purpose agents that are able to use existing
knowledge to solve new tasks quickly. While RL has
achieved recent success in a number of difficult, high-
dimensional domains (Mnih et al., 2015; Levine et al.,
2016; Lillicrap et al., 2016; Silver et al., 2017), these meth-
ods require millions of samples from the environment to
learn optimal behaviours. This is ultimately a fatal flaw,
since learning to solve complex, real-world tasks from
scratch is typically infeasible.

One approach to improving sample-efficiency is composi-
tion (Todorov, 2009). This allows an agent to leverage its
existing skills to build complex, novel behaviours, which
can then be used to solve or speed up learning of a new
task (Todorov, 2009; Saxe et al., 2017; Haarnoja et al.,
2018; Van Niekerk et al., 2019; Hunt et al., 2019; Peng
et al., 2019). More recently, Tasse et al. (2020) propose a
framework for defining a Boolean algebra over the space
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of tasks and optimal value functions. This allows tasks and
value functions to be composed using union, intersection
and negation operators in a principled manner.

In this work, we demonstrate how such a framework can
be used to tackle the lifelong learning problem. We assume
that the agent is faced with a series of tasks drawn from
some distribution, and that each task is specified by a vector
specifying the goals of the task. Given this information,
we propose an algorithm for iteratively solving such tasks,
while at the same time constructing a library of skills which
can be used to solve future tasks in a zero-shot manner.

We empirically verify our approach in the lifelong RL set-
ting using the Four Rooms domain (Sutton et al., 1999),
where an agent must determine what knowledge to add to
its library and how to combine its current knowledge to
solve new tasks. Results demonstrate that our approach is
able to quickly learn a set of skills, resulting in a combina-
torial explosion in the agent’s abilities. Consequently, even
when tasks are sampled randomly from some unknown dis-
tribution, an agent is able leverage its existing skills to solve
new tasks without further learning.

2. Background
We consider tasks modelled by Markov Decision Processes
(MDPs). An MDP is defined by the tuple (S,A, ρ, r, γ),
where (i) S is the state space, (ii) A is the action space,
(iii) ρ is a Markov transition kernel (s, a) 7→ ρ(s,a) from
S × A to S, (iv) r is the real-valued reward function
bounded by [0, rMAX], and (v) γ ∈ [0, 1) is the discount
factor, which determines the agents preference for short-
-term to long-term rewards. In this work, we focus on goal
based tasks where an agent is required to reach some goal
and so receives rewards rMAX when it reaches desired goals
and 0 everywhere else. We therefore consider the class of
discounted MDPs with an absorbing set G ⊆ S.

The goal of the agent is to compute a Markov policy π
from S to A that optimally solves a given task. A given
policy π is characterised by a value function V π(s) =
Eπ [

∑∞
t=0 γ

tr(st, at)], specifying the expected return ob-
tained under π starting from state s. The optimal policy
π∗ is the policy that obtains the greatest expected return at
each state: V π

∗
(s) = V ∗(s) = maxπ V

π(s) for all s in S.
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A related quantity is theQ-value function, Qπ(s, a), which
defines the expected return obtained by executing a from s,
and thereafter following π. Similarly, the optimal Q-value
function is given by Q∗(s, a) = maxπ Q

π(s, a) for all s in
S and a in A.

3. Logical Composition
Tasse et al. (2020) recently propose the notion of a Boolean
task algebra, which allows an agent to perform logical
operations—conjunction (∧), disjunction (∨) and negation
(¬)—over the space of tasks. For clarity, we present the
statement of the theorems here, but note that all proofs can
be found in the original paper.

3.1. A Boolean Algebra for Tasks

Theorem 1. (Tasse et al., 2020) LetM be a set of tasks.
DefineMMAX ,MMIN ∈ M to be tasks with the respec-
tive reward functions

rMMAX
: S ×A → R

(s, a) 7→ max
M∈M

rM (s, a)

rMMIN
: S ×A → R

(s, a) 7→ min
M∈M

rM (s, a)

Then, under the assumption of deterministic transition dy-
namics and sparse rewards, M forms a Boolean alge-
bra with universal bounds MMIN and MMAX when
equipped with the operators ¬,∨,∧ given by:

¬ : M→M
M 7→ (S,A, ρ, r¬M , γ),

∨ : M×M→M
(M1,M2) 7→ (S,A, ρ, rM1∨M2

, γ),

∧ : M×M→M
(M1,M2) 7→ (S,A, ρ, rM1∧M2 , γ),

where

r¬M : S ×A → R
(s, a) 7→ rMMAX

(s, a)− rM (s, a)

rM1∨M2
: S ×A → R

(s, a) 7→ max{rM1
(s, a), rM2

(s, a)}

rM1∧M2 : S ×A → R
(s, a) 7→ min{rM1(s, a), rM2(s, a)}

Theorem 1 allows us to compose existing tasks together to
create new tasks in a principled way, and also gives us a
notion of base tasks. If we know the set of goals upfront,
then it is easy to select a minimal set of base tasks that can

be composed to produce the largest number of composite
tasks. We first assign a Boolean label to each goal in a table,
and then use the columns of the table as base tasks. The
desirable goals for each base task are then those goals with
a value of 1 according to the Boolean table. For example,
for a domain with four goals, we can select 2 base tasks
which can be used to specify all 16 possible tasks. This is
illustrated in Table 1.

In general, forM with finite G, we need only a logarithmic
number of base tasks dlog2 |G|e (for |G| > 1) to specify an
exponential number of composed tasks 2|G| = |M|.

3.2. Extended Value Functions

Tasse et al. (2020) also define goal-oriented versions of the
reward and value functions, over which a Boolean algebra
can also be constructed. These are defined as follows:

Definition 1. The extended reward function r̄ : S × G ×
A → R is given by the mapping

(s, g, a) 7→
{

0 if g 6= s ∈ G
r(s, a) otherwise,

(1)

Definition 2. The extended Q-value function Q̄ : S × G ×
A → R is given by the mapping

(s, g, a) 7→ r̄(s, g, a) + γ

∫
S
V̄ π̄(s′, g)ρ(s,a)(ds

′), (2)

where V̄ π̄(s, g) = Eπ̄ [
∑∞
t=0 r̄(st, g, at)].

By not rewarding the agent for achieving goals different
from the one it wanted to reach, the extended reward func-
tion has the effect of driving the agent to learn how to sep-
arately achieve all desirable goals. Note that the standard
reward functions and value functions can be recovered from
their extended versions (Tasse et al., 2020).

3.3. A Boolean Algebra for Value Functions

Similarly, a Boolean algebra can be constructed a set of
optimal extended Q-value functions:

Theorem 2. (Tasse et al., 2020) Let Q̄∗ be the set of op-
timal extended Q̄-value functions for tasks in M. Define
Q̄∗MIN , Q̄

∗
MAX ∈ Q̄∗ to be the optimal Q̄-functions for the

tasks MMIN ,MMAX ∈ M. Then Q̄∗ forms a Boolean
algebra when equipped with the operators ¬,∨,∧ given
by:

¬ : Q̄∗ → Q̄∗
Q̄∗ 7→ ¬Q̄∗,

∨ : Q̄∗ × Q̄∗ → Q̄∗
(Q̄∗1, Q̄

∗
2) 7→ Q̄∗1 ∨ Q̄∗2,
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Goals Ma Mb M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

g0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

g1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

g2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

g3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 1. Boolean table for a domain with four goals. Each column represents a task, where 0 or 1 for goal g on task M means respectively
reward of rM (g, a) = 0 or rM (g, a) = rMAX ∀a ∈ A. Note how the base tasks Ma and Mb can generate all other tasks by finite Boolean
operations.

∧ : Q̄∗ × Q̄∗ → Q̄∗
(Q̄∗1, Q̄

∗
2) 7→ Q̄∗1 ∧ Q̄∗2,

where

¬Q̄∗ : S × G ×A → R
(s, g, a) 7→ Q̄∗MAX(s, g, a)− Q̄∗(s, g, a)

Q̄∗1 ∨ Q̄∗2 : S × G ×A → R
(s, g, a) 7→ max{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}

Q̄∗1 ∧ Q̄∗2 : S × G ×A → R
(s, g, a) 7→ min{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}

3.4. Between Task and Value Function Algebras

Given a Boolean algebra over tasks and extended value
functions, there exists an equivalence between the two. As
a result, if we can write down a task under the Boolean al-
gebra, we can immediately write down the optimal value
function for the task.
Theorem 3. (Tasse et al., 2020) Let A :M→ Q̄∗ be any
map fromM to Q̄∗ such that A (M) = Q̄∗M for all M in
M. Then A is a homomorphism.

4. Lifelong Transfer Through Composition
In lifelong RL, an agent is presented with a series of tasks
sampled from some distributionD. The goal of the agent is
to transfer knowledge learned from previous tasks to solve
new but related tasks quickly. We can use the theory devel-
oped in the previous sections to perform zero-shot trans-
fer during lifelong RL by immediately solving new tasks
that are expressible as logical compositions of previously
learned tasks. We let D be an unknown distribution over
(T,M) where

• T ∈ {0, 1}|G| is a binary vector specifying the task
goals and

• M = (S,A, ρ, r, γ) ∈M is an MDP defining a task.

The task parameter T describes the task that needs to be
solved, and enables the agent to determine whether or not
the current task is expressible as logical compositions of
previously learned tasks.

We conduct a series of experiments in the Four Rooms do-
main (Sutton et al., 1999), where an agent must navigate
in a grid world to particular locations. The goal locations
are placed along the sides of the walls and at the center of
rooms giving a goal space with |G| = 40. The agent can
move in any of the four cardinal directions at each timestep,
but colliding with a wall leaves the agent in the same loca-
tion. We add a 5th action for “stay” that the agent chooses
to achieve goals. A goal location only becomes terminal if
the agent chooses to stay in it. All rewards are 0 at non-
terminal states, and 1 at the desirable goals. The transition
dynamics are stochastic with a slip probability (sp). That
is, with probability 1-sp the agent moves in the direction
it chooses, and with probability sp it moves in one of the
other 3 chosen uniformly at random.

We begin by demonstrating zero-shot composition after an
agent has learned all dlog2 |G|e = 6 base tasks. The base
tasks are obtained by using a Boolean table similarly to
Table 1.

4.1. Zero-shot composition

We use a modified version of Q-learning (Watkins, 1989)
to learn extended Q-value functions described previously.
This algorithm is introduced in (Tasse et al., 2020) and dif-
fers in a number of ways from standard Q-learning: it keeps
track of the set of terminating states seen so far, and at
each timestep updates the extended Q-value function with
respect to both the current state and action, as well as all
goals encountered so far. It also uses the definition of the
extended reward function, and so the agent receives 0 re-
ward if it encounters a terminal state different from the one
it wanted to reach.

Having learned the ε-optimal extended value functions for
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(a) Ma (b) Mb (c) Mc (d) Md (e) Me (f) Mf

(g) M0 (h) M1 (i) M2 (j) M3 (k) M4 (l) M5

Figure 1. An example of zero-shot logical composition using the learned extended value functions. Arrows represent the optimal action
in a given state. (a–f) The learned optimal goal oriented value functions for the base tasks. (g–l) Zero-shot compositions where:
M0 = (Ma ∧ ¬(Mb ∧Mc)) ∨ (¬Ma ∧ (Mc ∨Mc ∨Md)),
M1 = ¬((Ma ∧ ¬(Mb ∧Mc)) ∨ (¬Ma ∧ (Mc ∨Mc ∨Md))),
M2 = (¬Ma ∧Mb ∧Md ∧Me ∧Mf ) ∨ (¬Ma ∧ ¬Mb ∧ ¬Mc ∧Md) ∨ (¬Ma ∧ ¬Mb ∧Mc ∧ ¬Md) ∨ (¬Ma ∧Mc ∧

¬Md ∧ ¬Me) ∨ (¬Ma ∧Mc ∧ ¬Md ∧ ¬Mf ) ∨ (Ma ∧ ¬(Mb ∨Mc ∨Md)) ∨ ¬(Ma ∨Mb ∨Me),
M3 = (¬(Ma ∨ Mc) ∧ Md ∧ Me ∧ Mf ) ∨ ¬(Ma ∨ Md ∨ Me ∨ Mf ) ∨ (¬Ma ∧ ¬Mb ∧ ¬Mc ∧ Md) ∨ (¬Ma ∧ Mb ∧

¬Md ∧¬Me)∨ (¬Ma ∧¬Mb ∧Md ∧Me)∨ (¬Ma ∧Mb ∧Mc ∧¬Md)∨ (¬Ma ∧Mb ∧Mc ∧¬Me)∨¬(Ma ∨
Mc ∨Md ∨Mf ) ∨ (¬Ma ∧Mc ∧Md ∧Me ∧ ¬Mf ),

M4 = (¬(Ma ∨Md ∨Me)∧Mb ∧Mc)∨ (¬(Ma ∨Md ∨Mf )∧Mb ∧Mc)∨ (¬(Ma ∨Mc)∧Md ∧Me ∧Mf )∨ (¬(Ma ∨
Mb ∨Mc) ∧Md) ∨ ¬(Ma ∨Mb ∨Md ∨Me ∨Mf ), and

M5 = ¬(Ma ∨Mb ∨Mc ∨Md ∨Me ∨Mf ).
Note that the resulting optimal value function can attain a goal not explicitly represented by the base tasks.

our base tasks, we can now leverage Theorems 1–3 to solve
new tasks with no further learning. Figure 1 illustrates this
composition, where an agent is able to solve complex task
compositions without further learning. We illustrate a few
composite tasks here, but note that after learning all the
six base tasks the agent has enough information to solve
all 240 composite tasks. We demonstrate this by compar-
ing the average returns from the optimal and the composed
value functions of fifty random tasks whose goals are cho-
sen uniformly at random over G. To obtain the composed
value function for each task Mi, we use the sum of prod-
ucts method to determine a Boolean expression for the task
parameter Ti in terms of the task parameters of the learned
base tasks. The value functions of the base tasks are then
composed according to the generated Boolean expression.
The results are given by Figure 2, and indicate that the
policies obtained from our composition approach are either
identical or very close to optimal.

4.2. Lifelong Transfer

We have demonstrated how an agent can solve any new task
in an environment after training on the base tasks. However
this requires the goal space be known upfront, and that the
agent be pretrained on these tasks before solving new ones.

In this section we consider the more general setting where
the agent is not necessarily given all the base tasks upfront,

but rather presented with tasks sampled from some distri-
bution. For each new task, the agent first determines if it
is solvable using the knowledge learned so far. This can be
done by first using the sum of products method to obtain a
candidate Boolean expression for the new task in terms of
the learned tasks. If evaluating the Boolean expression re-
turns the new task, then it is valid and can be used to obtain
the composed value function zero-shot. If it is not valid,
then the task is learned and added to the library of skills.
The full pseudocode is shown in Algorithm 1.

We evaluate Algorithm 1 with Goal Oriented Q-learning
as the learning method and for the following task distribu-
tions:

• Dsampled: The goals for each task are chosen uni-
formly at random over G.

• Dbest: The first dlog2 |G|e tasks are the base tasks.
The rest follow Dsampled. This distribution gives the
agent the minimum amount of tasks to learn and store
since the agent learns the base tasks first before being
presented with any other task.

• Dworst: The first |G| tasks are each defined by a sin-
gle goal that differs from the previous tasks. The rest
follow Dsampled. This distribution forces the agent to
learn and store the maximum number of tasks, since
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Figure 2. Box plots indicating average returns for optimal and composed value functions of 50 tasks sampled uniformly randomly over
M after learning base tasks. Results are collected over 1000 episodes with random start positions.

Algorithm 1: Lifelong RL with Composition
Input: Learning method A , task distribution D
T ← ∅
Q̄∗ ← ∅
while True do

T,M ∼ D
EXP ← SumOfProducts(T , T )
if T = Evaluate(EXP, T ) then

// Zero-shot transfer
Q̄∗T ← Evaluate(EXP, Q̄∗)

else
// Learn and add to library
Q̄∗T ← A (M)
T ← T ∪ T
Q̄∗ ← Q̄∗ ∪ Q̄∗T

end
π∗(s) ∈ arg maxa∈Amaxg∈G Q̄

∗
T (s, g, a)

Solve task M using π∗(s) for all s ∈ S
end

none of the |G| tasks can be expressed as a logical
combination of the others.

We additionally use Q-learning withmaxQ initialisation as
a baseline. This has been shown by previous works (Abel
et al., 2018; Barreto et al., 2017) to be a practical method of
initialising value functions with a theoretically optimal op-
timism criterion that speeds-up convergence during train-
ing.

Our results shows that zero-shot logical composition en-
ables a lifelong agent to quickly generalise over a task
space. Notice how even the worst case task distribution
for logical composition still outperforms the optimistic ini-
tialisation that maximises over the learned Q-functions.
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Figure 3. Number of samples required to solve tasks in the 40-
goal Four Rooms domain. Error bars represent standard devia-
tions over 25 runs.

5. Related Work
The ability to compose value functions was first demon-
strated using the linearly-solvable MDP framework
(Todorov, 2007), where value functions could be composed
to solve tasks similar to the disjunctive case (Todorov,
2009). Van Niekerk et al. (2019) show that the same kind
of composition can be achieved using entropy-regularised
RL (Fox et al., 2016), and extend the results to the standard
RL setting, where agents can optimally solve the disjunc-
tive case. Using entropy-regularised RL, Haarnoja et al.
(2018) approximate the conjunction of tasks by averaging
their reward functions, and demonstrates that by averag-
ing the optimal value functions of the respective tasks, the
agent can achieve performance close to optimal. Hunt et al.
(2019) extend this result by composing value functions to
solve the average reward task exactly, which approximates
the true conjunctive case. More recently, Peng et al. (2019)
introduce a few-shot learning approach to compose policies
multiplicatively. Although lacking theoretical foundations,
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results show that an agent can learn a weighted composi-
tion of existing base skills to solve a new complex task.

More recently, Tasse et al. (2020) show that zero-shot opti-
mal composition can be achieved for all Boolean operators
in the stochastic shortest path setting. We have extended
this result to discounted goal-based tasks, and have demon-
strated the usefulness of the Boolean algebra framework for
lifelong RL.

6. Conclusion
We have shown how tasks composed under a Boolean al-
gebra can be immediately solved by first learning goal-
oriented value functions, and then composing them in a
similar manner. This enables agents in lifelong RL to
quickly generalise over a task space. Finally, we note that
our zero-shot composition framework can be used together
with MAXQINIT (Abel et al., 2018) or other few-shot meth-
ods to speed up training when new tasks are not expressible
as logical compositions of learned tasks. Our proposed ap-
proach is a step towards both interpretable RL—since both
the tasks and optimal value functions can be specified using
Boolean operators—and the ultimate goal of lifelong learn-
ing agents, which are able to solve combinatorially many
tasks in a sample-efficient manner.
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