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ABSTRACT

We propose a framework for defining a Boolean algebra over the space of tasks.
This allows us to formulate new tasks in terms of the negation, disjunction and
conjunction of a set of base tasks. We then show that by learning goal-oriented
value functions and restricting the transition dynamics of the tasks, an agent can
solve these new tasks with no further learning. We prove that by composing these
value functions in specific ways, we immediately recover the optimal policies for
all tasks expressible under the Boolean algebra.

1 INTRODUCTION

Reinforcement learning (RL) has achieved recent success in a number of difficult, high-dimensional
environments (Mnih et al.l 2015} |[Levine et al.| [2016; |Silver et al.| [2017). However, these methods
generally require millions of samples from the environment to learn optimal behaviours, limiting
their real-world applicability. A major challenge is thus in designing sample-efficient agents that
can transfer their existing knowledge to solve new tasks quickly. This is particularly important in a
multitask setting, since learning to solve complex tasks from scratch is typically infeasible.

One approach to transfer is composition (Todorov,2009), which allows an agent to leverage existing
skills to build complex, novel behaviours. These newly-formed skills can then be used to solve or
speed up learning in a new task. In this work, we focus on concurrent composition, where existing
base skills are combined to produce new skills (Todorov, [2009; [Saxe et al.l [2017; [Haarnoja et al.|
2018; [Van Niekerk et al.| 2019; |Hunt et al., 2019; [Peng et al., 2019). This differs from other forms
of composition, such as options (Sutton et al.,|1999) and hierarchical RL (Bacon et al.,[2017)), where
actions and skills are chained in a temporal sequence.

In this work, we define a Boolean algebra over the space of tasks and optimal value functions. This
extends previous composition results to encompass all Boolean operators: conjunction, disjunction,
and negation. We then prove that there exists a homomorphism between the task and value function
algebras. Given a set of base tasks that have been previously solved by the agent, any new task
written as a Boolean expression can immediately be solved without further learning, resulting in a
zero-shot super-exponential explosion in the agent’s abilitiesp_-]

2 PRELIMINARIES

We consider tasks modelled by Markov Decision Processes (MDPs). An MDP is defined by the tuple
(S, A, p,r), where (i) S is the state space, (ii) A is the action space, (iii) p is a Markov transition
kernel (s,a) — P(s,a) from S x A to S, and (iv) 7 is the real-valued reward function bounded by
[rmins "max]. In this work, we focus on stochastic shortest path problems (Bertsekas & Tsitsiklis,
1991)), which model tasks in which an agent must reach some goal. We therefore consider the class
of undiscounted MDPs with an absorbing set G C S and whose reward functions differ only in G.
For all non-terminal states, we denote the reward , , to emphasise that it is constant across tasks.

"We provide all relevant proofs and additional experiments in the Appendix
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3 BOOLEAN ALGEBRAS FOR TASKS AND VALUE FUNCTIONS

An abstract Boolean algebra is a set B equipped with operators —, V, A that satisfy the Boolean
axioms of (i) idempotence, (ii) commutativity, (iii) associativity, (iv) absorption, (v) distributivity,
(vi) identity, and (vii) complements | Assuming tasks have deterministic transition dynamics and
sparse rewards, we can now define a Boolean algebra over a set of tasks.

Theorem 1. Let M be a set of tasks. Define My;ax, Myrn € M to be tasks with the respective
reward functions

, (s,a) = rvax, fs€g ” (s,a) = rMIN, fs€G
Marax 2 @) Ts.as otherwise. Mariw = 8 Ts,as otherwise.

Then M forms a Boolean algebra with universal bounds M yrrn and M ;4 x when equipped with
the operators =, N, \ given by:

(M) = (S, A, p,r-nr), where ropr(8,a) = (Faayax (S,0) + Taryn (8,0)) — Tar(s,a)
V(My, Ms) = (S, A, p, "y v, ), Where ag, v, (8, a) = max{ra, (s,a),rn,(s,a)}
AN(My, Ma) = (S, A, p, " riya, ), Where Tag, an, (8, a) = min{ryy, (s,a), 7, (s,a)}

Theorem [T]allows us to compose existing tasks together to create new tasks in a principled way.

3.1 EXTENDED VALUE FUNCTIONS

To successfully do zero-shot logical composition we define goal-oriented versions of the reward and
value function, given by the following two definitions:

Definition 1. The extended reward function 7 : S x G x A — R is given by the mapping
N .
gy {, ) Ho7 e

r(s,a) otherwise,

(D

where N < min{ryyn, (rmiv — mmax) D}, and D is the diameter of the MDP (Jaksch et al.| ZOIO)EI

To understand why standard value functions are insufficient, consider two tasks that have multiple
different goals, but at least one common goal. Clearly, there is a meaningful conjunction between
them—namely, achieving the common goal. Now consider an agent that learns standard value func-
tions for both tasks, and which is then required to solve their conjunction without further learning.
Note that this is impossible in general, since the regular value function for each task only represents
the value of each state with respect to the nearest goal. That is, for all states where the nearest
goal for each task is not the common goal, the agent has no information about that common goal.
Conversely, by learning extended value functions, the agent is able to learn the value of achieving
all goals, and not simply the nearest one.

Because we require that tasks share the same transition dynamics, we also require that the absorbing
set of states is shared. Thus the extended reward function adds the extra constraint that, if the agent
enters a terminal state for a different task, it should receive the largest penalty possible. In practice,
we can simply set [V to be the lowest finite value representable by the data type used for rewards.

Definition 2. The extended Q-value function Q : S x G x A — R is given by the mapping

(Sag>a) — F(Saga a) + /S V%(Slvg)p(s,a) (dsl)a (2)

where V7 (s,g) = Ez [> 1o 7(st,9,a:)]. The extended Q-value function is similar to universal
value function approximators (UVFAs) (Schaul et al., [2015), but differs in that it uses the extended

*We provide a description of these axioms in the Appendix.
*The diameter is defined as D = max,.. s min, E[T(s'|7, s)], where T is the number of timesteps
required to first reach s’ from s under 7.
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reward function definition. It is also similar to DG functions (Kaelbling, |1993), except here we use
task-dependent reward functions, as opposed to measuring distance between states.

We can extract the greedy action from the extended value function by first maximising over goals,
and then selecting the maximising action: 7*(s) € arg max, 4 maxyecg Q*(s, g, a). If we consider
the extended value function to be a set of standard value functions (one for each goal), then this
is equivalent to first performing generalised policy improvement (Barreto et al., 2017, and then
selecting the greedy action.

3.2 A BOOLEAN ALGEBRA FOR VALUE FUNCTIONS

In the same manner we constructed a Boolean algebra over a set of tasks, we can also do so for a set
of optimal extended Q-value functions for the corresponding tasks.

Theorem 2. Let Qf be the set of optimal extended Q-value functions for tasks in M. Define
Qyin, Qirax € QF to be the optimal Q-functions for the tasks Mpyin, Muyax € M. Then
Q* forms a Boolean algebra when equipped with the operators =,V , \ given by:

_‘(Q*)(Sagaa) = (Q?\/IAX(&gaa) + QRIIN(Sag7a')) - Q*(s,g,a)
\/(Q_LQ;)(SM%G) = maX{Q’{(s,g,a),QZ(s,g,a)}

MNQT, @Q5)(s, 9, a) = min{Q7 (s, g,a), Q5(s, g, a) }

3.3 BETWEEN TASK AND VALUE FUNCTION ALGEBRAS

Having established a Boolean algebra over tasks and extended value function, we finally state the
existence of an equivalence between the two. As a result, if we can write down a task under the
Boolean algebra, we can immediately write down the optimal value function for the task.

Theorem 3. Let F : M — Q* be any map from M to Q* such that F(M) = Q% for all M in
M. Then F is a homomorphism.

4 ZERO-SHOT TRANSFER THROUGH COMPOSITION

4.1 LEARNING BASE TASKS

If we know the set of goals (and hence potential base tasks) upfront, then it is easy to select a minimal
set of base tasks that can be composed to produce the largest number of composite tasks. We assign
a Boolean label to each goal in a table, and then use the columns of the table as base tasks. The goals
for each base task are then those goals with value s 4 x according to the table. We consider the
Four Rooms domain (Sutton et al.,|1999). Here the two base tasks we select are M, which requires
that the agent visit either of the top two rooms, and M, which requires visiting the two left roomsE]

4.2 BOOLEAN COMPOSITION

Having learned the optimal extended value functions for our base tasks, we can now leverage The-
orems [IH3| to solve new tasks with no further learning. Figure [I]illustrates this composition, where
an agent is able to immediately solve complex tasks such as exclusive-or. We illustrate a few com-
posite tasks here, but note that in general, if we have K base tasks, then a Boolean algebra allows

for 22* new tasks to be constructed. Thus having trained on only two tasks, our agent has enough
information to solve a total of 16 composite tasks.

By learning extended value functions, an agent can subsequently solve a massive number of tasks;
however, the upfront cost of learning is likely to be higher. We investigate the trade-off between
the two approaches by investigating how the sample complexity scales with the number of tasks.

*We illustrate this selection procedure in the Appendix.
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Figure 1: An example of zero-shot Boolean algebraic composition using the learned extended value
functions. Arrows represent the optimal action in a given state. (aHb) The learned optimal goal
oriented value functions for the base tasks. Zero-shot disjunctive composition. (d) Zero-shot
conjunctive composition. (e Combining operators to model exclusive-or composition. (f) Compo-
sition that produces logical nor. Note that the resulting optimal value function can attain a goal not
explicitly represented by the base tasks.

We compare to|Van Niekerk et al.|(2019), who used regular value functions to demonstrate optimal
disjunctive composition. We note that while the upfront learning cost is therefore lower, the number
of tasks expressible using only disjunction is 2% — 1, which is significantly less than the full Boolean
algebra. We also test using an extended version of the Four Rooms domain, where additional goals
are placed along the sides of all walls, resulting in a total of 40 goals. Empirical results are illus-
trated by Figure 2] Our results show that while additional samples are needed to learn an extended
value function, the agent is able to expand the tasks it can solve super-exponentially. Furthermore,
the number of base tasks we need to solve is only logarithmic in the number of goal states. For an
environment with K goals, we need to learn only |log, K | 4+ 1 base tasks, as opposed to the dis-
junctive approach which requires K base tasks. Thus by sacrificing sample efficiency initially, we
achieve an exponential increase in abilities compared to previous work (Van Niekerk et al.,2019).
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Figure 2: Results in comparison to the disjunctive composition of |Van Niekerk et al.[(2019). @) The
number of samples required to learn the extended value function is greater than learning a standard
value function. However, both scale linearly and differ only by a constant factor. (b)) The extended
value functions allow us to solve exponentially more tasks than the disjunctive approach without
further learning. In the modified task with 40 goals, we need to learn only 7 base tasks, as
opposed to 40 for the disjunctive case.

5 CONCLUSION

We have shown how to compose tasks using the standard Boolean algebra operators. These com-
posite tasks can be immediately solved by first learning goal-oriented value functions, and then
composing them in a similar manner. Our proposed approach is a step towards both interpretable
RL—since both the tasks and optimal value functions can be specified using Boolean operators—
and the ultimate goal of lifelong learning agents, which are able to solve combinatorially many tasks
in a sample-efficient manner.
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A APPENDIX

A.1 BOOLEAN ALGEBRA DEFINITION

Definition 3. A Boolean algebra is a set B equipped with the binary operators \ (disjunction) and
A (conjunction), and the unary operator — (negation), which satisfies the following Boolean algebra
axioms for a, b, c in B:

(i) Idempotence: a Na =aV a = a.
(ii) Commutativity: a N\b=bANaandaVb=">V a.
(iii) Associativity: a A (bAc) = (aAb)Acanda N (bVc)=(aVb)Ve.
(iv) Absorption: a A (aV b) =aV (a Ab) = a.
(v) Distributivity: a A (bV ) =(aANb)V (aAc)andaV (bAc)=(aVD)A(aVec).

(vi) Identity: there exists 0,1 in B such that

ONa=0
OVa=a
1Na=a
1Va=1

(vii) Complements: for every a in B, there exists an element a' in B such that a A\ o' = 0 and
aVad =1

A.2 ASSUMPTIONS

We consider a family of related MDPs M restricted by the following assumptions:

Assumption 1. For all tasks in a set of tasks M, (i) the tasks share the same state space, action
space and transition dynamics, (ii) the transition dynamics are deterministic, and (iii) reward func-
tions between tasks differ only on the absorbing set G.

Assumption 2. For all tasks in a set of tasks M which adhere to Assumption[l| the set of possible
terminal rewards consists of only two values. That is, for all (g,a) in G x A, we have that r(g,a) €
{rvin,rmax} CRwithryn < rayax. For all non-terminal states, we denote the reward Ts,a
to emphasise that it is constant across tasks.

Assumption E] is similar to that of [Todorov| (2007) and identical to |Van Niekerk et al. (2019), and
imply that each task can be uniquely specified by its reward function. Furthermore, we note that
Assumption [2] is only necessary to formally define the Boolean algebra. Our proof for zero-shot
composition still holds without itE] Although we have placed restrictions on the reward functions,
the above formulation still allows for a large number of tasks to be represented. Importantly, sparse
rewards can be formulated under these restrictions.

>See the proof for theorem 3 in Appendix
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A.3 PROOF FOR THEOREM/I]

Theorem 1. Let M be a set of tasks. Define Myjax, Myrrn € M to be tasks with the respective
reward functions

TMupax : SXA—=R TMurn - SXA—=R

(5,0) > {TMAX, ifseg (5,0) = {TMINa ifseg

Ts.as otherwise. Ts,a) otherwise.

Then M forms a Boolean algebra with universal bounds M y;rn and M ;4 x when equipped with
the following operators:

-t MM
M (S, A, p,r-n), wherer—pr: Sx A— R

(Sv a) = (TMMAX (57 a) T T Masrw (57 CL)) - TM(Sa a)

Vi MxM-—=M
(My, M) — (S, A, p, v, ) where rarvng, : S X A— R

(s,a) = max{ras, (s,a), 7, (s,a)}

AN MxM—-M
(M1, Ma) = (S, A, p,"ayaM, ), Where Taran, @ S X A — R

(s,a) — min{ras, (s,a),ra,(s,a)}
Proof. Let My, M> € M. We show that —, V, A satisfy the Boolean properties (i) — (vii).

(i)—(v): These easily follow from the fact that the min and max functions satisfy the idempotent,
commutative, associative, absorption and distributive laws.

(vi): Let raq,, 45 an and 7ay, be the reward functions for Masax A My and M, respectively.
Then for all (s,a) in S x A,

. "

min{rs,av rs,a}y otherwise.
_ TMl(S,a), if 5 S g
- Ts,a otherwise.
=TM, (S, a).

Thus Mprax A My = M. Similarly Mpyrax V My = Mpyax, Muyin A M1 = Mpygn,
and My V My = My . Hence M rn and My x are the universal bounds of M.

(vii): Let rpz, a-ar, be the reward function for My A =M. Then for all (s,a) in S X A,

_ fmin{ras, (s,a), (rmax +ruviv) = (s,a)}, ifseg
T My A=My (87 a) =

min{rs g, (Fs,a + Ts.a) — 's,ats otherwise.

rmin, ifs € Gandry,(s,a) =ryax
=S TMIN, ifsegander(&a):rM[N
Ts,a, otherwise.

=TMuin (‘97 a)'

Thus My A ~M7 = My, and similarly M; V - M; = Murax.
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A.4 LEMMAS AND COROLLARIES

The standard reward functions and value functions can be recovered from their extended versions
through the following lemma.

Lemma 1. Let 7, 7ar, Q4. Q% be the reward function, extended reward function, optimal Q-
value function, and optimal extended Q-value function for a task M in M. Then for all (s,a) in
S X A, we have (i) ry(s,a) = magXFM(s,g, a), and (ii) Q% (s, a) = maé(Q’M(s,g,a).

ge ge

Proof.
>):
B max{N,ry(s,a)}, ifseg
I;leagXTM(s’g’a) - lgléigX ra(s, a), otherwise.

=ru(s,a) (N < rmin < (s, a) by definition).

(ii): Each g in G can be thought of as defining an MDP M, := (S, A, p, raz,) with reward function
ru,(s,a) = Tr(s,g,a) and optimal Q-value function Q3 (s,a) = Q%4,(s,g,a). Then using
(i) we have rps(s,a) = max Ty, (s, a) and from|Van Niekerk et al.| (2019} Corollary 1), we have

ge ’

that Q% ,(s,a) = max Q%, (s,a) = maxQ%,(s, g, a).
M(s,a) P Mg(a) gegX u(s.9,a)
O

In the same way, we can also recover the optimal policy from these extended value functions by first
applying Lemmal|[I] and acting greedily with respect to the resulting value function.

Lemma 2. Denote S~ = S\ G as the non-terminal states of M. Let My, My € M, and let each g
in G define MDPs M, 4 and Mo 4 with reward functions

TMy, = T (8, 9,a) and rag, = T, (s, g, a) forall (s,a) in S x A.
Then forall gin G and sin S,

m,(s) € argmax Q}y, (s,a) iff my(s) € argmax Qyy, (s,a).
acA " acA 2a

Proof. Letg € G,s € S~ and let 7, be defined by

*

m(s') € ar,géiax Qs 4(s,a) forall s’ € S.

If g is unreachable from s, then we are done since for all (s’,a) in S x A we have

N, ifs'eg

/
. = T M. S,a
Tsa, Otherwise 20(50)

g#s = ru, (s',a) = {
— MLQ = Mgﬁg.

If g is reachable from s, then we show that following 77 must reach g. Since 7 is proper, it must
reach a terminal state ¢’ € G. Assume g’ # g. Let 7, be a policy that produces the shortest trajectory
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to g. Let G™ and G™ be the returns for the respective policies. Then,

Gw; > G

= Gr’y +7an, (9 w5 (g) = G™,
. T-1

where G7¢ | = Z a,,, (86,7, (s¢)) and T is the time at which g’ is reached.

t=0
Gy +N>G™ sinceg#g €G
N>Gm -G,

(rmMmn — Tmax)D > G™ — G;g,l, by definition of N
G;gfl —ryaxD > G™ — rynD, since G™9 > rynD

T
Gy —rmaxD >0

terrel

g
G’y 2 rvaxD.

But this is a contradiction since the result obtained by following an optimal trajectory up to a terminal

state without the reward for entering the terminal state must be strictly less that receiving ryax for

every step of the longest possible optimal trajectory. Hence we must have ¢’ = ¢. Similarly, all

optimal policies of Mj ; must reach g. Hence 7} (s) € arg rrj‘ax Qi (s,a). Since My and M, are
ae '

arbitrary elements of M, the reverse implication holds too.
O

Finally, much like the regular definition of value functions, the extended Q-value function can be
written as the sum of rewards received by the agent until first encountering a terminal state.

Corollary 1. Denote G, , as the sum of rewards starting from s and taking action a up until,

but not including, g. Then let M € M and Q*M be the extended Q-value function. Then for all
s €S8,9 € G,a€ A, there exists a G%., . € R such that

s:g,a

Q?\l(svgva) = G::g,a + FM(slvgva,)v where S/ € g and a/ = argrgafo(sl,g, b)
be

Proof. This follows directly from Lemma[2] Since all tasks M € M share the same optimal policy

7y up to (but not including) the goal state g € G, their return G;ﬂ 1= ZtT;Ol T (se, 7, (8t)) is the
same up to (but not including) g.

A.5 PROOF FOR THEOREM 2|

Theorem 2. Let Q’_" be the set of optimal extended Q-value functions for tasks in M. Define
Qiriin: Qirax € QF to be the optimal Q-functions for the tasks Myrin, Marax € M. Then
Q* forms a Boolean algebra when equipped with the following operators:

- QF = OF
Q* — =Q*, where Q" : SxGx A—R
(Sagva) = (ij\/[AX(Sagaa) + Q}FWIN(S’gva)) - Q*(s,g,a)

Vi QFx QF = O
(Q1,Q3) = Q1 V Q3, where QT V Q3 : SxGx A—R
(87.9’@) = max{@*{(s,g,a),();(s,a)}
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A: OF x QF = OF
(Q1,Q5) — Qi ANQ3, where Q1 AN Q3 : SxGx AR
(s,9,a) — min{Q7 (s, g,a),Q5(s,a)}

Proof. Let Q4 ,Q%y, € QF be the optimal Q-value functions for tasks My, My € M with reward
functions s, and rjs,. We show that —, VV, A satisfy the Boolean properties (i) — (vii).

(i)—(v): These follow directly from the properties of the min and max functions.
(vi): Forall (s,g,a)inS x G x A,
(Q}(\/[AX A Q*Ml)(s7 9, (L) = min{(Q*]\/[AX(87 g, a)v Q*Ml (Sa 9, a)}
= min{G::g,a T T Marax (S/, 9, al)a G::g,a + 7 (sla 9, a/)}
(from Corollary [T])
- G::g,a + min{FMMAX (S/v 9, a,)a T, (5/7 9, a/)}
= G::g,a + FMI (SI7 9, a/)

= Q}i{l (57 g, Cl).
Similarly, Q3 4x V Qis, = Qiraxs Qhirn A Qir, = Qhirn-and Qiypn V Qg = Q-
(vii): Forall (s,g,a)inS X G x A,

(Qir, A Qi) (5,9, a) = min{Q3y, (5,9, ), (Qhrax (5,9, a) — Qisrn (s, 9, a))
— Qi (5,9:0)}
=Gy +min{7ar, (s',9,0"), (Fatpax (5, 9,0")
+ T ruin (8,9:0")) = Tan (87, g, a")}
= Glgat+TMuin (s, 9,0)

= QRUN(S,Qaa)-

Similarly, Q%;, V =Q%;, = Qhrax-

A.6 PROOF FOR THEOREM [3]

Theorem 3. Let F : M — Q be any map from M to Q* such that F(M) = Q% for all M in
M. Then F is a homomorphism.

Proof. Let My, My € M. Then for all (s,g,a)in S X G X A,

QiMl (5,9,a) = G54 4 + T, (s',g,a") (from Corollary [T)
= Grgat (PMuax (8,9:0") + Tatain (8, 9,0")) = Tar (87, g, a')
= [(Glga + TMarax (8:9,0)) + (Gl o + Tatsrn (8, 9:0'))]
—(Glga T Ty (5',9,d))
= [Qhrax(s,9.a) + Qisrn(s,9,a)] — Qi (5,9, a)
= Qiy, (5,9, 0)
= F(-M;) =-~F (M)

10
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Q?\/[l\/Mz (Saga a) = G::g,a + My vM, (Slvg»al)
= G::g,a + maX{fMl (3/7 9, a/)7 T M, (8,7 g, CLN)}
=max{G},, , + 7, (s, 9,0),Gsy o +7as, (5" 9,0")}
= max{@?\/h (3’ 9, a)7 Q?\/[g (5797 a)}
= (Qh, V Qhp,)(8: 9, a)
— F(Ml V Mg) = .7:(M1) V .F(MQ)
Similarly F(M; A My) = F(M;) A F(Ms). 0

A.7 GOAL-ORIENTED Q-LEARNING

Below we list the pseudocode for the modified Q-learning algorithm used in the four-rooms domain.

Algorithm 1: Goal-oriented -learning

Input: Learning rate «, discount factor -y, exploration constant €, lower-bound return N
Initialise @ : S x S x A — R arbitrarily
G+ o
while Q) is not converged do
Initialise state s
while s is not terminal do

if G = @ then
Select random action a
else
0 ar%‘enj‘ax (I}leagx Q(s,t, b)) with probability 1 — ¢
a random action with probability €
end

Choose a from s according to policy derived from
Take action a, observe r and s’
foreach g € G do
if s’ is terminal then
if s’ # g then
6+ N
else
5 —r— Q(s,g,a)
end
else
§ <1 +ymax, Q(s',9,b) — Q(s,g,a)
end
Q(S,g, a) — Q(57 g, (L) + 04(5
end
5§
end
G+ GU{s}
end
return )

Figure 3: A )-learning algorithm for learning extended value functions. Note that the greedy action
selection step is equivalent to generalised policy improvement (Barreto et al., [2017) over the set of
extended value functions.
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A.8 COMPOSITION WITH FUNCTION APPROXIMATION

Here we demonstrate that our compositional approach can also be used to tackle high-dimensional
domains where function approximation is required. We use the same video game environment as
[Van Niekerk et al.| (2019), where an agent must navigate a 2D world and collect objects of different
shapes and colours. The state space is an 84 x 84 RGB image, and the agent is able to move in any of
the four cardinal directions. The agent also possesses a pick—up action, which allows it to collect
an object when standing on top of it. There are two shapes (squares and circles) and three colours
(blue, beige and purple) for a total of six unique objects. The position of the agent is randomised at
the start of each episode.

We modify deep Q-learning (Mnih et al} 2015) to learn extended action-value functionsf| Our
approach differs in that the network takes a goal state as additional input (again specified as an RGB
image). Additionally, when a terminal state is encountered, it is added to the collection of goals seen
so far, and when learning updates occur, these goals are sampled randomly from a replay buffer. We
first learn to solve two base tasks: collecting blue objects, and collecting squares, which can then be
composed to solve new tasks immediately.

(a) Trajectories for disjunctive (b) Trajectories for conjunctive (c) Trajectories for exclusive-or
composition. composition. composition.

(d) Value function for disjunctive  (e) Value function for conjunc- (f) Value function for exclusive-
composition. tive composition. or composition.

Figure 4: By composing extended value functions from the base tasks (collecting blue objects, and
collecting squares), we can act optimally in new tasks with no further learning. To generate the value
functions, we place the agent at every location and compute the maximum output of the network over
all goals and actions. We then interpolate between the points to smooth the graph. Any error in the
visualisation is due to the use of non-linear function approximation.

We demonstrate composition characterised by (i) disjunction, (ii) conjunction and (iii) exclusive-
or. This corresponds to tasks where the target items are: (i) blue or square, (ii) blue squares, and
(iii) blue or squares, but not blue squares. Figure [] illustrates sample trajectories, as well as the
subsequent composed value functions, for the respective tasks.

The hyperparameters and network architecture are listed in the Appendix
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A.9 INVESTIGATING PRACTICAL CONSIDERATIONS

The theoretical results presented in this work rely on Assumptions (1| and which restrict the
tasks’ transition dynamics and reward functions in potentially problematic ways. Although this is
necessary to prove that Boolean algebraic composition results in optimal value functions, in this
section we investigate whether these can be practically ignored. In particular, we investigate two
restrictions: the requirement that tasks share the same terminal states, and the impact of using dense
rewards.

A.9.1 FOUR ROOMS EXPERIMENTS

We use the same setup as the experiment outlined in Section 4] but modify it in two ways. We first
investigate the difference between using sparse and dense rewards. Our sparse reward function is
defined as

. 2 ifs’ €Gg
Tsparse (5, @, 8') = —0.1 otherwise,

and we use a dense reward function similar to|Peng et al.| (2019):

_ 2
rdense(s a, S |g| Z g| )+Tsparse(5aaa5/)

Using this dense reward function, we again learn to solve the two base task Mt (reaching the centre
of the top two rooms) and M, (reaching the centre of the left two rooms). We then compose them
to solve a variety of tasks, with the resulting value functions illustrated by Figure [5]

o= B

(a) ML (b) MT (C) ML V MT (d) ML N MT (e) ML v MT (f) ML V MT

Figure 5: An example of Boolean algebraic composition using the learned extended value functions
with dense rewards. Arrows represent the optimal action in a given state. (aHb) The learned optimal
goal oriented value functions for the base tasks with dense rewards. () Disjunctive composition. (d)
Conjunctive composition. (g) Combining operators to model exclusive-or composition. (f) Compo-
sition that produces logical nor. We note that the resulting value functions are very similar to those
produced in the sparse reward setting.

We also modify the domain so that tasks need not share the same terminating states (that is, if the
agent enters a terminating state for a different task, the episode does not terminate and the agent can
continue as if it were a normal state). This results in four versions of the experiment:

(i) sparse reward, same absorbing set
(ii) sparse reward, different absorbing set
(iii) dense reward, same absorbing set

(iv) dense reward, different absorbing set

We learn extended value functions for each of the above setups, and then compose them to solve each
of the 2* tasks representable in the Boolean algebra. We measure each composed value functions
by evaluating its policy in the sparse reward setting, averaging results over 100000 episodes. The
results are given by Figure [f]

Our results indicate that extended value functions learned in the theoretically optimal manner
(sparse reward, same absorbing set) are indeed optimal. However, for the majority
of the tasks, relaxing the restrictions on terminal states and reward functions results in policies that
are either identical or very close to optimal.
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Average Returns

Domain
0.0 I Sparse rewards, same absorbing set
I Dense rewards, same absorbing set
I Sparse rewards, different absorbing set
B Dense rewards, different absorbing set

-05

Qi A Gy, Qi A =0k, Qi A0, Q31,0 Qu, =G, i, Qiy, v iy, Qi v=Qy, Qi V-0, Qi AGl, ~(03,,¥03) [oaTon

= Tasks o
Figure 6: Box plots indicating returns for each of the 16 compositional tasks, and for each of the four
variations of the domain. Results are collected over 100000 episodes with random start positions.

A.9.2 FUNCTION APPROXIMATION EXPERIMENTS

In this section we investigate whether we can again loosen some of the restrictive assumptions
when tackling high-dimensional environments. In particular, we run the same experiments as those
presented in Section[A-8] but modify the domain so that (i) tasks need not share the same absorbing
set, (ii) the pickup—-up action is removed (the agent immediately collects an object when reaching
it), and (iii) the position of every object is randomised at the start of each episode.

We first learn to solve three base tasks: collecting blue objects, collecting purple objects, and col-
lecting squares , which can then be composed to solve new tasks immediately. We then demonstrate
composition characterised by disjunction, conjunction and exclusive-or, with the resulting trajecto-
ries and value functions illustrated by Figure[7]

(a) Trajectories for disjunctive (b) Trajectories for conjunc- (c) Trajectories for exclusive-

composition (collect blue or pur- tive composition (collect blue or composition (collect blue or

ple objects). squares). square objects, but not blue
squares).

I e
A TITS
7/ [ 1957

ar/
i

(d) Value function for disjunctive  (e) Value function for conjunc- (f) Value function for exclusive-
composition. tive composition. or composition.

Figure 7: Results for the video game environment with relaxed assumptions. We generate value
functions to solve the disjunction of blue and purple tasks, and the conjunction and exclusive-or of
blue and square tasks.
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In summary, we have shown that our compositional approach offers strong empirical performance,
even when the theoretical assumptions are violated. Finally, we expect that, in general, the errors due
to these violations will be far outweighed by the errors due to non-linear function approximation.

A.10 SELECTING BASE TASKS

The Four Rooms domain requires the agent to navigate to one of the centres of the rooms in the
environment. Figure [8]illustrates the layout of the environment and the goals the agent must reach.

Figure 8: The layout of the Four Rooms domain. The circles indicate goals the agent must reach.
We will refer to the goals as top—left, top-right, bottom-left, and bottom-right.

Since we know the goals upfront, we can select a minimal set of base tasks by assigning each goal a
Boolean number, and then using the columns of the table to select the tasks. To illustrate, we assign
Boolean numbers to the goals as follows:

T To Goals

TMIN T"MIN bottom-right
TMIN TmAx bottom-left
TMAX TMIN top-right
rMAX  TmAx  top-left

Table 1: Assigning labels to the individual goals. The two Boolean variables, x; and x9, represent
the goals for the base tasks the agent will train on.

As there are four goals, we can represent each uniquely with just two Boolean variables. Each
column in Table[T|represents a base task, where the set of goals for each task are those goals assigned
a value rpr4x. We thus have two base tasks corresponding to z; = {top-right,top-left}
and zo = {bottom-left,top-left}.

A.11 DQN ARCHITECTURE AND HYPERPARAMETERS
In our experiments, we used a DQN with the following architecture:

1. Three convolutional layers:

(a) Layer 1 has 6 input channels, 32 output channels, a kernel size of 8 and a stride of 4.

(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a stride of 2.

(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a stride of 1.
2. Two fully-connected linear layers:

(a) Layer 1 has input size 3136 and output size 512 and uses a ReLU activation function.

(b) Layer 2 has input size 512 and output size 4 with no activation function.

We used the ADAM optimiser with batch size 32 and a learning rate of 10~%. We trained every 4

timesteps and update the target Q-network every 1000 steps. Finally, we used e-greedy exploration,
annealing € to 0.01 over 100000 timesteps.
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