
A Boolean Task Algebra For Reinforcement Learning

Geraud Nangue Tasse, Steven James, Benjamin Rosman
School of Computer Science and Applied Mathematics

University of the Witwatersrand
Johannesburg, South Africa

geraudnt@gmail.com, {steven.james, benjamin.rosman1}@wits.ac.za

Abstract

The ability to compose learned skills to solve new tasks is an important property
of lifelong-learning agents. In this work, we formalise the logical composition of
tasks as a Boolean algebra. This allows us to formulate new tasks in terms of the
negation, disjunction and conjunction of a set of base tasks. We then show that by
learning goal-oriented value functions and restricting the transition dynamics of the
tasks, an agent can solve these new tasks with no further learning. We prove that
by composing these value functions in specific ways, we immediately recover the
optimal policies for all tasks expressible under the Boolean algebra. We verify our
approach in two domains—including a high-dimensional video game environment
requiring function approximation—where an agent first learns a set of base skills,
and then composes them to solve a super-exponential number of new tasks.

1 Introduction

Reinforcement learning (RL) has achieved recent success in a number of difficult, high-dimensional
environments (Mnih et al., 2015; Levine et al., 2016; Lillicrap et al., 2016; Silver et al., 2017).
However, these methods generally require millions of samples from the environment to learn optimal
behaviours, limiting their real-world applicability. A major challenge is thus in designing sample-
efficient agents that can transfer their existing knowledge to solve new tasks quickly. This is
particularly important for agents in a multitask or lifelong setting, since learning to solve complex
tasks from scratch is typically impractical.

One approach to transfer is composition (Todorov, 2009), which allows an agent to leverage existing
skills to build complex, novel behaviours. These newly-formed skills can then be used to solve or
speed up learning in a new task. In this work, we focus on concurrent composition, where existing
base skills are combined to produce new skills (Todorov, 2009; Saxe et al., 2017; Haarnoja et al.,
2018; Van Niekerk et al., 2019; Hunt et al., 2019; Peng et al., 2019). This differs from other forms of
composition, such as options (Sutton et al., 1999) and hierarchical RL (Barto & Mahadevan, 2003),
where actions and skills are chained in a temporal sequence.

While previous work on logical composition considers only the union and intersection of tasks
(Haarnoja et al., 2018; Van Niekerk et al., 2019; Hunt et al., 2019), they do not formally define them.
However, union and intersection are operations on sets, rather than tasks. We therefore formalise
the notion of union and intersection of tasks using the Boolean algebra structure, since this is the
algebraic structure that abstracts the notions of union, intersection, and complement of sets. We then
define a Boolean algebra over the space of optimal value functions, and then prove that there exists a
homomorphism between the task and value function algebras. Given a set of base tasks that have
been previously solved by the agent, any new task written as a Boolean expression can immediately
be solved without further learning, resulting in a zero-shot super-exponential explosion in the agent’s
abilities. We summarise our main contributions as follows:

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

1. Boolean task algebra: We formalise the disjunction, conjunction, and negation of tasks
in a Boolean algebra structure. This extends previous composition work to encompass all
Boolean operators, and enables us to apply logic to tasks, much as we would to propositions.

2. Extended value functions: We introduce a new type of goal-oriented value function that
encodes how to achieve all goals in an environment. We then prove that this richer value
function allows us to achieve zero-shot composition when an agent is given a new task.

3. Zero-shot composition: We improve on previous work (Van Niekerk et al., 2019) by showing
zero-shot logical composition of tasks without any additional assumptions. This is an impor-
tant result as it enables lifelong-learning agents to solve a super-exponentially increasing
number of tasks as the number of base tasks they learn increase.

We illustrate our approach in the Four Rooms domain (Sutton et al., 1999), where an agent first
learns to reach a number of rooms, after which it can then optimally solve any task expressible in the
Boolean algebra. We then demonstrate composition in a high-dimensional video game environment,
where an agent first learns to collect different objects, and then composes these abilities to solve
complex tasks immediately. Our results show that, even when function approximation is required, an
agent can leverage its existing skills to solve new tasks without further learning.

2 Preliminaries

We consider tasks modelled by Markov Decision Processes (MDPs). An MDP is defined by the tuple
(S,A, ρ, r), where (i) S is the state space, (ii) A is the action space, (iii) ρ is a Markov transition
kernel (s, a) 7→ ρ(s,a) from S × A to S, and (iv) r is the real-valued reward function bounded by
[rMIN, rMAX]. In this work, we focus on stochastic shortest path problems (Bertsekas & Tsitsiklis,
1991), which model tasks in which an agent must reach some goal. We therefore consider the class of
undiscounted MDPs with an absorbing set G ⊆ S.

The goal of the agent is to compute a Markov policy π from S to A that optimally solves a given task.
A given policy π induces a value function V π(s) = Eπ [

∑∞
t=0 r(st, at)], specifying the expected

return obtained under π starting from state s.1 The optimal policy π∗ is the policy that obtains
the greatest expected return at each state: V π

∗
(s) = V ∗(s) = maxπ V

π(s) for all s ∈ S. A
related quantity is the Q-value function, Qπ(s, a), which defines the expected return obtained by
executing a from s, and thereafter following π. Similarly, the optimal Q-value function is given
by Q∗(s, a) = maxπ Q

π(s, a) for all (s, a) ∈ S × A. Finally, we denote a proper policy to be a
policy that is guaranteed to eventually reach the absorbing set G (James & Collins, 2006; Van Niekerk
et al., 2019). We assume the value functions for improper policies—those that never reach absorbing
states—are unbounded from below.

3 Boolean Algebras for Tasks and Value Functions

In this section, we develop the notion of a Boolean task algebra. This formalises the notion of task
conjunction (∧) and disjunction (∨) introduced in previous work (Haarnoja et al., 2018; Van Niekerk
et al., 2019; Hunt et al., 2019), while additionally introducing the concept of negation (¬). We
then show that, having solved a series of base tasks, an agent can use its knowledge to solve tasks
expressible as a Boolean expression over those tasks, without any further learning.2

We consider a family of related MDPsM restricted by the following assumption:
Assumption 1 (Van Niekerk et al. (2019)). For all tasks in a set of tasksM, (i) the tasks share the
same state space, action space and transition dynamics, (ii) the transition dynamics are deterministic,
and (iii) the reward functions between tasks differ only on the absorbing set G. For all non-terminal
states, we denote the reward rs,a to emphasise that it is constant across tasks.

Assumption 1 represents the family of tasks where the environment remains the same but the goals
and their desirability may vary. This is typically true for robotic navigation and manipulation tasks

1Since we consider undiscounted MDPs, we can ensure the value function is bounded by augmenting the
state space with a virtual state ω such that ρ(s,a)(ω) = 1 for all (s, a) ∈ G ×A, and r = 0 after reaching ω.

2Owing to space constraints, all proofs are presented in the supplementary material.

2

where there are multiple achievable goals, the goals we want the robot to achieve may vary, and how
desirable those goals are may also vary. Although we have placed restrictions on the reward functions,
the above formulation still allows for a large number of tasks to be represented. Importantly, sparse
rewards can be formulated under these restrictions. In practice, however, all of these assumptions can
be violated with minimal impact. In particular, additional experiments in the supplementary material
show that even for tasks with stochastic transition dynamics and dense rewards, and which differ in
their terminal states, our composition approach still results in policies that are either identical or very
close to optimal.

3.1 A Boolean Algebra for Tasks

An abstract Boolean algebra is a set B equipped with operators ¬,∨,∧ that satisfy the Boolean
axioms of (i) idempotence, (ii) commutativity, (iii) associativity, (iv) absorption, (v) distributivity,
(vi) identity, and (vii) complements.3

We first define the ¬,∨, and ∧ operators over a set of tasks.
Definition 1. LetM be a set of tasks which adhere to Assumption 1, withMU ,M∅ ∈M such that

rMU : S ×A → R
(s, a) 7→ max

M∈M
rM (s, a)

rM∅ : S ×A → R
(s, a) 7→ min

M∈M
rM (s, a)

Define the ¬,∨, and ∧ operators overM as

¬ : M→M
M 7→ (S,A, ρ, r¬M), where r¬M : S ×A → R

(s, a) 7→
(
rMU (s, a) + rM∅(s, a)

)
− rM (s, a)

∨ : M×M→M
(M1,M2) 7→ (S,A, ρ, rM1∨M2

), where rM1∨M2
: S ×A → R

(s, a) 7→ max{rM1
(s, a), rM2

(s, a)}
∧ : M×M→M

(M1,M2) 7→ (S,A, ρ, rM1∧M2
), where rM1∧M2

: S ×A → R
(s, a) 7→ min{rM1

(s, a), rM2
(s, a)}

In order to formalise the logical composition of tasks under the Boolean algebra structure, it is
necessary that the tasks have a Boolean nature. This is enforced by the following sparseness
assumption:
Assumption 2. For all tasks in a set of tasksM which adhere to Assumption 1, the set of possible
terminal rewards consists of only two values. That is, for all (g, a) in G ×A, we have that r(g, a) ∈
{r∅, rU} ⊂ [rMIN, rMAX] with r∅ ≤ rU .4

Given the above definitions and the restrictions placed on the set of tasks we consider, we can now
define a Boolean algebra over a set of tasks.
Theorem 1. LetM be a set of tasks which adhere to Assumption 2. Then (M,∨,∧,¬,MU ,M∅)
is a Boolean algebra.

Theorem 1 allows us to compose existing tasks together to create new tasks in a principled way.
Figure 1 illustrates the semantics for each of the Boolean operators in a simple environment.

3.2 Extended Value Functions

The reward and value functions described in Section 2 are insufficient to solve tasks specified by the
Boolean algebra above. To understand why, consider two tasks that have multiple different goals,
but at least one common goal. Clearly, there is a meaningful conjunction between them—namely,
achieving the common goal. Now consider an agent that learns standard value functions for both

3We provide a description of these axioms in the supplementary material.
4While Assumption 2 is necessary to establish the Boolean algebra, we show in Theorem 3 that it is not

required for zero-shot negation, disjunction, and conjunction.

3

(a) rMLEFT (b) rMDOWN (c) rM¬LEFT (d) Disjunction (e) Conjunction

−0.8

−0.4

0.0

0.4

0.8

(f) Average

Figure 1: Consider two tasks, MLEFT and MDOWN, in which an agent must navigate to the left and
bottom regions of an xy-plane respectively. From left to right we plot the reward for entering a region
of the state space for the individual tasks, the negation of MLEFT, and the union (disjunction) and
intersection (conjunction) of tasks. For reference, we also plot the average reward function, which
has been used in previous work to approximate the conjunction operator (Haarnoja et al., 2018; Hunt
et al., 2019; Van Niekerk et al., 2019). Note that by averaging reward, terminal states that are not in
the intersection are erroneously given rewards.

tasks, and which is then required to solve their conjunction without further learning. Note that this is
impossible in general, since the regular value function for each task only represents the value of each
state with respect to the nearest goal. That is, for all states where the nearest goal for each task is
not the common goal, the agent has no information about that common goal. We therefore define
extended versions of the reward and value function such that the agent is able to learn the value of
achieving all goals, and not simply the nearest one. These are given by the following two definitions:

Definition 2. The extended reward function r̄ : S × G ×A → R is given by the mapping

(s, g, a) 7→
{
r̄MIN if g 6= s ∈ G
r(s, a) otherwise,

(1)

where r̄MIN ≤ min{rMIN, (rMIN− rMAX)D}, and D is the diameter of the MDP (Jaksch et al., 2010).5

Because we require that tasks share the same transition dynamics, we also require that the absorbing
set of states is shared. Thus the extended reward function adds the extra constraint that, if the agent
enters a terminal state for a different task, it should receive the largest penalty possible. In practice,
we can simply set r̄MIN to be the lowest finite value representable by the data type used for the value
function.

Definition 3. The extended Q-value function Q̄ : S × G ×A → R is given by the mapping

(s, g, a) 7→ r̄(s, g, a) +

∫
S
V̄ π̄(s′, g)ρ(s,a)(ds

′), (2)

where V̄ π̄(s, g) = Eπ̄ [
∑∞
t=0 r̄(st, g, at)].

The extended Q-value function is similar to DG functions (Kaelbling, 1993) which also learn how
to achieve all goals, except here we use task-dependent reward functions as opposed to measuring
distance between states. Veeriah et al. (2018) refers to this idea of learning to achieve all goals in an
environment as “mastery”. We can see that the definition of extended Q-value functions encapsulates
this notion for arbitrary task rewards.

The standard reward functions and value functions can be recovered from their extended versions
through the following lemma.

Lemma 1. Let rM , r̄M , Q∗M , Q̄
∗
M be the reward function, extended reward function, optimal Q-value

function, and optimal extended Q-value function for a task M inM. Then for all (s, a) in S ×A, we
have (i) rM (s, a) = max

g∈G
r̄M (s, g, a), and (ii) Q∗M (s, a) = max

g∈G
Q̄∗M (s, g, a).

In the same way, we can also recover the optimal policy from these extended value functions by first
applying Lemma 1, and acting greedily with respect to the resulting value function.

5The diameter is defined as D = maxs 6=s′∈S minπ E [T (s′|π, s)], where T is the number of timesteps
required to first reach s′ from s under π.

4

Lemma 2. Denote S− = S \ G as the non-terminal states ofM. Let M1,M2 ∈M, and let each g
in G define MDPs M1,g and M2,g with reward functions

rM1,g
:= r̄M1(s, g, a) and rM2,g

:= r̄M2(s, g, a) for all (s, a) in S ×A.
Then for all g in G and s in S−,

π∗g(s) ∈ arg max
a∈A

Q∗M1,g
(s, a) iff π∗g(s) ∈ arg max

a∈A
Q∗M2,g

(s, a).

Combining Lemmas 1 and 2, we can extract the greedy action from the extended value func-
tion by first maximising over goals, and then selecting the maximising action: π∗(s) ∈
arg maxa∈Amaxg∈G Q̄

∗(s, g, a). If we consider the extended value function to be a set of standard
value functions (one for each goal), then this is equivalent to first performing generalised policy
improvement (Barreto et al., 2017), and then selecting the greedy action.

Finally, much like the regular definition of value functions, the extended Q-value function can be
written as the sum of rewards received by the agent until first encountering a terminal state.
Corollary 1. Denote G∗s:g,a as the sum of rewards starting from s and taking action a up until,
but not including, g. Then let M ∈ M and Q̄∗M be the extended Q-value function. Then for all
s ∈ S, g ∈ G, a ∈ A, there exists a G∗s:g,a ∈ R such that

Q̄∗M (s, g, a) = G∗s:g,a + r̄M (s′, g, a′), where s′ ∈ G and a′ = arg max
b∈A

r̄M (s′, g, b).

3.3 A Boolean Algebra for Value Functions

In the same manner we constructed a Boolean algebra over a set of tasks, we can also do so for a set
of optimal extended Q-value functions for the corresponding tasks.
Definition 4. Let Q̄∗ be the set of optimal extended Q̄-value functions for tasks inM which adhere
to Assumption 1, with Q̄∗∅, Q̄

∗
U ∈ Q̄∗ the optimal Q̄-functions for the tasksM∅,MU ∈M .Define

the ¬,∨, and ∧ operators over Q̄∗ as,

¬ : Q̄∗ → Q̄∗

Q̄∗ 7→ ¬Q̄∗, where ¬Q̄∗ : S × G ×A → R
(s, g, a) 7→

(
Q̄∗U (s, g, a) + Q̄∗∅(s, g, a)

)
− Q̄∗(s, g, a)

∨ : Q̄∗ × Q̄∗ → Q̄∗

(Q̄∗1, Q̄
∗
2) 7→ Q̄∗1 ∨ Q̄∗2, where Q̄∗1 ∨ Q̄∗2 : S × G ×A → R

(s, g, a) 7→ max{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}
∧ : Q̄∗ × Q̄∗ → Q̄∗

(Q̄∗1, Q̄
∗
2) 7→ Q̄∗1 ∧ Q̄∗2, where Q̄∗1 ∧ Q̄∗2 : S × G ×A → R

(s, g, a) 7→ min{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}
Theorem 2. Let Q̄∗ be the set of optimal extended Q̄-value functions for tasks inM which adhere
to Assumption 2. Then (Q̄∗,∨,∧,¬, Q̄∗U , Q̄∗∅) is a Boolean Algebra.

3.4 Between Task and Value Function Algebras

Having established a Boolean algebra over tasks and extended value functions, we finally show that
there exists an equivalence between the two. As a result, if we can write down a task under the
Boolean algebra, we can immediately write down the optimal value function for the task.
Theorem 3. Let Q̄∗ be the set of optimal extended Q̄-value functions for tasks inM which adhere to
Assumption 1. Then for all M1,M2 ∈M, we have (i) Q̄∗¬M1

= ¬Q̄∗M1
, (ii) Q̄∗M1∨M2

= Q̄∗M1
∨ Q̄∗M2

,
and (iii) Q̄∗M1∧M2

= Q̄∗M1
∧ Q̄∗M2

.

Corollary 2. Let F :M→ Q̄∗ be any map fromM to Q̄∗ such that F(M) = Q̄∗M for all M in
M. Then F is a homomorphism between (M,∨,∧,¬,MU ,M∅) and (Q̄∗,∨,∧,¬, Q̄∗U , Q̄∗∅).

5

Theorem 3 shows that we can provably achieve zero-shot negation, disjunction, and conjunction
provided Assumption 1 is satisfied. Corollary 2 extends this result by showing that the task and
value function algebras are in fact homomorphic, which implies zero-shot composition of arbitrary
combinations of negations, disjunctions, and conjunctions.

4 Zero-shot Transfer Through Composition

We can use the theory developed in the previous sections to perform zero-shot transfer by first
learning extended value functions for a set of base tasks, and then composing them to solve new
tasks expressible under the Boolean algebra. To demonstrate this, we conduct a series of experiments
in the Four Rooms domain (Sutton et al., 1999), where an agent must navigate a grid world to a
particular location. The agent can move in any of the four cardinal directions at each timestep, but
colliding with a wall leaves the agent in the same location. We add a 5th action for “stay” that the
agent chooses to achieve goals. A goal position only becomes terminal if the agent chooses to stay in
it. The transition dynamics are deterministic, and rewards are −0.1 for all non-terminal states, and 2
at the goal.

4.1 Learning Base Tasks

We use a modified version of Q-learning (Watkins, 1989) to learn the extended Q-value functions
described previously. Our algorithm differs in a number of ways from standard Q-learning: we keep
track of the set of terminating states seen so far, and at each timestep we update the extended Q-value
function with respect to both the current state and action, as well as all goals encountered so far. We
also use the definition of the extended reward function, and so if the agent encounters a terminal
state of a different task, it receives reward r̄MIN. The full pseudocode is listed in the supplementary
material.

If we know the set of goals (and hence potential base tasks) upfront, then it is easy to select a minimal
set of base tasks that can be composed to produce the largest number of composite tasks. We first
assign a Boolean label to each goal in a table, and then use the columns of the table as base tasks.
The goals for each base task are then those goals with value 1 according to the table. In this domain,
the two base tasks we select are MT, which requires that the agent visit either of the top two rooms,
and ML, which requires visiting the two left rooms. We illustrate this selection procedure in the
supplementary material.

4.2 Boolean Composition

Having learned the optimal extended value functions for our base tasks, we can now leverage
Theorems 1–3 to solve new tasks with no further learning. Figure 2 illustrates this composition,
where an agent is able to immediately solve complex tasks such as exclusive-or. We illustrate a few
composite tasks here, but note that in general, if we have K base tasks, then a Boolean algebra allows
for 22K

new tasks to be constructed. Thus having trained on only two tasks, our agent has enough
information to solve a total of 16 composite tasks.

By learning extended value functions, an agent can subsequently solve a massive number of tasks;
however, the upfront cost of learning is likely to be higher. We investigate the trade-off between
the two approaches by quantifying how the sample complexity scales with the number of tasks.
We compare to Van Niekerk et al. (2019), who use regular value functions to demonstrate optimal
disjunctive composition. We note that while the upfront learning cost is therefore lower, the number
of tasks expressible using only disjunction is 2K − 1, which is significantly less than the full Boolean
algebra. We also conduct a test using an extended version of the Four Rooms domain, where
additional goals are placed along the sides of all walls, resulting in a total of 40 goals. Empirical
results are illustrated by Figure 3.

Our results show that while additional samples are needed to learn an extended value function, the
agent is able to expand the tasks it can solve super-exponentially. Furthermore, the number of base
tasks we need to solve is only logarithmic in the number of goal states. For an environment with K
goals, we need to learn only blog2Kc+ 1 base tasks, as opposed to the disjunctive approach which
requires K base tasks. Thus by sacrificing sample efficiency initially, we achieve an exponential
increase in abilities compared to previous work (Van Niekerk et al., 2019).

6

(a) ML (b) MT (c) ML ∨MT (d) ML ∧MT (e) ML YMT (f) ML
−∨MT

Figure 2: An example of zero-shot Boolean algebraic composition using the learned extended value
functions. The top row shows the extended value functions. For each, the plots show the value of each
state with respect to the four goals (the centre of each room). The bottom row shows the recovered
regular value functions obtained by maximising over goals. Arrows represent the optimal action in
a given state. (a–b) The learned optimal extended value functions for the base tasks. (c) Zero-shot
disjunctive composition. (d) Zero-shot conjunctive composition. (e) Combining operators to model
exclusive-or composition. (f) Composition that produces logical nor. Note that the resulting optimal
value function can attain a goal not explicitly represented by the base tasks.

0 2 4 6 8 10 12 14 16
Number of tasks

0

1

2

3

4

5

C
um

ul
at

iv
e

ti
m

es
te

ps
to

co
nv

er
ge

×105

Extended Q-function

Q-function

(a) Cumulative number of sam-
ples required to learn optimal ex-
tended and regular value func-
tions. Error bars represent stan-
dard deviations over 100 runs.

2 4 6 8 10
Number of learned tasks

100

103

106

109

1012

1015

1018

N
um

b
er

of
so

lv
ab

le
ta

sk
s

Boolean task algebra

Disjunction only

No transfer

(b) Number of tasks that can be
solved as a function of the number
of existing tasks solved. Results
are plotted on a log-scale.

0 10 20 30 40 50
Number of tasks

0.00

0.25

0.50

0.75

1.00

1.25

C
um

ul
at

iv
e

ti
m

es
te

ps
to

co
nv

er
ge

×106

Boolean task algebra

Disjunction only

(c) Cumulative number of sam-
ples required to solve tasks in a
40-goal Four Rooms domain. Er-
ror bars represent standard devia-
tions over 100 runs.

Figure 3: Results in comparison to the disjunctive composition of Van Niekerk et al. (2019). (a) The
number of samples required to learn the extended value function is greater than learning a standard
value function. However, both scale linearly and differ only by a constant factor. (b) The extended
value functions allow us to solve exponentially more tasks than the disjunctive approach without
further learning. (c) In the modified task with 40 goals, we need to learn only 7 base tasks, as opposed
to 40 for the disjunctive case.

5 Composition with Function Approximation

Finally, we demonstrate that our compositional approach can also be used to tackle high-dimensional
domains where function approximation is required. We use the same video game environment as
Van Niekerk et al. (2019), where an agent must navigate a 2D world and collect objects of different
shapes and colours from any initial position. The state space is an 84× 84 RGB image, and the agent
is able to move in any of the four cardinal directions. The agent also possesses a pick-up action,
which allows it to collect an object when standing on top of it. There are two shapes (squares and
circles) and three colours (blue, beige and purple) for a total of six unique objects.

To learn the extended action-value functions, we modify deep Q-learning (Mnih et al., 2015) sim-
ilarly to the many-goals update method of Veeriah et al. (2018). Here, a universal value function
approximator (UVFA) (Schaul et al., 2015) is used to represent the action values for each state and

7

goal (both specified as RGB images).6 Additionally, when a terminal state is encountered, it is added
to the collection of goals seen so far, and when learning updates occur, these goals are sampled
randomly from a replay buffer. We first learn to solve two base tasks: collecting blue objects and
collecting squares. As shown in Figure 4, by training the UVFA for each task using the extended
rewards definition, the agent learns not only how to achieve all goals, but also how desirable each of
those goals are for the current task. These UVFAs can now be composed to solve new tasks with no
further learning.

Figure 4: Extended value function for collecting blue objects (left) and squares (right). To generate
the value functions, we place the agent at every location and compute the maximum output of the
network over all goals and actions. We then interpolate between the points to smooth the graph. Any
error in the visualisation is due to the use of non-linear function approximation.

We demonstrate composition characterised by disjunction, conjunction and exclusive-or. This
corresponds to tasks where the target items are: (i) blue or square, (ii) blue squares, and (iii) blue or
squares, but not blue squares. Figure 5 illustrates the composed value functions and samples of the
subsequent trajectories for the respective tasks. Figure 6 shows the average returns across random
initial positions of the agent.7

6 Related Work

The ability to compose value functions was first demonstrated using the linearly-solvable MDP
framework (Todorov, 2007), where value functions could be composed to solve tasks similar to the
disjunctive case (Todorov, 2009). Van Niekerk et al. (2019) show that the same kind of composition
can be achieved using entropy-regularised RL (Fox et al., 2016), and extend the results to the standard
RL setting, where agents can optimally solve the disjunctive case. Using entropy-regularised RL,
Haarnoja et al. (2018) approximates the conjunction of tasks by averaging their reward functions,
and demonstrates that by averaging the optimal value functions of the respective tasks, the agent
can achieve performance close to optimal. Hunt et al. (2019) extends this result by composing
value functions to solve the average reward task exactly, which approximates the true conjunctive
case. More recently, Peng et al. (2019) introduce a few-shot learning approach to compose policies
multiplicatively. Although lacking theoretical foundations, their results show that an agent can learn
a weighted composition of existing base skills to solve a new complex task. By contrast, we show
that zero-shot optimal composition can be achieved for all Boolean operators.

7 Conclusion

We have shown how to compose tasks using the standard Boolean algebra operators. These composite
tasks can be solved without further learning by first learning goal-oriented value functions, and then
composing them in a similar manner. Finally, we note that there is much room for improvement
in learning the extended value functions for the base tasks. In our experiments, we learned each
extended value function from scratch, but it is likely that having learned one for the first task, we
could use it to initialise the extended value function for the second task to improve convergence
times. One area for improvement lies in efficiently learning the extended value functions, as well
as developing better algorithms for solving tasks with sparse rewards. For example, it is likely that

6The hyperparameters and network architecture are listed in the supplementary material
7Experiments involving randomised object positions are included in the supplementary material.

8

(a) Extended value function for
disjunctive composition.

(b) Extended value function for
conjunctive composition.

(c) Extended value function for
exclusive-or composition.

(d) Value function for disjunctive
composition.

(e) Value function for conjunctive
composition.

(f) Value function for exclusive-or
composition.

(g) Trajectories for disjunctive
composition.

(h) Trajectories for conjunctive
composition.

(i) Trajectories for exclusive-or
composition.

Figure 5: By composing extended value functions from the base tasks (collecting blue objects, and
collecting squares), we can act optimally in new tasks with no further learning.

Blue Square OR AND XOR
Tasks

0.5

1.0

1.5

Av
er

ag
e

R
et

ur
ns

Optimal
Composed

Figure 6: Average returns over 1000 episodes for the Blue and Square tasks, and their disjunction
(OR), conjunction (AND) and exlusive-or (XOR).

approaches such as hindsight experience replay (Andrychowicz et al., 2017) could reduce the number
of samples required to learn extended value functions, while Mirowski et al. (2017) provides a method
for learning complex tasks with sparse rewards using auxiliary tasks. We leave incorporating these
approaches to future work, but note that our framework is agnostic to the value-function learning
algorithm. Our proposed approach is a step towards both interpretable RL—since both the tasks and
optimal value functions can be specified using Boolean operators—and the ultimate goal of lifelong
learning agents, which are able to solve combinatorially many tasks in a sample-efficient manner.

9

Broader Impact

Our work is mainly theoretical, but is a step towards creating agents that can solve tasks specified
using human-understandable Boolean expressions, which could one day be deployed in practical RL
systems. We envisage this as an avenue for overcoming the problem of reward misspecification, and
for developing safer agents whose goals are readily interpretable by humans.

Acknowledgments and Disclosure of Funding

The authors wish to thank the anonymous reviewers for their helpful comments, and Pieter Abbeel,
Marc Deisenroth and Shakir Mohamed for their assistance in reviewing a final draft of this paper.
This work is based on the research supported in part by the National Research Foundation of South
Africa (Grant Number: 17808).

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,

J., Abbeel, P., and Zaremba, W. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pp. 5048–5058, 2017.

Barreto, A., Dabney, W., Munos, R., Hunt, J., Schaul, T., van Hasselt, H., and Silver, D. Successor
features for transfer in reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 4055–4065, 2017.

Barto, A. and Mahadevan, S. Recent advances in hierarchical reinforcement learning. Discrete Event
Dynamic Systems, 13(1-2):41–77, 2003.

Bertsekas, D. and Tsitsiklis, J. An analysis of stochastic shortest path problems. Mathematics of
Operations Research, 16(3):580–595, 1991.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in reinforcement learning via soft updates. In
32nd Conference on Uncertainty in Artificial Intelligence, 2016.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., and Levine, S. Composable deep reinforce-
ment learning for robotic manipulation. In 2018 IEEE International Conference on Robotics and
Automation, pp. 6244–6251. IEEE, 2018.

Hunt, J., Barreto, A., Lillicrap, T., and Heess, N. Composing entropic policies using divergence
correction. In Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 2911–2920. PMLR, 2019.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research, 11(Apr):1563–1600, 2010.

James, H. and Collins, E. An analysis of transient Markov decision processes. Journal of Applied
Probability, 43(3):603–621, 2006.

Kaelbling, L. P. Learning to achieve goals. In International Joint Conferences on Artificial Intelli-
gence, pp. 1094–1099, 1993.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations, 2016.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil, M., Goroshin, R.,
Sifre, L., Kavukcuoglu, K., et al. Learning to navigate in complex environments. In International
Conference on Learning Representations, 2017.

10

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A., Riedmiller,
M., Fidjeland, A., Ostrovski, G., et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

Peng, X., Chang, M., Zhang, G., Abbeel, P., and Levine, S. MCP: Learning composable hierarchical
control with multiplicative compositional policies. arXiv preprint arXiv:1905.09808, 2019.

Saxe, A., Earle, A., and Rosman, B. Hierarchy through composition with multitask LMDPs.
Proceedings of the 34th International Conference on Machine Learning, 70:3017–3026, 2017.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal value function approximators. In
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 1312–1320, Lille, France, 2015. PMLR.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. Mastering the game of go without human knowledge. Nature, 550
(7676):354, 2017.

Sutton, R., Precup, D., and Singh, S. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.

Todorov, E. Linearly-solvable Markov decision problems. In Advances in Neural Information
Processing Systems, pp. 1369–1376, 2007.

Todorov, E. Compositionality of optimal control laws. In Advances in Neural Information Processing
Systems, pp. 1856–1864, 2009.

Van Niekerk, B., James, S., Earle, A., and Rosman, B. Composing value functions in reinforcement
learning. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6401–6409. PMLR, 2019.

Veeriah, V., Oh, J., and Singh, S. Many-goals reinforcement learning. arXiv preprint
arXiv:1806.09605, 2018.

Watkins, C. Learning from delayed rewards. PhD thesis, King’s College, Cambridge, 1989.

11

Supplementary Material:
A Boolean Task Algebra For Reinforcement Learning

Geraud Nangue Tasse, Steven James, Benjamin Rosman
School of Computer Science and Applied Mathematics

University of the Witwatersrand
Johannesburg, South Africa

geraudnt@gmail.com, {steven.james, benjamin.rosman1}@wits.ac.za

1 Boolean Algebra Definition

Definition 1. A Boolean algebra is a set B equipped with the binary operators ∨ (disjunction) and ∧
(conjunction), and the unary operator ¬ (negation), which satisfies the following Boolean algebra
axioms for a, b, c in B:

(i) Idempotence: a ∧ a = a ∨ a = a.

(ii) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ (b ∨ c) = (a ∨ b) ∨ c.

(iv) Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

(v) Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(vi) Identity: there exists 0,1 in B such that

0 ∧ a = 0

0 ∨ a = a

1 ∧ a = a

1 ∨ a = 1

(vii) Complements: for every a in B, there exists an element a′ in B such that a ∧ a′ = 0 and
a ∨ a′ = 1.

2 Proof for Boolean Task Algebra

Theorem 1. LetM be a set of tasks which adhere to Assumption 2. Then (M,∨,∧,¬,MU ,M∅)
is a Boolean algebra.

Proof. Let M1,M2 ∈M. We show that ¬,∨,∧ satisfy the Boolean properties (i) – (vii).

(i)–(v): These easily follow from the fact that the min and max functions satisfy the idempotent,
commutative, associative, absorption and distributive laws.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

(vi): Let rMU∧M1 and rM1 be the reward functions forMU ∧M1 and M1 respectively. Then for
all (s, a) in S ×A,

rMU∧M1
(s, a) =

{
min{rU , rM1

(s, a)}, if s ∈ G
min{rs,a, rs,a}, otherwise.

=

{
rM1

(s, a), if s ∈ G
rs,a, otherwise.

(rM1
(s, a) ∈ {r∅, rU} for s ∈ G)

= rM1(s, a).

ThusMU∧M1 = M1. SimilarlyMU∨M1 =MU ,M∅∧M1 =M∅, andM∅∨M1 = M1

. HenceM∅ andMU are the universal bounds ofM.

(vii): Let rM1∧¬M1 be the reward function for M1 ∧ ¬M1. Then for all (s, a) in S ×A,

rM1∧¬M1
(s, a) =

{
min{rM1

(s, a), (rU + r∅)− rM1
(s, a)}, if s ∈ G

min{rs,a, (rs,a + rs,a)− rs,a}, otherwise.

=


r∅, if s ∈ G and rM1

(s, a) = rU
r∅, if s ∈ G and rM1(s, a) = r∅
rs,a, otherwise.

= rM∅(s, a).

Thus M1 ∧ ¬M1 =M∅, and similarly M1 ∨ ¬M1 =MU .

3 Proofs of Properties of Extended Value Functions

Lemma 1. Let rM , r̄M , Q∗M , Q̄
∗
M be the reward function, extended reward function, optimal Q-value

function, and optimal extended Q-value function for a task M inM. Then for all (s, a) in S ×A, we
have (i) rM (s, a) = max

g∈G
r̄M (s, g, a), and (ii) Q∗M (s, a) = max

g∈G
Q̄∗M (s, g, a).

Proof.

(i):

max
g∈G

r̄M (s, g, a) =

{
max{r̄MIN, rM (s, a)}, if s ∈ G
max
g∈G

rM (s, a), otherwise.

= rM (s, a) (r̄MIN ≤ rMIN ≤ rM (s, a) by definition).

(ii): Each g in G can be thought of as defining an MDP Mg := (S,A, ρ, rMg
) with reward function

rMg (s, a) := r̄M (s, g, a) and optimal Q-value function Q∗Mg
(s, a) = Q̄∗M (s, g, a). Then using

(i) we have rM (s, a) = max
g∈G

rMg (s, a) and from Van Niekerk et al. (2019, Corollary 1), we have

that Q∗M (s, a) = max
g∈G

Q∗Mg
(s, a) = max

g∈G
Q̄∗M (s, g, a).

Lemma 2. Denote S− = S \ G as the non-terminal states ofM. Let M1,M2 ∈M, and let each g
in G define MDPs M1,g and M2,g with reward functions

rM1,g
:= r̄M1(s, g, a) and rM2,g

:= r̄M2(s, g, a) for all (s, a) in S ×A.

Then for all g in G and s in S−,

π∗g(s) ∈ arg max
a∈A

Q∗M1,g
(s, a) iff π∗g(s) ∈ arg max

a∈A
Q∗M2,g

(s, a).

2

Proof. Let g ∈ G, s ∈ S− and let π∗g be defined by

π∗g(s′) ∈ arg max
a∈A

Q∗M1,g(s, a) for all s′ ∈ S.

If g is unreachable from s, then we are done since for all (s′, a) in S ×A we have

g 6= s′ =⇒ rM1,g
(s′, a) =

{
r̄MIN, if s′ ∈ G
rs′,a, otherwise

= rM2,g
(s′, a)

=⇒ M1,g = M2,g.

If g is reachable from s, then we show that following π∗g must reach g. Since π∗g is proper, it must
reach a terminal state g′ ∈ G. Assume g′ 6= g. Let πg be a policy that produces the shortest trajectory
to g. Let Gπ

∗
g and Gπg be the returns for the respective policies. Then,

Gπ
∗
g ≥ Gπg

=⇒ G
π∗g
T−1 + rM1,g

(g′, π∗g(g′)) ≥ Gπg ,

where G
π∗g
T−1 =

T−1∑
t=0

rM1,g
(st, π

∗
g(st)) and T is the time at which g′ is reached.

=⇒ G
π∗g
T−1 + r̄MIN ≥ Gπg , since g 6= g′ ∈ G

=⇒ r̄MIN ≥ Gπg −Gπ
∗
g

T−1

=⇒ (rMIN − rMAX)D ≥ Gπg −Gπ
∗
g

T−1, by definition of r̄MIN

=⇒ G
π∗g
T−1 − rMAXD ≥ Gπg − rMIND, since Gπg ≥ rMIND

=⇒ G
π∗g
T−1 − rMAXD ≥ 0

=⇒ G
π∗g
T−1 ≥ rMAXD.

But this is a contradiction since the result obtained by following an optimal trajectory up to a terminal
state without the reward for entering the terminal state must be strictly less that receiving rMAX for
every step of the longest possible optimal trajectory. Hence we must have g′ = g. Similarly, all
optimal policies of M2,g must reach g. Hence π∗g(s) ∈ arg max

a∈A
Q∗M2,g

(s, a). Since M1 and M2 are

arbitrary elements ofM, the reverse implication holds too.

Corollary 1. Denote G∗s:g,a as the sum of rewards starting from s and taking action a up until,
but not including, g. Then let M ∈ M and Q̄∗M be the extended Q-value function. Then for all
s ∈ S, g ∈ G, a ∈ A, there exists a G∗s:g,a ∈ R such that

Q̄∗M (s, g, a) = G∗s:g,a + r̄M (s′, g, a′), where s′ ∈ G and a′ = arg max
b∈A

r̄M (s′, g, b).

Proof. This follows directly from Lemma 2. Since all tasks M ∈M share the same optimal policy
π∗g up to (but not including) the goal state g ∈ G, their return G

π∗g
T−1 =

∑T−1
t=0 rM (st, π

∗
g(st)) is the

same up to (but not including) g.

4 Proof for Boolean Extendend Value Functions Algebra

Theorem 2. Let Q̄∗ be the set of optimal extended Q̄-value functions for tasks inM which adhere
to Assumption 2. Then (Q̄∗,∨,∧,¬, Q̄∗U , Q̄∗∅) is a Boolean Algebra.

Proof. Let Q̄∗M1
, Q̄∗M2

∈ Q̄∗ be the optimal Q̄-value functions for tasks M1,M2 ∈M with reward
functions rM1

and rM2
. We show that ¬,∨,∧ satisfy the Boolean properties (i) – (vii).

3

(i)–(v): These follow directly from the properties of the min and max functions.

(vi): For all (s, g, a) in S × G ×A,
(Q̄∗U ∧ Q̄∗M1

)(s, g, a) = min{(Q̄∗U (s, g, a), Q̄∗M1
(s, g, a)}

= min{G∗s:g,a + r̄MU (s′, g, a′), G∗s:g,a + r̄M1(s′, g, a′)} (Corollary 1)

= G∗s:g,a + min{r̄MU (s′, g, a′), r̄M1
(s′, g, a′)}

= G∗s:g,a + r̄M1
(s′, g, a′) (since r̄M1

(s′, g, a′) ∈ {r∅, rU , r̄MIN})
= Q̄∗M1

(s, g, a).

Similarly, Q̄∗U ∨ Q̄∗M1
= Q̄∗U , Q̄

∗
∅ ∧ Q̄∗M1

= Q̄∗∅, and Q̄∗∅ ∨ Q̄∗M1
= Q̄∗M1

.

(vii): For all (s, g, a) in S × G ×A,
(Q̄∗M1

∧ ¬Q̄∗M1
)(s, g, a) = min{Q̄∗M1

(s, g, a), (Q̄∗U (s, g, a)− Q̄∗∅(s, g, a))− Q̄∗M1
(s, g, a)}

= G∗s:g,a + min{r̄M1
(s′, g, a′), (r̄MU (s′, g, a′) + r̄M∅(s′, g, a′))

− r̄M1(s′, g, a′)}
= G∗s:g,a + r̄M∅(s′, g, a′)

= Q̄∗∅(s, g, a).

Similarly, Q̄∗M1
∨ ¬Q̄∗M1

= Q̄∗U .

5 Proof for Zero-shot Composition

Theorem 3. Let Q̄∗ be the set of optimal extended Q̄-value functions for tasks inM which adhere to
Assumption 1. Then for all M1,M2 ∈M, we have (i) Q̄∗¬M1

= ¬Q̄∗M1
, (ii) Q̄∗M1∨M2

= Q̄∗M1
∨ Q̄∗M2

,
and (iii) Q̄∗M1∧M2

= Q̄∗M1
∧ Q̄∗M2

.

Proof. Let M1,M2 ∈M. Then for all (s, g, a) in S × G ×A,

(i):
Q̄∗¬M1

(s, g, a) = G∗s:g,a + r̄¬M1
(s′, g, a′) (from Corollary 1)

= G∗s:g,a + (r̄MU (s′, g, a′) + r̄M∅(s′, g, a′))− r̄M1
(s′, g, a′)

=
[
(G∗s:g,a + r̄MU (s′, g, a′)) + (G∗s:g,a + r̄M∅(s′, g, a′))

]
− (G∗s:g,a + r̄M1

(s′, g, a′))

=
[
Q̄∗U (s, g, a) + Q̄∗∅(s, g, a)

]
− Q̄∗M1

(s, g, a)

= ¬Q̄∗M1
(s, g, a)

(ii):
Q̄∗M1∨M2

(s, g, a) = G∗s:g,a + r̄M1∨M2(s′, g, a′)

= G∗s:g,a + max{r̄M1(s′, g, a′), r̄M2(s′, g, a′′)}
= max{G∗s:g,a + r̄M1(s′, g, a′), G∗s:g,a + r̄M2(s′, g, a′′)}
= max{Q̄∗M1

(s, g, a), Q̄∗M2
(s, g, a)}

= (Q̄∗M1
∨ Q̄∗M2

)(s, g, a)

(iii): Follows similarly to (ii).

Corollary 2. Let F :M→ Q̄∗ be any map fromM to Q̄∗ such that F(M) = Q̄∗M for all M in
M. Then F is a homomorphism between (M,∨,∧,¬,MU ,M∅) and (Q̄∗,∨,∧,¬, Q̄∗U , Q̄∗∅).

Proof. This follows from Theorem 3.

4

6 Goal-oriented Q-learning

Below we list the pseudocode for the modified Q-learning algorithm used in the four-rooms domain.

Algorithm 1: Goal-oriented Q-learning
Input :Learning rate α, discount factor γ, exploration constant ε, lower-bound extended reward

r̄MIN
Initialise Q : S × S ×A → R arbitrarily
G ← ∅
while Q is not converged do

Initialise state s
while s is not terminal do

if G = ∅ then
Select random action a

else

a←

arg max
b∈A

(
max
t∈G

Q(s, t, b)

)
with probability 1− ε

a random action with probability ε
end
Choose a from s according to policy derived from Q
Take action a, observe r and s′
foreach g ∈ G do

if s′ is terminal then
if s′ 6= g then

δ ← r̄MIN
else

δ ← r −Q(s, g, a)
end

else
δ ← r + γmaxbQ(s′, g, b)−Q(s, g, a)

end
Q(s, g, a)← Q(s, g, a) + αδ

end
s← s′

end
G ← G ∪ {s}

end
return Q

Figure 1: A Q-learning algorithm for learning extended value functions. Note that the greedy action
selection step is equivalent to generalised policy improvement (Barreto et al., 2017) over the set of
extended value functions.

5

7 Investigating Practical Considerations

The theoretical results presented in this work rely on Assumptions 1 and 2, which restrict the tasks’
transition dynamics and reward functions in potentially problematic ways. Although this is necessary
to prove that Boolean algebraic composition results in optimal value functions, in this section we
investigate whether these can be practically ignored. In particular, we investigate three restrictions:
(i) the requirement that tasks share the same terminal states, (ii) the impact of using dense rewards,
and (iii) the requirement that tasks have deterministic transition dynamics.

7.1 Four Rooms Experiments

We use the same setup as the experiment outlined in Section 4. We first investigate the difference
between using sparse and dense rewards. Our sparse reward function is defined as

rsparse(s, a) =

{
2 if s ∈ G
−0.1 otherwise,

and we use a dense reward function similar to Peng et al. (2019):

rdense(s, a) =
0.1

|G|
∑
g∈G

exp(−|s− g|
2

4
) + rsparse(s, a)

Using this dense reward function, we again learn to solve the two base task MT (reaching the centre
of the top two rooms) and ML (reaching the centre of the left two rooms). We then compose them to
solve a variety of tasks, with the resulting value functions illustrated by Figure 2.

(a) ML (b) MT (c) ML ∨MT (d) ML ∧MT (e) ML YMT (f) ML
−∨MT

Figure 2: An example of Boolean algebraic composition using the learned extended value functions
with dense rewards. The top row shows the extended value functions while the bottom one shows
the recovered regular value functions obtained my maximising over goals. Arrows represent the
optimal action in a given state. (a–b) The learned optimal goal oriented value functions for the base
tasks with dense rewards. (c) Disjunctive composition. (d) Conjunctive composition. (e) Combining
operators to model exclusive-or composition. (f) Composition that produces logical nor. We note that
the resulting value functions are very similar to those produced in the sparse reward setting.

We also modify the domain so that tasks need not share the same terminating states (that is, if the
agent enters a terminating state for a different task, the episode does not terminate and the agent can
continue as if it were a normal state). This results in four versions of the experiment:

(i) sparse reward, same absorbing set
(ii) sparse reward, different absorbing set

(iii) dense reward, same absorbing set
(iv) dense reward, different absorbing set

We learn extended value functions for each of the above setups, and then compose them to solve each
of the 24 tasks representable in the Boolean algebra. We measure each composed value function by

6

evaluating its policy in the sparse reward setting, averaging results over 100000 episodes. The results
are given by Figure 3.

MT ML MT ¬ML ML ¬MT MT ML MT ¬MT ML ¬ML MT ML MT ¬ML ML ¬MT MT ML ¬(MT ML) MT ML

Tasks

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

R
et

ur
ns

Domain
Sparse rewards and Same absorbing set
Dense rewards and Same absorbing set
Sparse rewards and Different absorbing set
Dense rewards and Different absorbing set

Figure 3: Box plots indicating returns for each of the 16 compositional tasks, and for each of the four
variations of the domain. Results are collected over 100000 episodes with random start positions.

Our results indicate that extended value functions learned in the theoretically optimal manner
(sparse reward, same absorbing set) are indeed optimal. However, for the majority of the
tasks, relaxing the restrictions on terminal states and reward functions results in policies that are
either identical or very close to optimal.

MT ML MT ¬ML ML ¬MT MT ML MT ¬MT ML ¬ML MT ML MT ¬ML ML ¬MT MT ML ¬(MT ML) MT ML

Tasks

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

R
et

ur
ns

Optimal
Composed

(a) sp = 0.1

MT ML MT ¬ML ML ¬MT MT ML MT ¬MT ML ¬ML MT ML MT ¬ML ML ¬MT MT ML ¬(MT ML) MT ML

Tasks

3

2

1

0

1

2

Av
er

ag
e

R
et

ur
ns

Optimal
Composed

(b) sp = 0.3

Figure 4: Box plots indicating returns for each of the 16 compositional tasks, and for each of the slip
probabilities. Results are collected over 100000 episodes with random start positions.

Finally we investigate the effect of stochastic transition dynamics in addition to dense rewards and
different absorbing sets. The domain is modified such that for all tasks there is a slip probability (sp)
when the agent takes actions in any of the cardinal directions. That is with probability 1-sp the agent
goes in the direction it chooses and with probability sp it goes in one of the other 3 chosen uniformly

7

at random. The results are given in Figure 4. Our results show that even when the transition dynamics
are stochastic, the learned extended value functions can be composed to produce policies that are
identical or very close to optimal.

In summary, we have shown that our compositional approach offers strong empirical performance,
even when the theoretical assumptions are violated.

7.2 Function Approximation Experiments

In this section we investigate whether we can again loosen some of the restrictive assumptions
when tackling high-dimensional environments. In particular, we run the same experiments as those
presented in Section 5, but modify the domain so that (i) tasks need not share the same absorbing
set, (ii) the pickup-up action is removed since the only terminal states are reaching the desired/goal
objects (the agent immediately collects an object when reaching it), and (iii) the position of every
object is randomised at the start of each episode.

We first learn to solve three base tasks: collecting purple objects (Figure 5) collecting blue objects
(Figure 6) and collecting squares (Figure 7). Notice that because the pickup action is removed, the
environment terminates upon touching a desired object and the agent can no longer reach any other
object. This results in the large dips in values we observe in the learned extended values. These
extended values can now be composed to solve new tasks immediately.

Figure 5: Extended value func-
tion for collecting purple ob-
jects.

Figure 6: Extended value func-
tion for collecting blue ob-
jects.

Figure 7: Extended value func-
tion for collecting squares.

Similarly to Section 5, we demonstrate composition characterised by disjunction, conjunction and
exclusive-or, with the resulting value functions and trajectories illustrated by Figure 9. Since the
extended value functions learn how to achieve all terminal states in a task and how desirable those
terminal states are, we observe that it can still be leveraged for zero-shot composition even when the
terminal states differ between tasks. Figure 8 shows the average returns across random placements of
the agent and objects.

Purple Blue Square OR AND XOR
Tasks

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

R
et

ur
ns

Optimal
Composed

Figure 8: Average returns over 1000 episodes for the Purple, Blue, Square, Purple OR Blue, Blue
AND Square and Blue XOR Square tasks.

In summary, we have shown that our compositional approach offers strong empirical performance,
even when the theoretical assumptions are violated. Finally, we expect that, in general, the errors due
to these violations will be far outweighed by the errors due to non-linear function approximation.

8

(a) Extended value function for
disjunctive composition.

(b) Extended value function for
conjunctive composition.

(c) Extended value function for
exclusive-or composition.

(d) Value function for disjunctive
composition.

(e) Value function for conjunctive
composition.

(f) Value function for exclusive-or
composition.

(g) Trajectories for disjunctive
composition (collect blue or pur-
ple objects).

(h) Trajectories for conjunc-
tive composition (collect blue
squares).

(i) Trajectories for exclusive-
or composition (collect blue or
square objects, but not blue
squares).

Figure 9: Results for the video game environment with relaxed assumptions. We generate value
functions to solve the disjunction of blue and purple tasks, and the conjunction and exclusive-or of
blue and square tasks.

8 Selecting Base Tasks

The Four Rooms domain requires the agent to navigate to one of the centres of the rooms in the
environment. Figure 10 illustrates the layout of the environment and the goals the agent must reach.

Figure 10: The layout of the Four Rooms domain. The circles indicate goals the agent must reach.
We refer to the goals as top-left, top-right, bottom-left, and bottom-right.

9

Since we know the goals upfront, we can select a minimal set of base tasks by assigning each goal a
Boolean number, and then using the columns of the table to select the tasks. To illustrate, we assign
Boolean numbers to the goals as follows:

x1 x2 Goals
r∅ r∅ bottom-right
r∅ rU bottom-left
rU r∅ top-right
rU rU top-left

Table 1: Assigning labels to the individual goals. The two Boolean variables, x1 and x2, represent
the goals for the base tasks the agent will train on.

As there are four goals, we can represent each uniquely with just two Boolean variables. Each
column in Table 1 represents a base task, where the set of goals for each task are those goals assigned
a value rU . We thus have two base tasks corresponding to x1 = {top-right, top-left} and
x2 = {bottom-left, top-left}.

9 UVFA Architecture and Hyperparameters

In our experiments, we used a UVFA with the following architecture:

1. Three convolutional layers:
(a) Layer 1 has 6 input channels, 32 output channels, a kernel size of 8 and a stride of 4.
(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a stride of 2.
(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a stride of 1.

2. Two fully-connected linear layers:
(a) Layer 1 has input size 3136 and output size 512 and uses a ReLU activation function.
(b) Layer 2 has input size 512 and output size 4 with no activation function.

We used the ADAM optimiser with batch size 32 and a learning rate of 10−4. We trained every 4
timesteps and update the target Q-network every 1000 steps. Finally, we used ε-greedy exploration,
annealing ε to 0.01 over 100000 timesteps.

References
Barreto, A., Dabney, W., Munos, R., Hunt, J., Schaul, T., van Hasselt, H., and Silver, D. Successor

features for transfer in reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 4055–4065, 2017.

Peng, X., Chang, M., Zhang, G., Abbeel, P., and Levine, S. MCP: Learning composable hierarchical
control with multiplicative compositional policies. arXiv preprint arXiv:1905.09808, 2019.

Van Niekerk, B., James, S., Earle, A., and Rosman, B. Composing value functions in reinforcement
learning. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6401–6409. PMLR, 2019.

10

	Introduction
	Preliminaries
	Boolean Algebras for Tasks and Value Functions
	A Boolean Algebra for Tasks
	Extended Value Functions
	A Boolean Algebra for Value Functions
	Between Task and Value Function Algebras

	Zero-shot Transfer Through Composition
	Learning Base Tasks
	Boolean Composition

	Composition with Function Approximation
	Related Work
	Conclusion
	Boolean Algebra Definition
	Proof for Boolean Task Algebra
	Proofs of Properties of Extended Value Functions
	Proof for Boolean Extendend Value Functions Algebra
	Proof for Zero-shot Composition
	Goal-oriented Q-learning
	Investigating Practical Considerations
	Four Rooms Experiments
	Function Approximation Experiments

	Selecting Base Tasks
	UVFA Architecture and Hyperparameters

