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Abstract. Whereas most work in reinforcement learning (RL) ignores
the structure or relationships between actions, in this paper we show
that exploiting structure in the action space can improve sample effi-
ciency during exploration. To show this we focus on concurrent action
spaces where the RL agent selects multiple actions per timestep. Con-
current action spaces are challenging to learn in especially if the number
of actions is large as this can lead to a combinatorial explosion of the
action space.
This paper proposes two methods: a first approach uses implicit structure
to perform high-level action elimination using task-invariant actions; a
second approach looks for more explicit structure in the form of action
clusters. Both methods are context-free, focusing only on an analysis of
the action space and show a significant improvement in policy conver-
gence times.
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1 Introduction

In reinforcement learning (RL) complex environments are often modelled using
games such as Atari [1], Go[13] and StarCraft[16] as proxies for learning how
to behave in the real world. Many of these games can handle multiple actions
per time step, but most algorithms unroll the possible combinations of actions
and treat each combination as an individual action (or primitive action) during
learning [17, 8]. This approach has been successful in many complex environ-
ments but as environments become more specialised, integrated and relevant to
the real world it becomes increasingly important to learn something of the struc-
ture of the action space to improve exploration times and leverage relationships
or causal patterns.

This paper looks specifically at environments where the RL agent can take
multiple simultaneous discrete actions in a timestep, also referred to as concur-
rent action environments. These environments may apply the actions concur-
rently or sequentially but will return a single response to the concurrent action
request from the agent, for example, action set A = (jump, kick) elicits a response



(next-state=position-x, reward=0.01) from the environment. Rohanimanesh et
al. [10] define concurrent actions and a generalised framework for working in
such environments. The action space consists of a pool of primitive actions from
which the agent must select one or more actions to send to the environment.
There is potential for interactions, relationships and influence between actions,
for example jumping and kicking vs just kicking may trigger better rewards.

Concurrent action settings are becoming more relevant as RL environments
become more complex with actions that interact and may be applied concur-
rently, for example Atari [1] and StarCraft II [16] environments. Concurrent
actions are possible in a single agent and a multi-agent reinforcement learning
(MARL) context. While exploration in a concurrent action MARL environment
[4, 3] is an interesting area it is out of scope in this paper.

A concurrent action environment is complex because the computation time
required to explore all state-action-sets increases combinatorially with the num-
ber of actions [14]. It is desirable to reduce the amount of exploration required,
either by using prior knowledge or some intelligence about the environment. An
important aspect of these environments is the possibility of relations and interac-
tions between actions. Treating action combinations as primitive actions ignores
potentially valuable information, such as whether some actions work particularly
well with other actions, or whether some combinations of actions are redundant.

Some work in concurrent action spaces has focused on addressing these prob-
lems by reducing the size of the space using action elimination and prior knowl-
edge [11, 18]. Other groups have looked at various representations of the action
space to reveal relationships and structure between actions either by factorisa-
tion, encoding or embeddings [17, 12, 15, 2].

The scope of this work is the single agent concurrent action environment
where the agent takes multiple discrete actions per timestep, or an action set. In
this paper, we propose extracting structure from the action space to better in-
form exploration and improve sample efficiency. Two mechanisms are compared:
explicit structure in the form of clusters in action space and implicit structure
exposed by task-invariant actions. Both are unsupervised approaches focused
purely on the action space, i.e. context-less.

Frequently used actions are collected from successful trajectories in a pre-
training phase. The frequency of the action set is used as an indicator of how
useful it is for a task. The most frequent action sets across multiple tasks are
collected, representing a set of task-invariant action sets, and used as a prior
during exploration in the second phase of training. The task invariant action
sets indicate some underlying structure that action elimination can expose and
leverage.

The frequency data is also used to learn more explicit structural information
using spectral clustering [6] to partition the action space and reveal clusters of
actions that work well together.

The contributions in this work are:
1. Using action elimination to reduce the exploration space in a concurrent ac-
tion environment (Section 4).



2. Finding explicit structure in the concurrent action space using spectral clus-
tering (Section 5).

These approaches were inspired by observations of how actions interact and
influence other actions in the real world and how we, as humans, learn to select
actions. We have a distinct advantage because we have a vast amount of pre-
processed and distilled experience. When we need to learn something new we
are very reliant on existing abstractions and structure. We also always apply
relevance filters, often but not always, filtering by context. We are able to apply
actions/skills learnt in one context to a completely new context without ever
having seen the new context. This implies an abstraction of the mechanism in
the action itself.

Section 2 looks at related research. Section 3 reviews the reinforcement learn-
ing framework and how it is used in the concurrent action problem setting. Sec-
tion 4 expands the action elimination algorithm proposed to reduce exploration
space while Section 5 looks at explicit structure as a means to enhance explo-
ration. Section 6 provides details of the experiments and results. Finally, Section
7 concludes and discusses future work.

2 Related Work

Several papers combine learning factors for action composition in concurrent
environments although the approaches for obtaining the factors and methods of
composition differ. Wang and Yu [17] decompose an action into sub-action com-
ponents and focus on learning the relationships between sub-actions. They use a
novel structure to model the parameters of the sub-action components in a max-
imum a posteriori setting to learn the relations between sub-actions. Similarly
Sharma et al [12] decompose every action into a set of action-factors forming
a factored action representation. The agent learns how to compose concurrent
sets of actions based on the factors. Harmer et al. [5] also adopt the composition
approach and propose a network architecture that outputs multiple actions per
timestep in a deep RL setting. The network is trained using auxiliary signals
from experts resulting in an online approach, one of the few online models. The
agent benefits from having a concurrent action structure as it can model and
learn from experts without restriction. This approach seems very effective but
requires expert data versus self learning.

Rosman et al. [11] and Zahavy et al. [18] look at action elimination and
prior knowledge to bias the agent’s learning of new behaviours. In Rosman et al.
action priors are modelled using Dirichlet distributions where the concentration
parameters are the counts for a task. Zahavy et al. propose reducing the size of
the relevant action set per state by using a separate network, a bandit trained
using an elimination signal, to control which actions to eliminate in the main RL
Deep Q-Network agent. The motivation is to remove unnecessary actions and
improve sample efficiency.

Some interesting work that focuses specifically on structure in action space
comes from Tennenholtz et al. [15]. They developed an action-context embed-



ding representation, Act2Vec, modelled on word embeddings using skip-grams
[7]. The action embedding is used to enhance Q-function learning and to cluster
similar actions together, thereby reducing the exploration space. The embeddings
are generated from optimal demonstrator trajectory data. The paper uses this
representation and a new measure of similarity to consider a broad spectrum of
analysis that includes concurrent actions and exploration across clusters. Chan-
dak et al. [2] also learn a lower dimensional action representation and a transform
function between the representation policy and original policy. The embedding
is used for training the agent in the lower dimensional space and makes use of
underlying structure, similar to Tennenholtz et al.

Our paper has expanded on some of the ideas in Rosman et al. [11] but in
a concurrent action setting specifically extracting task-invariant structure into
a prior for action exploration. There are a few similarities in approach with
Tennenholtz et al. They use supervised embedding and clustering of action space
vs our unsupervised, count-based spectral clustering approach; we both look at
the action-only context; the use of the clusters during exploration is also different.
Tennenholtz et al. cluster to prevent redundant selections of actions whereas we
cluster effective combinations with positive interactions.

3 Preliminaries

This work considers the setting of a standard Markov Decision Process (MDP)
[14], defined by (S,A, T,R, γ) where S refers to the set of states, A the set
of n primitive actions defined by {a0, a1, ..., an}, T the transition function T :
S × A× S → [0, 1] defines the probability of moving from a state s to the next
state s’ after taking action a, R the reward function R : S × A → R such that
R(s, a) is the expected reward received when taking action a at state s and
γ ∈ [0, 1] is the discount factor.

The focus of this paper is concurrent actions as opposed to primitive actions.
A concurrent action is represented as a set of actions Ai ⊂ A containing np
primitive actions. In this paper we focus primarily on the case where np = 2, so
the agent takes two actions (hereafter referred to as an action set) per timestep
{ai0, ai1} where ai0, ai1 ∈ A.

In the normal RL framework a stochastic policy π : S ×A→ [0, 1] is defined
where π(s, a) is the probability of selecting an action a in state s and Qπ(s, a)
holds the value of each state-action pair under the policy π.

In the concurrent action environment the Q-value function holds the values
of the action set, Ai, at each state. The goal is to find the optimal action set Ai
that yields the highest value at any state s. While there is no restriction on how
actions are selected, the actions are evaluated at the action set level.

Action selection generally takes place in the explore/exploit phase where
the agent’s accumulated knowledge of the environment is utilised or it is forced
to explore new state-action-set combinations. Exploration can take a long time
in a concurrent action space with a large number of actions. The next section



expands the proposed ideas of learning structure in the action space to improve
the sample efficiency of the exploration process.

4 Implicit structure: Action Elimination using task
invariance

This approach collects samples from successful trajectories across multiple tasks
to extract or filter the most frequently used action sets.

The intuition is that high frequency action sets are probably more useful and
could be used as a basis for elimination. To reduce bias a pre-training process is
performed over multiple tasks to extract a set of task invariant action sets that
are referenced during exploration. The motivation is to remove useless action sets
by favouring the task-invariant sets thereby reducing the size of the exploration
space and making exploration more efficient.

Algorithm 1: Processing Count Data

1. Generate Counts matrix
Generate trajectories using RL algorithm (eg. Q-learning)
Collect count of each action set selected per state for successful episodes
Average over multiple runs to generate a count matrix by state and
action set, Counts(s, a, a)

2. Process Action Counts
Hyperparameters: threshold t, no. of top counts NC
Reshape Counts from SxNxN to SxN2, unrolling action sets per state

2.a. Process Action Elimination Count Matrix
Set threshold t > 0 and NC to low number
Apply threshold filter to Counts and accumulate only the remaining top
NC action counts across all states
Normalise the vector formed: probs(Ai)

2.b. Process Clustering Count Matrix
Set threshold t = 0 and increase NC
Apply threshold filter to Counts and accumulate the top NC action
counts across all states
Reshape to form matrix W with dimensions N x N
Return Vector probs(Ai) with dim 1xN2 or in matrix form, W , with
dim N x N , where N is no. of primitive actions

To collect the common or frequent action sets, a configurable environment
is needed to easily create multiple tasks. Algorithm 1 describes how the count
data is processed for both the action elimination method of this section (step
2a) and the clustering method of the next section (step 2b).

In a pre-training phase, a Q-learning algorithm is used to generate trajecto-
ries. The Q-function holds the value of each state-action set pair, Q(s,Ai) where



Ai is the set of two actions {ai0, ai1}. Successful trajectories are collected where
the goal state is reached before the maximum allowed step count (a hyperpa-
rameter).

The algorithm describes how the counts per action set are collected for a
task. Only the most frequently used action sets are retained, controlled by a
threshold hyperparameter, t. Counts below this threshold will be filtered out,
effectively pruning the action sets. The result is a distilled action set usage
vector representing each task. Note this approach holds count data by action set
and not by action primitives.

Algorithm 2: Exploration with Action Elimination Prior

Given: probs(Ai), Q(s,Ai)

If Explore:
Sample an action set from probs(Ai)→ Ai

Else if Exploit:
Find action set with max value in Q(s,Ai)→ Ai

Return Ai

This process is repeated for multiple tasks to build up a collection of invariant
action sets for this domain. The action set counts are averaged across all tasks
to produce a vector of importance weightings for each action set, which is then
injected into the exploration process as prior knowledge. Algorithm 2 briefly
illustrates how the action elimination prior is used to impact action selection in
a basic Q-learning algorithm.

Averaging the counts over multiple tasks makes this a context-free approach,
i.e. there is no direct association with states at this time. Experiments show
that the training time is improved with this general context-free reduction of
the action space.

The next section looks at an approach that finds and exploits explicit struc-
ture in concurrent action spaces.

5 Explicit Structure: Clustering of action space

The previous approach treats action sets as primitives, i.e. expands the action
space to include all possible combinations of actions, then learns the best policy
using a standard Q-learning algorithm. The general reduction in the number of
eligible action sets is effective at improving time to convergence but the approach
does not explicitly learn about the relationship between actions and is potentially
discarding valuable information.

This second approach learns explicit structure in the action space in the
form of clusters. The premise is that high counts of some action sets imply an
underlying relationship or affinity between the primitive actions in those sets,



that can be used to separate the action space into clusters. During exploration
and action selection the agent would select from within these clusters on the
basis that there is a higher likelihood of picking an effective action set.

Algorithm 3: Spectral Clustering of Actions

Requires:
Count matrix for action sets, W , with dim N x N , where N is no. of
primitive actions

1. Prepare Affinity Matrix:
Check Symmetry, zero diagonals

2. Apply Spectral Clustering algorithm [9]
Degree matrix: D where dii is the diagonal sum of row W [i]

Normalised Laplacian: L = D−1/2WD−1/2

V is a matrix formed from the top k of eigenvectors of L
Y is the matrix V normalised
Apply k-means to Y for k clusters and create list of clusters, C

3. Post Process Clusters
Remove clusters with low silhouette score
Remove single item sets
Return List of clusters C

Algorithm 3 describes how the spectral clustering algorithm in Ng et al. [9]
is applied to cluster actions using a count matrix.

As in the previous approach frequent action sets are collected from successful
trajectories using a Q-learning algorithm in a pre-training phase. Algorithm 1,
step 2b describes the generation of the count matrix from trajectory data. The
threshold and top counts hyperparameters are used to control the sparsity of the
matrix.

As before this process is repeated across multiple tasks. An assumption of
this work is that the partitioning of the action space does not change with the
task however this will be considered in future work. A count matrix of dimension
N ×N is passed as input to Algorithm 3.

Spectral clustering is a clustering method that separates data using the eigen-
vectors of the Laplacian of an affinity matrix [6]. The affinity matrix should re-
flect the similarity (or affinity) of the component elements. The count matrix is
used as the basis for an affinity matrix and spectral clustering is performed to
find clusters in the action space. The count matrix may be viewed as a graph
where each action is a node and the edge is the strength of the relationship
between actions, the strength reflected by the count.

The spectral clustering algorithm applied [9] describes some conditions that
the affinity matrix should meet. The first step in Algorithm 3 transforms the
count matrix into the appropriate form. In step 2 the eigenvalues and eigen-
vectors of the normalised Laplacian are calculated; typically cluster blocks are



revealed in this step. K-means clustering is used to group the top eigenvectors.
The number of clusters k is a hyperparameter, however it is also determinable
using an eigengap heuristic [9]. A final post processing step uses a cluster mea-
sure to check the validity of each cluster and retains only the most confident
clusters.

Spectral clustering was applied on this data although another clustering
method could be used instead. Spectral clustering works well on correlated data
and the count matrix forms a natural affinity matrix.

Once the clusters are determined, this structural information is built into the
action selection method of the exploration process. Algorithm 4 briefly shows
how the clusters are used during exploration to compose an action set.

Algorithm 4: Action Selection - Clustering

Given: List of clusters C, Q(s,Ai), no. of actions in a set np
If Exploration:

Sample a cluster ci from C randomly
Select np actions from within ci → Ai

Else if Exploitation:
Find action set with max value in Q(s,Ai)→ Ai

Return Ai

6 Experiments

Experiment Setup: A basic four room grid environment was used, Figure 1. The
key requirement was an easily configurable environment for generating multiple
tasks. In this environment the doors, start state (S) and goal state (G) are easily
changed to create different tasks. A single goal state (G) is located in one of
the rooms for each task. The set of primitive actions is fixed across all tasks:
6 actions viz. {U-Up, D-Down, L-Left, R-Right, O-Open, E-Enter}. There is a
per-step penalty of -0.01 and the goal state has a reward of 10. There are no
rewards associated with the doors. For each room configuration the agent was
run for 50 runs of 100 episodes; each episode was truncated after 100 steps.
Several different room configurations were generated to mimic different tasks
using the same set of actions.

Agent: The agent is configured to take 2 actions per timestep. There are no
limitations on the composition of the action sets so useless action sets such as
{U,D} are possible. A basic Q-learning algorithm was implemented. It should be
noted that other algorithms such as SARSA or Policy Gradients [14] would work
too as both methods are algorithm agnostic. In the data collection pre-training
phase the agent was designed to select an action set of two actions per step
by either exploring or exploiting. Exploration involves selecting two primitive



Fig. 1: Four room grid world

actions randomly with probability ε to create an action set. ε starts high at 0.9
and was annealed to 0. Exploitation is unchanged and performs a lookup of the
maximum value action set in the Q-value function for any state.

6.1 Implicit Structure - Action Elimination

Eight tasks were chosen at random, each with a different room configuration.
The agent was pre-trained using the Q-learning algorithm and counts of action
sets by state were collected over the total runs and averaged. The counts were
aggregated across all states for each action set and normalised resulting in a
vector of proportional representation for all action sets. The threshold hyper-
parameter was set to 7 and the number of top actions to 2 to generate a very
sparse count matrix.

A sample of the resulting vector of proportions for the action sets is illustrated
as heatmap in Figure 2. Each location on the grid is an action set, for example
the first block on the top left is the action set (Up, Up). The colour intensity
reflects how often that action set has been used in successful trajectories. The
(Open, Enter) action set is relatively frequent, as is the (Down, Down) action set.
The heatmap shows some of the bias that creeps in with only 8 tasks. Increasing
the number of tasks during the first phase of training should help to reduce this.

The vector of proportions is injected into the exploration process as prior
knowledge in the same domain but for a completely different set of tasks. Figure
3 compares the time to convergence for four randomly selected new tasks before
and after applying action elimination. The graphs show a reduction in average
steps to convergence implying that basic action elimination during exploration
is effective in concurrent action spaces.

The results show that using the frequency of actions selected across tasks as
a basis for eliminating less useful action sets, without any contextual reference
to the state, is sufficient to result in a decent performance improvement.
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Fig. 3: Comparison of task convergence for pre-training(solid), clustering ap-
proach (dots), action elimination (dashed) for 4 random tasks



6.2 Explicit Structure - Clustering

The purpose of these experiments is to learn some structural aspects from the
domain’s action space that will improve the convergence times of other tasks
in the same domain. To better illustrate this, the environment is designed with
natural clusters in the action space. In particular a very specific set of actions
was required to move through the doors in the four rooms environment, viz. (O,
E) in a single timestep. Once again there were two phases: phase one was data
collection pre-training phase across multiple tasks using a Q-learning algorithm
with ε−greedy exploration; phase two was training under the new exploration
model (Algorithm 4).

The agent should learn that the O-Open and E-Enter actions form a cluster
leaving the navigation actions {U,D,L,R} to form a second cluster. In the sec-
ond phase, action selection during exploration was constrained to intra-cluster
selections rather than inter-clusters. This means the agent was selecting from
door-related actions or navigation actions, which makes intuitive sense.

As mentioned above spectral clustering was applied to the count matrix to
reveal a partition in the action space. The threshold was set to zero so no ac-
tion sets were removed from the action space. The eigenvalues generated by the
algorithm give an indication of how the matrix may be partitioned, particularly
the second smallest eigenvalue. Plotting the eigenvectors of the first and second
smallest non-zero eigenvalues shows a clear separation of the two sets of actions
that corresponded to the door-related and navigation related groups expected
(Figure 4).
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Fig. 4: Plotting the top eigenvectors shows separation of the Open, Enter ac-
tions and the navigation actions Up, Down, Left, Right



The action selection method in Algorithm 4 was applied to select actions
from within the two clusters when creating action sets during exploration. The
resulting comparative graphs in Figure 3 over four randomly generated new tasks
show an improvement in learning times, similar to the action elimination.

The significant improvement in convergence times after structure is applied,
even with the randomness of choosing a cluster and then selecting actions within
the cluster, highlights just how much time is typically lost by the agent in an
ε−greedy exploration process.

The performance of the clustering approach could be improved by knowing
which cluster to select based on the state, for example selecting from the door-
related actions when at a door state and navigation-related actions otherwise.
This contextual approach should have a positive impact on learning, however it
is interesting to observe that just an analysis of the action space can produce a
useful reduction in training time that is once again invariant across tasks.

7 Conclusion and Future Work

This paper proposed two approaches for using structure to improve sample ef-
ficiency during exploration in concurrent action environments including action
elimination and clustering. Count data from successful trajectories were used as
a basis for extracting prior knowledge across multiple tasks in the same domain.
The priors were used to enhance a Q-learning algorithm and showed significant
improvements in policy convergence times. Given that these are context free
mechanisms there is room for improvement by bringing in context.

Some of the key limitations to these approaches include the need for a pre-
training phase which means the methods are not online. There is also a need for
successful trajectory data which limits these approaches to environments that
are solvable by other means. Other work such as Tennenholtz et al. [15] and
Harmer et al. [5] use demonstrator or expert trajectories which could work here
too.

Future work would look into online methods that would remove the pre-
training phase and not require solved trajectories. This will impact the scalability
of these approaches. Secondly the use of context to better select clusters of
actions will be considered.
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