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A Identifying Factor Importance
A factor in a dataset is considered more important if a VAE
prefers to learn it before another factor. Burgess et al. [2017]
identify this order of importance through a slow increase of the
information capacity of VAEs during training. We note that
simply by looking at the average perceived distance between
observations along factor traversals, this ordering can be deter-
mined. Factors with a greater average distance will minimise
the error in the reconstruction loss due to random sampling the
most when learnt first. These factors (or components thereof)
will thus generally be preferred.

To compute the average perceived distance along a factor
f , we sample a ground-truth coordinate vector y(a) ∈ Y and
then another random different coordinate vector y(b) ∈ Y(a,i)

over the traversal for factor f passing through y(a). Note
that y(a) ̸= y(b). Then, we compute the perceived distance
between the corresponding observations dpcv(x(a),x(b)). We
repeat this process to compute the expected perceived distance
along factor traversals, given by Equation (1).

di = Ea∈Y, b∈Y(a,i), a ̸=b

[
dpcv(x

(a),x(b))
]

(1)

We determine the factor importance for dSprites as: dx ≈
0.058 and dy ≈ 0.057 position, then dscale ≈ 0.025, then
dshape ≈ 0.022, and finally dorientation ≈ 0.017. This aligns
with the order determined by Burgess et al. [2017]. Computing
estimates over an entire dataset can be intractable—for our
estimates, we sample at least 50000 pairs per factor.

Additionally, we compute the average perceived distance
between any random pairs in the datasets (see Equation (2))
and find that the average distance is higher. For dSprites
specifically, we have dran ≈ 0.075. This suggests that the
ground-truth factors correspond to axes in the data that min-
imise the reconstruction loss and is further evidence as to why
VAEs appear to learn disentangled results.

dran = Ea∈Y, b∈Y, a ̸=b

[
dpcv(x

(a),x(b))
]

(2)

A.1 Factor Importance Results
In Appendix A, we relate our work to Burgess et al. [2017]
by estimating the importance of different factors over the
dSprites [Matthey et al., 2017] dataset using the reconstruc-
tion loss (MSE) as the perceived distance function between
observation pairs.

We compute and list the order of importance of factors from
the remaining datasets in Table 1. These importance values are
computed as the average perceived distances between 50000
randomly sampled observation pairs taken along random factor
traversals. Factors with higher average perceived distances
will be prioritised by the model. For comparison, the average
distance between any random pair in the dataset is also given.
The average distances between pairs along factor traversals
are usually less than the random distance, indicating that the
ground-truth factors usually correspond to axes in the data that
minimise errors.

Dataset Factor Mean Dist. Dist. Std.

Cars3D

random 0.0519 0.0188
azimuth 0.0355 0.0185

object type 0.0349 0.0176
elevation 0.0174 0.0100

3D Shapes

random 0.2432 0.0918
wall hue 0.1122 0.0661
floor hue 0.1086 0.0623

object hue 0.0416 0.0292
shape 0.0207 0.0161
scale 0.0182 0.0153

orientation 0.0116 0.0079

Small NORB

random 0.0535 0.0529
lighting 0.0531 0.0563

category 0.0113 0.0066
rotation 0.0090 0.0071
instance 0.0068 0.0048

elevation 0.0034 0.0030

dSprites

random 0.0754 0.0289
position y 0.0584 0.0378
position x 0.0559 0.0363

scale 0.0250 0.0148
shape 0.0214 0.0095

orientation 0.0172 0.0106

XYSquares
random 0.0308 0.0022

y (R, G, B) 0.0104 0.0000
x (R, G, B) 0.0104 0.0000

Table 1: Average perceived distances sampled along random factor
traversals for different datasets. Components of factors with higher
average distances will usually be prioritised by the model.

We visualise the distribution of distances along factor traver-
sals using cumulative frequency plots as in Figure 1. It is



interesting to note the distinct shift in structure for the adver-
sarial XYSquares dataset, since distance values are constant
depending on the number of differing factors.

B Implementation Details
In this section, we describe our various implementation details
of the β-VAE [Higgins et al., 2016] and Ada-GVAE [Locatello
et al., 2020] frameworks, as well as the handling and standard-
isation of the different ground-truth datasets.

B.1 Beta Normalisation
For general consistency across datasets with different numbers
of channels and models with different numbers of latent units,
we implement beta normalisation as described by Higgins et
al. [2016].

Instead of taking the sum over the KL divergence in the
regularisation term and the sum over elements in the recon-
struction term of the VAE loss, we instead compute the means
over elements in both terms and adjust the β value accordingly.

B.2 Symmetric KL
The original Ada-GVAE implementation uses the asymmetric
KL divergence DKL (p || q) as the distance function between
the corresponding latent units of observation pairs. The Ada-
GVAE uses this distance measure to estimate which of these
latent distributions should be averaged together.

We instead follow the approach of Dittadi et al. [2021] and
use the symmetric KL divergence to compute these distances
between latent units, improving the averaging procedure and
computation of the threshold. The symmetric KL divergence
is defined in Equation (3).

D̃KL (p, q) =
1

2
DKL (p || q) + 1

2
DKL (q || p) (3)

B.3 Sampling Ada-GVAE Pairs
The Ada-GVAE [Locatello et al., 2020] framework introduces
weak supervision by sampling pairs of observations such that
there are always k ∈ [1,F] differing factors between them,
where F is the total number of factors generating the dataset.
We use the weaker but more realistic case for sampling each
pair, where k is sampled uniform randomly from the range
[1,F] as described in the original paper.

B.4 Dataset Standardisation
For improved consistency and training performance, dataset
observations are standardised. We first resize the observations
to a width and height of 64× 64 pixels using bilinear filtering
if needed. Then the observations are normalised such that
on average each channel of the image has a mean of 0 and
a standard deviation of 1. Normalisation constants for each
channel are precomputed across the entire dataset and are
given in Table 2.

C Experiment Hyper-Parameters
In this section, we give further details on the experiments
conducted throughout the paper and their chosen hyper-
parameters. For easier comparison with prior work, we use

Dataset Mean Std

Cars3D
R: 0.897667614997663
G: 0.889165802006751
B: 0.885147515814868

0.225031955315030
0.239946127898126
0.247921063196844

3D Shapes
R: 0.502584966788819
G: 0.578759756608967
B: 0.603449973185958

0.294081404355556
0.344397908751721
0.366168598152475

Small NORB 0.752091840108860 0.095638790168273

dSprites 0.042494423521890 0.195166458806261

XYSquares
R: 0.015625
G: 0.015625
B: 0.015625

0.124034734589209
0.124034734589209
0.124034734589209

Table 2: Precomputed channel-wise normalisation constants for
datasets, assuming values of the input data are in the range [0, 1].

similar hyper-parameters, optimiser and model choices to Hig-
gins et al. [2016]; Kim and Mnih [2018]; Locatello et al.
[2019].

C.1 Model Architecture
We use similar convolutional encoder and decoder models as
Higgins et al. [2016]. A full description of the basic VAE
architecture is given in Table 3. The Gaussian encoder param-
eterises the mean and log variance of each latent distribution.
The decoder uses the Gaussian derived Mean Squared Error
(MSE) as the loss function. The number of input channels
the encoder receives and the number of output channels the
decoder produces depends on the dataset the model is trained
on, this is either 1 or 3 channels.

Encoder

Input {1 or 3}x64x64
Conv. 32x4x4 (stride 2, ReLU)
Conv. 32x4x4 (stride 2, ReLU)
Conv. 64x4x4 (stride 2, ReLU)
Conv. 64x4x4 (stride 2, ReLU)
Linear 256 (ReLU)
2x Linear {9 or 25}

Decoder

Input {9 or 25}
Linear 256 (ReLU)
Linear 1024 (reshape 64x4x4, ReLU)
Upconv. 64x4x4 (stride 2, ReLU)
Upconv. 32x4x4 (stride 2, ReLU)
Upconv. 32x4x4 (stride 2, ReLU)
Upconv. {1 or 3}x4x4 (stride 2)

Table 3: VAE encoder and decoder architectures. The model’s inputs
and outputs change based on the number of channels in the dataset,
while the number of latent units the model has depends on the experi-
ment hyper-parameters.



C.2 Optimiser And Batch Size
Models are trained using the Adam [Kingma and Ba, 2015]
optimiser with a learning rate of 10−3. A batch size of 256 is
used in the case of the β-VAE [Higgins et al., 2016]. Similarly,
in the case of the weakly-supervised Ada-GVAE [Locatello et
al., 2020], 256 observation pairs are sampled per batch using
the strategy from Appendix B.3.

C.3 Experiment Sweeps
Experiment plots and results are all produced from models
trained over grid searches of hyper-parameters. Grid search
values are given in Table 4. If values are not specified in the
hyper-parameter sweep, then default values from the corre-
sponding section of the experiment or supplementary material
are used.

C.4 Total Compute
We estimate that approximately ∼ 1040 hours of compute
across a computing cluster have been used to train the models
needed to generate the plots and results presented throughout
this paper.

Due to the inherent high variance of unsupervised VAE
results, multiple runs using the same hyper-parameters but
different random seeds are needed for comparing frameworks
[Locatello et al., 2019]. This susceptibility of unsupervised
methods to the starting random seed makes extended com-
parisons between frameworks prohibitive due to the computa-
tional cost.
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Figure 1: Cumulative proportion of perceived distance values between pairs sampled along factor traversals, compared to perceived distances
between random pairs. Factors which are more important for the VAE to learn first to minimise the reconstruction loss have higher average
perceived distances (lines shifted further to the right). This corresponds to the experimental results from Burgess et al. [2017] which show that
as the information capacity of a VAE is increased, it learns factors in order. For dSprites, this is x and y position, followed by scale, then shape,
and finally orientation.



Experiment Total Hyper-Parameters

5.3. Adversarial Experiments
(Figure 6)

8× 2× 2× 5
= 160

×1 repeats
= 160

× ∼ 4h
≈ 640h

train steps = 115200

beta (β) ∈
{0.000316, 0.001, 0.00316,
0.01, 0.0316, 0.1, 0.316, 1.0}

framework ∈ {β-VAE,Ada-GVAE}
latents (D) ∈ {9, 25}

dataset ∈
{dSprites, 3D Shapes,Cars3D,

Small NORB,XYSquares}

5.4. Varying Levels of Overlap
(Figure 9)

2× 2× 8
= 32

×5 repeats
= 160

× ∼ 2h
≈ 320h

train steps = 57600

beta (β) ∈ {0.001, 0.00316}
framework ∈ {β-VAE,Ada-GVAE}
latents (D) = 9

dataset = XYSquares
grid spacing ∈ {8, 7, 6, 5, 4, 3, 2, 1}

6.1. Augmented Loss Experiments
(Figure 11)

2× 2× 2
= 8

×5 repeats
= 40

× ∼ 2h
≈ 80h

train steps = 57600

beta (β) ∈ {0.0001, 0.0316}
framework ∈ {β-VAE,Ada-GVAE}
latents (D) = 25

dataset = XYSquares
recon. loss ∈ {MSE,BoxBlurMSE}

box blur radius = 31 (63x63 in size)

box blur weight = 632 = 3969

Table 4: Grid search hyper-parameters used for the different experiments throughout this paper.
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