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Abstract

In this work, we investigate the properties of data that cause popular representation learning approaches to fail. In
particular, we find that in environments where states do not significantly overlap, variational autoencoders (VAEs) fail
to learn useful features. We demonstrate this failure in a simple gridworld domain, and then provide a solution in
the form of metric learning. However, metric learning requires supervision in the form of a distance function, which
is absent in reinforcement learning. To overcome this, we leverage the sequential nature of states in a replay buffer to
approximate a distance metric and provide a weak supervision signal, under the assumption that temporally close states
are also semantically similar. We modify a VAE with triplet loss and demonstrate that this approach is able to learn useful
features for downstream tasks, without additional supervision, in environments where standard VAEs fail.
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1 Introduction

A fundamental challenge in machine learning is to discover useful representations from high-dimensional data, which
can then be used to solve subsequent tasks effectively. Recently, deep learning approaches have showcased the abil-
ity of neural networks to extract meaningful features from high-dimensional inputs for tasks in both the supervised
and reinforcement learning (RL) setting [1, 2]. While these learnt representations have obviated the need for manual
feature selection or preprocessing pipelines, they are often not semantically meaningful, which can negatively impact
downstream task performance [3]. Prior work has therefore argued that it is desirable to learn a representation that is dis-
entangled. While there is no consensus on what constitutes a disentangled representation, it is generally agreed that such
a representation should be factorised so that each latent variable corresponds to a single explanatory variable responsi-
ble for generating the data [4]. For example, a single image from a video game may be represented by latent variables
governing the x and y positions of the player, enemies and collectable items.

In deep RL, there are two general approaches to feature learning. The first is to implicitly discover features by sim-
ply training an agent to solve a given task, relying on a neural network function approximator and stochastic gradient
descent to uncover useful features. An alternative approach is to explicitly learn features through some auxiliary ob-
jective. One such method is to use variational autoencoders (VAEs) [5], which are trained on collected data to learn a
lower-dimensional representation capable of reconstructing the given input. VAEs have been shown to produce disen-
tangled representations when trained on synthetically generated data, although there is still no explicit reason why these
representations should align with generative factors in the data.

In this work, we investigate the correspondence between the VAE reconstruction loss and learnt distances in the latent
space. We demonstrate the ineffectiveness of state-of-the-art models by designing a simple visual gridworld domain
over which VAE-based frameworks fail to learn useful features for a downstream RL task. We overcome this limitation
by utilising the sequential nature of an RL replay buffer along with metric learning to guide representations learnt by
VAEs. Furthermore, we design a disentangled metric learning approach which further improves learnt representations
for downstream tasks.

2 Background

We model an agent acting in an environment by a Markov decision processes (MDP) M = ⟨S,A, T,R, γ⟩ where (i) S is
the state space; (ii) A is the set of actions; (iii) T (s, a, s′) describes the transition dynamics, specifying the probability of
arriving in state s′ after action a is executed from s; (iv) R(s, a) specifies the reward for executing action a in state s; and
(v) γ ∈ [0, 1) is a discount factor. The agent’s aim is to compute a policy π that maps from states to actions and optimally
solves the task. Given a policy π, RL algorithms often estimate a value function vπ(s) = Eπ

[∑∞
i=0 γ

iR(si, ai)|s0 = s
]
,

representing the expected return obtained following π from state s. The optimal policy π∗ is the policy that obtains the
greatest expected return at each state: vπ

∗
(s) = v∗(s) = maxπ v

π(s) for all s ∈ S. A related quantity is the action-value
function, qπ(s, a), which defines the expected return obtained by executing a from s, and thereafter following π. Similarly,
the optimal action-value function is given by q∗(s, a) = maxπ q

π(s, a) for all states s and actions a [6].

For high-dimensional or continuous state spaces, representing the value function precisely is intractable. Instead, the
value function is normally approximated through a parameterised function vπ(s) ≈ v̂(s;w), where w is some parameter
vector to be learned; in deep RL, these parameters are the weights of a neural network that can be trained to approximate
the value function. Since these neural networks require significant amounts of data to train, one way to improve sample
efficiency is to use a replay buffer, where old experience data is stored in memory and reused to update the network as it
continues to interact with the environment.

2.1 Representation Learning

Assume a dataset X =
{
x(0), ...,x(n)

}
is a set of independent and identically distributed (i.i.d)1 observations x ∈ RN,

generated by some random process involving an unobserved random variable z ∈ RD of lower dimensionality D ≪ N.
Additionally, the true prior distribution z ∼ p∗(z) and true conditional distribution x ∼ p∗(x|z) are unknown. Variational
autoencoders (VAEs) aim to learn this generative process. Unlike autoencoders (AEs), which consist of an encoder
fϕ(x) = z and decoder gθ(z) = x̂ with weights ϕ and θ, VAEs instead construct a probabilistic encoder by using the
output from the encoder or inference model to parameterise approximate posterior distributions z ∼ qϕ(z|x). The
approximate posterior is then sampled from during training to obtain representations z, which are then decoded using
the generative model to obtain reconstructions x̂ ∼ pθ(x|z).
A factorised Gaussian encoder [5] is commonly used to model the posterior using a multivariate Gaussian distribu-
tion with diagonal covariance z ∼ N (µϕ(x), σϕ(x)), with the prior given by the multivariate normal distribution

1In RL, a replay buffer is not i.i.d, as data is generated by a sequential decision process. This can be mitigated via random sampling.
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pθ(z) = N (0, I), with a mean of 0 and diagonal covariance I. To enable backpropagation, the reparameterisation trick
in Equation (1) is used to sample from the posterior distribution during training by offsetting the distribution means by
scaled noise values.

ϵ ∼ N (0, I); z = µϕ(x) + σϕ(x)⊙ ϵ (1)

VAEs maximise the evidence lower bound (ELBO) by minimising the loss given by Equation (2). VAE-based approaches
often make slight modifications to this loss but generally the terms can still be grouped into regularisation and reconstruc-
tion components. The regularisation term constrains the representations learnt by the encoder, while the reconstruction
term improves the outputs of the decoder so that they better match the inputs to the encoder. These terms usually conflict
in practice, strong regularisation leads to worse reconstructions but often better disentanglement [4, 7].

Lrec(x, x̂) = Eqϕ(z|x) [log pθ(x|z)] ; Lreg(x) = −DKL (qϕ(z|x) ∥ pθ(z)) ; LVAE(x, x̂) = Lrec(x, x̂) + Lreg(x) (2)

3 A Motivating Gridworld Environment

Before investigating representation learning in RL, we first consider the simpler unsupervised learning setting, in which
VAEs and their variants are primarily developed through benchmarks over synthetic data. The 3D Shapes dataset [8]
in Figure 1a contains observations of shapes fixed in the centre of the image with progressively changing attributes or
factors such as size and colour. If, as humans, we are given unordered observations from a traversal along the size factor
of 3D Shapes, it would be easy to order these observations using a perceived increase or decrease in the size of the shape.
We might even say that the shapes in the images overlap by different amounts. We may consider shapes that are closer
in size to possess more overlap, and therefore also consider them to be closer together in terms of distance. In contrast,
consider a simple gridworld environment (Figure 1b) where an agent moves to adjacent cells in any of the four cardinal
directions. The agent is a square of size 8 × 8 pixels and each action translates it 8 pixels in a given direction. Note that
in this case, there is no overlap between the agent in any two images because of the distance it moves.

(a) 3D Shapes [8] (b) Simple gridworld domain with pixel-based states

Figure 1: (a) A common synthetic dataset—images are generated by smoothly varying ground-truth factors such as floor
hue and object shape. (b) Gridworld environment whose underlying factors are the agent’s xy-position.

It is therefore natural to ask whether a lack of overlap is problematic. To answer this question, let x be an observation
and y be the underlying factors that generated it. We define the ground-truth distance between pairs of observations
{x(a),x(b)} as the Manhattan distance between the observations’ underlying factors: dgt(x

(a),x(b)) = ∥y(a) − y(b)∥1.2
Similarly, we define the perceived distance as the difference between the two observations in pixel space as measured by
the model’s reconstruction loss function (usually MSE): dvis(x(a),x(b)) = Lrec(x

(a),x(b)).3

To investigate the above question, we modify the environment so that the agent moves in smaller increments. For each
step size s, we generate all possible image states and store them in a buffer.4 As s decreases, the probability that the
agent position overlaps in any two randomly sampled images increases. We next visualise ground-truth and perceived
distances for each step size setting, with the results given by Figure 2a. The results show a clear relationship between the
two distance measures—at very small step sizes (with high probability of overlap) there is almost perfect correspondence.

We further probe this relationship by using the data buffers as an unsupervised dataset. We make the problem harder by
converting it to a multiagent environment which increases the number of states—three objects are now each described
by their xy-positions. We train a β-VAE [7] and the state-of-the-art weakly-supervised Ada-GVAE [9]. The β-VAE scales
the VAE regularisation term with a coefficient β > 0, while the Ada-GVAE encourages axis alignment and shared latent
variables between pairs of observations. This is achieved by averaging together latent distributions between observation
pairs that are estimated to remain unchanged when the KL divergence is below some threshold. To evaluate if the

2The notation a(i) is alternative notation for either a named variable or the ith element of the ordered set A.
3We use the term increased perceived overlap as a synonym for lower perceived distance between neighbouring states.
4We modify the size of the environment to ensure the size of the buffer remains constant regardless of the step size.
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(a) Top Row: Manhattan ground-truth distance matrices over factor traver-
sals. Bottom Row: Pixel-wise perceived distance matrices between observa-
tions over factor traversals. Left to Right: Step size increases from 1px to 8px.
Smaller values result in more overlap in the data space, which leads to higher
a probability of being able to find an ordering along a factor traversal.

(b) Regression plot of increasing domain spacing
versus MIG score (higher is better). As the β-VAE
(dashed line) and Ada-GVAE (solid line) are trained
with decreasing (left to right) levels of overlap, their
disentanglement performance worsens.

Figure 2: Varying spacing of valid locations in gridworld domain affects overlap as perceived by an VAE.

representations are disentangled, we use the Mutual Information Gap (MIG) [10] The results in Figure 2b indicate that
as the spacing decreases and overlap is introduced, the disentanglement performance improves as perceived pixel-wise
distances better correspond to latent and ground-truth distances.

4 Triplet Loss

VAEs, therefore, appear to learn latent distances over the data that correspond to their reconstruction loss. However, if
these distances are not useful, we may be able to instead guide the learning process by introducing metric or similarity
learning. A common approach is triplet loss, which makes use of three observations Xtriple = (x(a),x(p),x(n)). These
are sampled using supervision such that the anchor x(a) is considered closer to positive x(p) than it is to the negative x(n).
The intuition is that corresponding representations z(a), z(p), z(n) output by a network should satisfy the original anchor-
positive and anchor-negative distance constraints: d(z(a), z(p)) < d(z(a), z(n)). We construct the β-TVAE as three parallel
versions of the same β-VAE augmented by the soft-margin formulation of triplet loss, where α > 0 is the scaling factor:

LβTVAE = α ln
(
1 + exp

(
d(z(a), z(p))− d(z(a), z(n))

))
︸ ︷︷ ︸

Triplet loss

+
1

3

∑
x∈Xtriple

LβVAE(x) (3)

4.1 Adaptive Triplet Loss

Standard triplet loss provides no direct pressure to learn factored representations; for example the x and y factors may
be encoded with some arbitrary rotation in the latent space. To fix this, we adapt the Ada-GVAE[9] to construct Ada-
Triplet and the Ada-TVAE. These adaptive methods encourage partially shared representations such that differences
between observations are encoded in subsets of latent units. Shared latent units are estimated as those whose distances
δi = |z(a)i − z

(n)
i | are less than half way between the maximum and minimum: δi < 1

2 (mini δi +maxi δi). To encourage
factored latents, we elementwise multiply ⊙ arguments of the anchor-negative triplet term by the weight vector w =
(ω1, ..., ωD). Shared latents are weighted less ωi ∈ (0, 1) and non-shared units ωi = 1 remain unchanged:

LAda−Triplet = ln
(
1 + exp

(
d(z(a), z(p))− d(ω ⊙ z(a),ω ⊙ z(n))

))
(4)

4.2 Using the Replay Buffer for Metric Learning and Feature Extraction

Typically, triplet loss is used in the supervised learning case, where the anchor, positive and negative samples are known.
However, no such signal exists in the RL setting. To overcome this, we leverage the sequential nature of the problem and
assume that states closer together in time are also on average closer in terms of their ground-truth factors.

Given a replay buffer B = {s0, a0, r0, s1, a1, r1, . . .}, we use this assumption to sample some anchor state sa, a positive
sp and a negative sn such that n > p > a. To test the effectiveness of this assumption, we execute a uniformly random
policy to populate a replay buffer. We train a β-VAE and Ada-GVAE as baselines, which we compare against the β-TVAE
and Ada-TVAE from the previous sections. As a sanity check, we also train a fully supervised β-TVAE and Ada-TVAE on
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the underlying ground-truth factors of the environment (the agent’s xy-position) so that the anchor-positive ℓ1 distance
is always less than the anchor-negative. The results in Figure 3a demonstrate that triplet-based models significantly
outperform the baselines by learning better features.

Finally, we test the effect of using the encoders of these learnt models as feature extractors in an RL setting. We freeze
the weights of the previously trained encoders, and apply deep Q-learning [2] over these features to solve the task of
reaching the top left corner from the bottom right (rewards of −1 on all timesteps). Results in Figure 3b demonstrate that
features from the adaptive triplet loss model are the most useful for the RL task; however, this is well approximated by
sampling triplets using only the ordering of states from the replay buffer. Both triplet methods outperform the baselines;
however, adaptive triplet encourages factored representations which are better features for the downstream RL task.

(a) (b)

Figure 3: (a) Different VAE frameworks trained to extract features. The plot shows the average rank correlation between
the ground-truth distances and corresponding distances between these learnt features. Striped bars are models trained
using ground-truth distances, while solid bars use our approach of sampling sequentially from the replay buffer. (b)
Downstream RL training rewards using previously learnt features. Mean and standard deviation are given over 30 runs.

5 Conclusion

We identified a shortcoming of VAE-based approaches in domains where there is little or no variation in perceived dis-
tances or overlap. This may be inherent in the environment, or arise inadvertently due to design decisions. For example,
if frame skipping [2] or high-level skills are used, there may be no perceived overlap between successive states in the
buffer. We overcome this problem by incorporating the inherent temporal information present in an episode through the
simple use of metric learning. Furthermore, we improve the performance by enabling representation disentanglement
by designing an adaptively weighted version of triplet loss. Leveraging the sequential nature of the replay buffer to
perform metric learning may open up interesting new avenues for future feature learning approaches in RL.
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[9] F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, and M. Tschannen, “Weakly-supervised disentanglement without

compromises,” in International Conference on Machine Learning, 2020, pp. 6348–6359.
[10] R. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources of disentanglement in variational autoencoders,” in Advances in

Neural Information Processing Systems, 2018, pp. 2615–2625.

4


	Introduction
	Background
	Representation Learning

	A Motivating Gridworld Environment
	Triplet Loss
	Adaptive Triplet Loss
	Using the Replay Buffer for Metric Learning and Feature Extraction

	Conclusion

