
Supplementary Material: Utilising Uncertainty for Efficient
Learning of Likely-Admissible Heuristics

Ofir Marom, Benjamin Rosman
University of the Witwatersrand, Johannesburg, South Africa

1 Practical Algorithms
In the main paper we introduce two conceptual algorithms, GenerateTask and LearnHeuristic. We later
discuss considerations required for a practical implementation. In this section we introduce two new algorithms
GenerateTaskPrac (Algorithm 3) and LearnHeuristicPrac (Algorithm 4) that implement these.

Algorithm 3: GenerateTaskPrac practical implementation of GenerateTask.
Input : { nnWUNN, // a weight uncertainty neural network

1 ε, MaxSteps, K // as described in the paper
2 }
3 s′ = sg
4 numSteps = 0
5 s′′ = NULL // used to store the previously observed state
6 while (numSteps < MaxSteps) do
7 numSteps = numSteps + 1
8 initialise a dictionary states〈S,R+〉
9 foreach s ∈ Erev(s′) do

10 if s′′ 6= NULL and s′′ = s then
11 continue loop // don’t include the state that takes you back to the

previously observed state
12 end
13 x = F (s)
14 compute σ2

e(x) from nnWUNN using K samples
15 states[s] = σe(x)
16 end
17 sample from softmax distribution derived from states.Values to obtain some pair (s, σe(x))
18 if σ2

e(x) ≥ ε then
19 T = 〈S,O, E , C, s, sg〉
20 return(T )
21 end
22 s′′ = s′

23 s′ = s

24 end

2 Pattern Databases
In the main paper we discuss that for the 24-puzzle, 24-pancake and 15-blocksworld domains we use pattern
databases (PDBs) as features to the network. In this section we detail the patterns used for each domain.
The PDBs are described from the reference point of the goal state of each domain.



Algorithm 4: LearnHeuristicPrac practical implementation of LearnHeuristic.
Input : { NumIter, NumTasksPerIter, NumTasksPerIterThresh, α0, ∆, ε, β0, γ, κ, ε, MaxSteps,

MemoryBufferMaxRecords, TrainIter, MaxTrainIter, MiniBatchSize, tmax, µ0, σ2
0 , q, K // as

described in the paper
1 }
2 initialise a WUNN nnWUNN using priors µ0 and σ2

0 // used to obtain σ2
e

3 initialise a FFNN nnFFNN // used to obtain ŷ and σ2
a

4 initialise a list memoryBuffer〈(F (S),R+)〉
5 yq = −∞ // stores quantile q of observed cost-to-goals
6 α = α0 // set to the initial admissibility probability
7 β = β0 // set to the initial prior strength factor
8 updateBeta = TRUE // controls whether β is updated
9 define a function h(α, µ, σ) that that returns yα where P (yα ≤ y | y ∼ N (µ, σ2)) = α // h is

computed from the inverse CDF of a normal distribution
10 for n ∈ 1 : NumIter do
11 numSolved = 0 // counts number of solved tasks
12 for i ∈ 1 : NumTasksPerIter do
13 T = GenerateTask(nnWUNN, ε,MaxSteps,K)
14 try solve T within tmax seconds using IDA* with max(h, 0) as the heuristic to obtain a plan π.

When planning with h for each state visited s, pass α, ŷ(x) and σ2
t (x) as the parameters

respectively where σ2
t (x) = σ2

a(x) if ŷ(x) < yq else σ2
t (x) = ε and where x = F (s).

15 if plan π was found then
16 numSolved = numSolved + 1 // count solved tasks
17 foreach sj ∈ π do
18 if (sj 6= sg) then
19 compute yj , the cost-to-goal from sj
20 xj = F (sj)
21 memoryBuffer.Add((xj , yj))
22 end
23 end
24 end
25 end
26 trim memoryBuffer to keep the most recently added MemoryBufferMaxRecords records
27 if numSolved < NumTasksPerIterThresh then
28 α = max(α−∆, 0.5) // we cannot solve enough tasks so reduce admissibility

probability
29 UpdateBeta = FALSE // we update α so we don’t update β because we want to

keep the strength of the prior the same as before and try solve tasks with
lower admissibility probability

30 else
31 UpdateBeta = TRUE // update β because we are not updating α
32 end
33 train nnFFNN using entire memoryBuffer for TrainIter iterations
34 train nnWUNN from memoryBuffer for MaxTrainIter iterations using a minibatch size of

MiniBatchSize per iteration. If after any iteration σ2
e(xi) < κε for all (xi, yi) in MemoryBuffer

then stop early. Else complete MaxTrainIter iterations and if UpdateBeta = TRUE then
β = γβ // either reduce the epistemic uncertainty on all states in the memory
buffer or reduce the importance of the prior

35 update yq with quantile q of the cost-to-goal observations in memoryBuffer
36 end



2.1 24-puzzle
For the 24-puzzle domain we use two sets of disjoint 5-5-5-4 PDBs.

(a) First set of disjoint PDBs. (b) Second set of disjoint PDBs.

Figure 1: Disjoint PDBs for 24-puzzle.

For the first set:

• 1, 2, 5, 6, 7

• 3, 4, 8, 9, 14

• 10, 15, 16, 20, 21

• 11, 12, 17, 22

• 13, 18, 23 ,24

For the second set:

• 1, 2, 3, 7, 8

• 5, 6, 10, 11, 12

• 15, 16, 17, 20, 21

• 4, 9, 13, 14

• 18, 19, 22, 23, 24

2.2 24-pancake
For the 24-pancake domain we use two sets of location-based disjoint 5-5-5-4 PDBs.

Figure 2: Goal state for 24-pancake.

For the first set:

• 1, 2, 3, 4, 5

• 6, 7, 8, 9, 10

• 11, 12, 13, 14, 15

• 16, 17, 18, 19, 20

• 21, 22, 23, 24



For the second set:

• 1, 2, 3, 19

• 4, 5, 6, 7, 8

• 9, 10, 11, 12, 13

• 14, 15, 16, 17, 18

• 20, 21, 22, 23, 24

2.3 15-blocksworld
For the 15-blocksworld domain we use 12 4-block PDBs.

Figure 3: Goal state for 15-blocksworld.

The 12 4-block PDBs are:

• 1, 2, 3, 4

• 5, 6, 7, 8

• 9, 10, 11, 12

• 12, 13, 14, 15

• 3, 4, 5, 6

• 7, 8, 9, 10

• 11, 12, 13, 14

• 1, 2, 14, 15

• 2, 3, 4, 5

• 6, 7, 8, 9

• 10, 11, 12, 13

• 1, 13, 14, 15

3 Extensions
3.1 Multiple Goal States
In the main paper we make the assumption that all domains have a unique goal state. This assumption can
be relaxed as follows:



• when running GenerateTask sample a goal state sg from all possible goal states Sg and then proceed to
generated a task starting from this goal state.

• We now need a heuristic that incorporates the goal state as well i.e. h(s, sg). This can be achieved by
extending the feature representation to distinguish between the different goal states i.e. x = F (s, sg).

We note that as the size of Sg increases, more time will be required to learn a suitable heuristic because the
model needs to learn from enough sampled goal states to generalise across the domain. Clearly, the way the
goal states is encoded would be an important factor for how effectively the model can generalise across the
domain.

3.2 Lifted Domains
The domains used in the paper differ only in their start states and in section 3.1 we discuss how to extend the
framework to multiple goal states. However, we may wish to learn a heuristic that applies to a lifted domain
- for example a heuristic that works well for an arbitrary n-puzzle, or a heuristic for the entire domain of
a game like Sokoban where the size of the maze as well as the locations of walls, boxes, storage locations
changes in each task.

Conceptually, this is straightforward to incorporate into our proposed framework as it requires only a judicious
choice for the feature function F and modelM. In practice, learning general and transferable skills is an
active area of research in the field of Artificial Intelligence. For example, previous work has shown that by
using a particular choice of representation together with convolutional neural networks, a heuristic function
can be learned that generalises across the Sokoban domain [1]. Then so long as the network architecture can
be augmented with a mechanism to effectively model epistemic and aleatoric uncertainty we can incorporate
it into our proposed framework.

4 Detailed Results
We include tables as in the paper but with the addition of the standard deviation, in brackets, for each
statistic. We note that the standard deviations for the statistics of the suboptimality experiments in some
domains is very high (in some cases, higher than the means) and that the empirical distribution of these
statistics is highly skewed to the right. Finding techniques to reduce the run variance is an area of future
research for learning likely-admissible heuristics under our framework.

Table 7: Detailed suboptimality results for 15-puzzle.

α Time Generated Subopt Optimal
0.95 74.6 (81.50) 78, 787, 262 (76, 296, 444) 2.21% (2.17%) 67.80% (15.08%)
0.9 26.72 (25.44) 29, 342, 747 (27, 830, 962) 2.46% (2.41%) 65.20% (16.95%)
0.75 8.71 (11.40) 9, 357, 055 (12, 682, 566) 2.97% (2.72%) 59.00% (18.35%)
0.5 5.06 (5.56) 5, 284, 645 (6, 160, 880) 3.35% (2.62%) 52.30% (15.96%)
0.25 4.85 (6.99) 5, 107, 840 (7, 728, 056) 4.45% (3.03%) 38.30% (16.96%)
0.1 3.89 (5.02) 4, 285, 483 (5, 996, 957) 5.32% (3.39%) 30.70% (16.11%)
0.05 3.80 (4.67) 4, 189, 753 (5, 696, 733) 5.63% (3.03%) 25.3% (11.27%)
N/A 2.25 (3.09) 3, 071, 956 (4, 749, 797) 10.75% (3.23%) 10.90% (5.54%)

5 Hardware
All experiments were run on an Intel i7-5500U 2.40Ghz CPU with 8GB RAM.



Table 8: Detailed efficiency results for 15-puzzle.

LengthInc Solved Train Solved Test
1 100% (0.00%) 38.59% (3.56%)
2 95.10% (2.27%) 48.20% (3.32%)
4 61.80% (10.57%) 51.40% (16.21%)
6 36.20% (6.01%) 39.61% (3.97%)
8 19.20% (3.49%) 35.16% (3.56%)
10 11.80% (6.78%) 31.83% (12.04%)

GTP 93.30% (2.65%) 60.59% (12.32%)

Table 9: Detailed suboptimality results for 24-puzzle.

α Time Generated Subopt Optimal
0.95 2, 664.53 (3, 062.59) 1, 233, 965, 823 (1, 322, 894, 069) 2.15% (0.65%) 28.80% (11.36%)
0.9 1, 371.29 (1, 292.45) 628, 101, 474 (539, 128, 139) 2.64% (0.66%) 20.00% (9.55%)
0.75 549.22 (549.44) 274, 003, 465 (259, 744, 778) 3.67% (0.68%) 5.20% (4.66%)
0.5 189.37 (131.53) 99, 244, 234 (70, 575, 145) 4.64% (0.54%) 1.20% (1.60%)
0.25 121.18 (66.23) 66, 147, 586 (35, 047, 947) 5.18% (0.58%) 0.00% (0.00%)
0.1 86.62 (50.78) 46, 988, 530 (28, 554, 357) 5.81% (0.51%) 0.00% (0.00%)
0.05 83.56 (37.19) 40, 046, 361 (18, 032, 980) 6.26% (0.55%) 0.00% (0.00%)
N/A 25.39 (20.83) 11, 719, 659 (9, 552, 893) 11.34% (0.85%) 0.00% (0.00%)

Table 10: Detailed suboptimality results for 24-pancake.

α Time Generated Subopt Optimal
0.95 364.58 (85.68) 104, 132, 601 (27, 914, 343) 1.09% (0.09%) 76.00% (1.26%)
0.9 198.56 (37.55) 54, 089, 822 (10, 731, 888) 1.27% (0.07%) 72.40% (1.96%)
0.75 54.24 (12.35) 13, 001, 211 (1, 713, 639) 1.85% (0.13%) 59.20% (2.99%)
0.5 20.42 (3.88) 4, 530, 281 (820, 070) 2.17% (0.11%) 53.20% (3.25%)
0.25 11.66 (2.03) 2, 511, 066 (396, 223) 3.53% (0.29%) 37.20% (6.52%)
0.1 8.30 (3.75) 1, 621, 775 (843, 061) 3.83% (0.72%) 30.80% (7.33%)
0.05 4.96 (2.65) 871, 908 (441, 617) 4.03% (0.79%) 30.80% (7.65%)
N/A 0.85 (1.30) 210, 622 (338, 283) 10.58% (4.73%) 8.40% (12.86%)

Table 11: Detailed suboptimality results for 15-blocksworld.

α Time Generated Subopt Optimal
0.95 55.51 (11.49) 115, 691, 631 (7, 070, 181) 0.02% (0.03%) 99.60% (0.80%)
0.9 53.79 (11.78) 112, 390, 208 (9, 764, 255) 0.07% (0.06%) 98.40% (1.50%)
0.75 50.52 (11.89) 101, 109, 757 (15, 266, 842) 0.23% (0.20%) 95.60% (3.67%)
0.5 38.01 (15.44) 69, 663, 441 (19, 064, 929) 0.98% (0.49%) 84.80% (7.22%)
0.25 43.97 (34.56) 63, 963, 572 (44, 432, 088) 4.28% (2.01%) 50.80% (13.00%)
0.1 35.83 (21.90) 50, 951, 658 (25, 855, 679) 9.70% (5.87%) 34.40% (11.20%)
0.05 28.50 (19.06) 42, 499, 655 (28, 081, 066) 13.36% (9.05%) 24.00% (12.46%)
N/A 20.88 (22.20) 31, 178, 090 (32, 600, 259) 7.07% (3.50%) 38.40% (13.71%)

6 Code
A C# implementation for all the domains described in the paper can be found here:
https://github.com/OfirMarom/LearnHeuristicWithUncertaintly



Table 12: Detailed training runtime in hours.

Domain plan with ŷ plan with yα
15-puzzle 1.32 (0.16) 2.67 (0.17)
24-puzzle 6.03 (0.36) 20.52 (1.32)
24-pancake 2.34 (0.19) 15.85 (1.19)

15-blocksworld 4.38 (0.47) 6.54 (0.27)

References
[1] E. Groshev, A. Tamar, S. Srivastava, and P. Abbeel. Learning generalized reactive policies using deep

neural networks. arXiv:1708.07280, 2017.


	Practical Algorithms
	Pattern Databases
	24-puzzle
	24-pancake
	15-blocksworld

	Extensions
	Multiple Goal States
	Lifted Domains

	Detailed Results
	Hardware
	Code

