
Utilising Uncertainty for Efficient Learning of Likely-Admissible Heuristics

Ofir Marom, Benjamin Rosman
University of the Witwatersrand, Johannesburg, South Africa

Abstract

Likely-admissible heuristics have previously been introduced
as heuristics that are admissible with some probability. While
such heuristics only produce likely-optimal plans, they have
the advantage that it is more feasible to learn such heuris-
tics from training data using machine learning algorithms.
Naturally, it is ideal if this training data consists of optimal
plans, but such data is often prohibitive to produce. To over-
come this, previous work introduced a bootstrap procedure
that generates training data using random task generation that
incrementally learns on more complex tasks. However, 1) us-
ing random task generation is inefficient and; 2) the proce-
dure generates non-optimal plans for training and this causes
errors to compound as learning progresses, resulting in high
suboptimality. In this paper we introduce a framework that
utilises uncertainty to overcome the shortcomings of previ-
ous approaches. In particular, we show that we can use un-
certainty to efficiently explore task-space when generating
training tasks, and then learn likely-admissible heuristics that
produce low suboptimality. We illustrate the advantages of
our approach on the 15-puzzle, 24-puzzle, 24-pancake and
15-blocksworld domains using Bayesian neural networks to
model uncertainty.

1 Introduction
It is well-known that admissible heuristics lead to optimal
plans when using A* and its variants (Pearl 1984). Unfor-
tunately, crafting strong admissible heuristics is difficult,
often requiring expert domain knowledge or high mem-
ory resources (Junghanns and Schaeffer 2001; Felner and
Adler 2005; Zahavi et al. 2008; Slaney and Thiébaux 2001;
Haslum and Scholz 2003; Helmert 2010). This is partic-
ularly evident in domains with large state-spaces that are
known to be extremely challenging to solve with admissi-
ble heuristics.

An alternative approach is to leverage machine learning
techniques and learn a heuristic from data. Such heuristics
have been shown to require far less domain knowledge and
memory resources, but unfortunately this approach also sac-
rifices optimality because the heuristic is no longer guar-
anteed to be admissible (Arfaee, Zilles, and Holte 2010;
2011; Ernandes and Gori 2004; Groshev et al. 2017; Thayer,
Dionne, and Ruml 2011; Samadi, Felner, and Schaeffer

2008; McAleer et al. 2018).
One way to introduce the notion of admissibility with

statistical machine learning algorithms is through likely-
admissible heuristics (Ernandes and Gori 2004). As we re-
view in section 2, likely-admissible heuristics are admissible
with some probability, and this leads to likely-optimal plans.
While the authors who introduce likely-admissible heuris-
tics develop a novel cost function to encourage admissibil-
ity (Ernandes and Gori 2004), they do not provide a way
of specifying likely-admissibility in a formal probabilistic
way. Furthermore, this cost function relies on having access
to training data of optimal plans, which is often prohibitive
to produce.

Subsequently, a bootstrap procedure was developed that
does not require access to optimal plans for training (Ar-
faee, Zilles, and Holte 2010; 2011). This procedure works
by generating a set of random training tasks and proceeds
to switch between planning and learning. The core idea is
to try solve each training task within some specified time
limit. If not enough tasks are solved in an iteration, the time
limit is increased so that more tasks can be solved in the next
iteration. Otherwise the heuristic is learned on the solved
tasks, thus becoming a stronger heuristic, and the time limit
remains fixed for the next iteration. As discussed by the au-
thors of this procedure there are two main shortcomings with
this approach: 1) much time is wasted because the procedure
tries to solve all tasks and many tasks are not solvable in the
given time limit when the heuristic is still weak; and 2) the
heuristic learns from non-optimal plans and so errors com-
pound with each iteration of the procedure, resulting in a
final heuristic that produces high suboptimality.

In this paper we propose to overcome both these limita-
tions by utilising epistemic and aleatoric uncertainty. Epis-
temic uncertainty accounts for uncertainty in the model of
a process and can be explained away given enough data
while aleatoric uncertainty accounts for uncertainty that the
model cannot explain away due to probabilistic variation
in the data. As we describe in section 3, epistemic uncer-
tainty can be used to efficiently explore task-space so as
to generate training tasks that are of the right level - that
is, the tasks are easy enough to solve while being difficult
enough for learning to progress. Meanwhile, epistemic and

aleatoric uncertainty are combined so that the heuristic re-
mains likely-admissible during planning and this mitigates
the compounding errors that result in high suboptimality.

In section 5 we use a concrete implementation with
Bayesian neural networks (Blundell et al. 2015; Kendall
and Gal 2017) to model these uncertainties and run exper-
iments on the 15-puzzle, 24-puzzle, 24-pancake and 15-
blocksworld domains where we demonstrate our approach
empirically and show that it is more efficient to train than
random task generation, while producing plans that have low
suboptimality. In fact, for the 15-puzzle we show that our ap-
proach can produce optimality statistics that are competitive
with previous approaches that trained on optimal plans.

2 Background
Planning
A planning domain is defined as a tuple 〈S,O, E , C,S0,Sg〉
where S is the state-space, O(s) is an operator function that
returns the legal operators than can be executed in state s ∈
S, E(s, o) is an effect function that returns the next state
s′ ∈ S when operator o ∈ O(s) is applied in s, C(s, s′)
is a strictly positive and bounded function for the cost of
moving from state s to s′, S0 ⊆ S is the set of possible
start states and Sg ⊆ S is the set of possible goal states.
A planning task under a given domain is then defined by
T = 〈S,O, E , C, s0, sg〉 where s0 ∈ S0 and sg ∈ Sg and
s0 6= sg . For ease of notation we assume in this paper that
each domain has a unique goal state and therefore tasks in a
given domain differ in their start state only. We discuss how
to extend our framework to the case with multiple goal states
in the supplementary material.

Many planning algorithms additionally require a heuris-
tic function h(s) that returns an estimate of the optimal
cost-to-goal from s. We denote the optimal, and unknown,
cost-to-goal from s with h∗(s). Then given a planning
task T , a planning algorithm aims to finds a plan π =
(s0, s1, s2, ..., sn = sg). If h is an admissible heuristic so
that h(s) ≤ h∗(s) for all s ∈ S then certain planning al-
gorithms, for example A* and IDA*, guarantee that π is op-
timal in the sense that it is a plan with minimal cost. We
denote optimal plans with π∗.

While admissibility is a desirable property, guaranteeing
admissibility of a heuristic is often difficult. An alterna-
tive, albeit weaker, property is to require the heuristic to
be likely-admissible (Ernandes and Gori 2004). A likely-
admissible heuristic, denoted hα, is admissible with prob-
ability α ∈ (0, 1) i.e. P (hα(s) ≤ h∗(s)) = α for all
s ∈ S . Since only overestimations of states within the opti-
mal plan π∗ can affect optimality with A* search, the prob-
ability that A* guided by hα returns an optimal plan is at
least pπ∗ = α|π

∗| where |π∗| is the length of π∗ (Ernandes
and Gori 2004). Since admissibility is a sufficient but not a
necessary condition for optimally, pπ∗ is a statistical lower
bound for optimality.

Learning Heuristics from Data
Given a plan π we can compute for each sj ∈ π where
j < n the cost-to-goal from sj to sn = sg , yj =

∑n−1
i=j C(si, si+1). Therefore, given a training dataset of M

plans from a domain Π = {πi}Mi=1 we can construct a train-
ing dataset D = {(xi, yi)}Ni=1 of size N =

∑M
i=1 |πi| −M

by computing the cost-to-goal for the relevant states in each
plan where xi = F (si) and F is a function that converts a
state to a feature representation that can be used as input to
a supervised machine learning algorithm.

Then any number of regression based supervised learn-
ing algorithms can be used to train a heuristic from D. Once
trained, this heuristic can be used to solve new, and previ-
ously unseen, tasks from the given domain. In general, such
a heuristic is not admissible and therefore will lead to non-
optimal plans. The quality of the learned heuristic depends
largely on the plans used for training - intuitively, training on
optimal or near-optimal plans will produce a heuristic that is
a closer approximation of h∗ and therefore have lower sub-
optimality. Neural networks are a common choice of super-
vised learning algorithm and have shown to produce good
results on a variety of domains (Arfaee, Zilles, and Holte
2010; 2011; Ernandes and Gori 2004). We call heuristics
based on neural networks neural heuristics.

Bayesian Neural Networks
One can view a neural network as a probabilistic model
P (y|x,w) (Murphy 2012) where x is the input to the net-
work and w are the weights. For regression it is most com-
mon to assume that y|x,w ∈ R follows a Gaussian distribu-
tion so that y|x,w ∼ N (ŷ(x,w), σ2

a(x,w)) where ŷ is the
mean and σ2

a is the variance of the distribution. Typically
when doing regression with neural networks only a single
output neuron is used to learn ŷ while σ2

a is assumed to be
a known constant, and this corresponds to the well-known
squared loss objective (ŷ − y)2 (Murphy 2012). However,
it is straightforward to adjust the network to have two out-
put neurons and learn σ2

a as well. This leads to the following
minimisation objective function (Kendall and Gal 2017):

L(D,w) =
1

N

N∑
i=1

(ŷ(xi,w)− yi)2

2σ2
a(xi,w)

+
1

2
log σ2

a(xi,w),

(1)
In practice, we learn an second output neuron ρ ∈ R and

then apply a transformation to get σa ∈ R+ such as σa =
log(1 + exp(ρ)). Then σ2

a captures the noise in the data and
is thus a measure of aleatoric uncertainty.

Epistemic uncertainty is more difficult to model as it re-
quires the posterior distribution P (w|D) which is gener-
ally intractable to compute because of the large number of
parameters and functional form of neural networks (Shrid-
har, Laumann, and Liwicki 2019). One effective and com-
putationally efficient method to approximate the posterior
distribution is to use a weight uncertainty neural network
(WUNN) (Blundell et al. 2015) and choose to model the
weights not as fixed point values but as independent Gaus-
sians, wi|D ∼ N (µwi|D, σ

2
wi|D). Using a Gaussian prior for

the weights with mean µ0 and variance σ2
0 so that wi ∼

N (µ0, σ
2
0), the variational approximation to the posterior

can be shown to be the following minimisation objective:

L(D, θ) = βKL[P (w|θ)||P (w)]− EP (w|θ)[logP (D|w)],
(2)

where KL is the Kullback-Leibler divergence, θ =
{(µwi|D, σ

2
wi|D)}i for each weight connection in the net-

work and β > 0 controls how much weight to give the
prior relative to the likelihood (Higgins et al. 2017). A com-
mon strategy is to decay β over time so as to initially give
more emphasis to the prior and gradually reduce this as
the network is trained on more data. In practice, the ob-
jective function is approximated with Monte Carlo during
training by sampling zsi ∼ N (0, 1) for each weight con-
nection in the network and then applying the transformation
wsi = zsi σwi|D+µwi|D where s ∈ [1, S] and S is the number
of Monte Carlo samples averaged over.

Given a WUNN trained to minimise this objective, we can
get a measure of epistemic uncertainty for an input x by sam-
pling weights from the network and computing the variance
of the network output σ2

e(x) = 1
K

∑K
k=1 ŷ

2(x,wk)− ŷ2(x),
where K is the number of samples from the network and
ŷ(x) = 1

K

∑K
k=1 ŷ(x,wk). The intuition behind WUNNs

is as follows: suppose a new input x is passed through the
WUNN that is very different from what has previously been
observed in training. When the network was trained it was
required to fit the parameters of the network to both the train-
ing data and the prior. Therefore, this unseen data will tend
towards the prior. So by setting a high prior variance for the
weights we can expose observations that are dissimilar to
what was seen in training as the model will return a large
value for σ2

e . Meanwhile if x is similar to what was observed
in training then the model will return a low value for σ2

e be-
cause the likelihood term was maximised to fit such data.

Finally, given an input xwe can approximate the posterior
predictive distribution as

y|x ∼ N (ŷ(x), σ2
t (x)), (3)

where σ2
t (x) = σ2

a(x) + σ2
e(x) and σ2

a(x) =
1
K

∑K
k=1 σ

2
a(x,wk).1

3 Conceptual Framework
Our framework assumes that we have a model M of the
form

y|x ∼ D(µ(x), νa(x) + νe(x)), (4)

where D is a distribution with mean parameter µ, aleatoric
uncertainty parameter νa and epistemic uncertainty param-
eter νe. For the purposes of this paper we use the formal-
isation as described in equation 3 but it is possible to use
a different distribution for D, such as a Laplace distribu-
tion, or use different techniques to model uncertainty (Gal
and Ghahramani 2015; Hernandez-Lobato and Adams 2015;
Sun, Chen, and Carin 2017; Blundell et al. 2015).

We leverage epistemic and aleatoric uncertainty to resolve
the shortcomings of previous approaches that only learn

1For clarity, the subscripts t, a and e in these equations stand
for ‘total’, ‘aleatoric’ and ‘epistemic’ respectively.

the mean parameter µ. In this context epistemic uncertainty
arises because a state s may induce features x = F (s) that
are dissimilar to what was observed during training, while
aleatoric uncertainty arises because either 1) the features ex-
tracted from F are insufficient to deterministically explain
the cost-to-goal observations; or 2) we train on non-optimal
plans so identical states can map to different cost-to-goal ob-
servations.

Given such a model, likely-admissibility can be formally
described by using a value yα such that P (yα ≤ y|x) = α
where α ∈ (0, 1) for the heuristic. The value yα can be com-
puted from the inverse cumulative distribution function of
D which is done either analytically or using approximation
methods depending on the form of D. We note that for this
formalisation of likely-admissibility to hold we require that
M learns from training data of optimal plans so that y|F (s)
is a model for h∗(s).

Combining these ideas we introduce two algorithms: Gen-
erateTask (Algorithm 1) and LearnHeuristic (Algorithm 2).
The algorithm GenerateTask is used to generate a training
task that is then solved with LearnHeuristic. The key idea
for GenerateTask is to use epistemic uncertainty to gener-
ate a task that is easy enough to solve while being diffi-
cult enough so that learning from the solved task makes
the heuristic stronger. To achieve this, we start at the goal
state sg . With some user specified value ε, we take steps
back from the goal state until we observe a state s such that
νe(F (s)) ≥ ε. We then stop execution and build a task T
with start state s0 = s. The algorithm is designed to effi-
ciently explore the task-space so as to seek states with high
epistemic uncertainty by sampling states from the softmax
distribution derived from the epistemic uncertainties of all
possible next states (see GenerateTask line 16) and so our
algorithm covers the state-space more efficiently than us-
ing random task generation. Since the algorithm builds tasks
by taking steps back from the goal we further need access
to an undo effect function Eundo(s′) that returns the set of
all states s that move to s′ under some operator in O(s),
i.e. Eundo(s′) = {s | ∃o ∈ O(s) such that E(s, o) =
s′ where s ∈ S}. However, if the domain has reversable ac-
tions, as is the case of the domains used in this paper, we may
simply use Eundo(s′) = E rev(s′) = {E(s′, o) | o ∈ O(s′)}.

The next step is to learn the heuristic. This is achieved
with the algorithm LearnHeuristic. The algorithm proceeds
to generate NumTasksPerIter tasks with GenerateTask then
solve each task using a user specified admissibility probabil-
ity α. Solving the tasks with yα ensures that plans that the
heuristic is trained on are encouraged to be likely-optimal
and this mitigates the compounding error problem that ex-
ists with previous approaches. We note that in our algorithm
the training data consists of non-optimal plans and so yα is
not formally a likely-admissible heuristic. Nevertheless, we
make the assumption that the plans are close enough to op-
timal that any errors incurred are negligible - in practice the
larger α is set, the closer this assumption holds.

A subtle but important requirement for the algorithm is
that when we train the heuristic, the epistemic uncertainty
on all entries in the training dataset must fall below ε (see
LearnHeuristic line 18). This is important to ensure that the

next time GenerateTask is called, we generate a task that is
different to what has previously been trained on.

To provide a better intuition for how the algorithms oper-
ate, we provide a visual illustration for the 15-puzzle. Con-
sider figure 1. The first step in figure 1a shows the start-
ing point for the algorithm which is the goal state. We sam-
ple from the softmax distribution derived from the epistemic
uncertainties of the possible previous states. We were more
likely to take a step with the DOWN operator but we hap-
pened to sample the RIGHT operator. Since the RIGHT op-
erator leads to a state with νe = 0.25 which is less than
ε = 1 we continue to run GenerateTask. In the second step
shown in figure 1b we again sample from the softmax distri-
bution and this time we sample the DOWN operator which
leads to a state with νe = 3. Since this value is greater than
ε = 1 we stop GenerateTask. Figure 1c then shows the start
state that is used to build the training task to be solved by the
heuristic. In this process we are more likely to sample states
with high epistemic uncertainly and this makes exploration
in task-space more efficient than random task generation.

(a) First step. (b) Second step.

(c) Start state that is used to
generate the task.

Figure 1: Hypothetical simulation of GenerateTask with ε =
1 for the 15-puzzle. The blocks on the top right of a tile rep-
resent the epistemic uncertainty. The blocks on the bottom
right of a tile represent the derived softmax distribution, with
the pink block being the sampled operator.

When running LearnHeuristic we solve this task and add
the plan to the training dataset. Thereafter, we train the
heuristic until νe < ε for all states in the training dataset.
Suppose in the next iteration of the algorithm we generate a
task that takes the same trajectory as in figure 1. As shown
in figure 2 we will generate a more complex task because in
the previous run of training the heuristic would have reduced
the epistemic uncertainty of the state in figure 1c below ε.
This incremental increase in complexity of tasks makes the
heuristic stronger with each iteration of the procedure.

(a) First step. (b) Second step.

(c) Third step. (d) Start state that is used to
generate the task.

Figure 2: Hypothetical simulation of GenerateTask after
training on the task that was generated with start state as
in figure 1c.

4 Practical Implementation
In section 3 we describe a conceptual algorithm to efficiently
learn a likely-admissible heuristic. However, to get an al-
gorithm that works in practice with the setup as described
in section 2 with WUNNs where µ = ŷ, νa = σ2

a and
νe = σ2

e requires additional considerations. In this section
we describe these and in the supplementary material we
include two additional algorithms, GenerateTaskPrac and
LearnHeuristicPrac that implement them.

Algorithm GenerateTask requires us to store every vis-
ited state, however, this becomes restrictive if the state-space
is large. An alternative approach is to include an additional
parameter MaxSteps and let the algorithm terminate if this
number of steps has been taken. A second modification, that
was introduced previously (Arfaee, Zilles, and Holte 2010;
2011), is to exclude at each step the state that would take
you back to the previously observed state. This encourages
the algorithm to move further from the goal state with ev-
ery step. Lastly, we use E rev in our implementation as all our
domains have reversable actions.

Algorithm LearnHeuristic requires various considera-
tions. For planning it is advantageous to expand as many
nodes per second as possible, but working with WUNNs re-
quires multiple passes through the network to get good es-
timates and this is slow. A simple solution is to learn two
separate neural networks: one WUNN that learns σ2

e and
is only used for generating tasks and one standard feed-
forward neural network (FFNN) that learns ŷ and σ2

a and
is only used for planning.

Unfortunately, for planning under our framework we still
need σ2

e to compute σ2
t . Furthermore, σ2

a is only reliable on
data that is similar to what the heuristic has already been

Algorithm 1: GenerateTask generate task using
epistemic uncertainty.

Input: {M, // as per equation 4
1 ε // epistemic uncertainty threshold
2 }
3 s′ = sg // start at the goal state
4 initialise a set visited〈S〉
5 repeat
6 visited ∪ {s′}
7 if visited = S then
8 exit loop // epistemic uncertainty

is below the threshold for
every state

9 end
10 initialise a set states〈(S,R+)〉
11 foreach s ∈ Eundo(s′) do
12 x = F (s)
13 compute νe(x) fromM
14 states ∪ {(s, νe(x))}
15 end
16 sample from softmax distribution derived from

the epistemic uncertainties in states to obtain
some pair (s, νe(x)) // seek
uncertainty

17 if νe(x) ≥ ε then
// found state with epistemic

uncertainty above threshold
18 T = 〈S,O, E , C, s, sg〉
19 return(T)
20 end
21 s′ = s
22 until forever

trained on, and can otherwise be highly erroneous. There-
fore, we found the following approximation to work well: in
our algorithm we maintain a training dataset with observed
features / cost-to-goal pairs. Let yq be quantile q of the cost-
to-goal values in the training data. When planning, if ŷ < yq

use σ2
t = σ2

a otherwise use σ2
t = ε. The intuition behind this

approximation is that if we are in a region of the feature-
space where the mean value is less than a cost-to-goal value
that was previously trained on, then we can assume σ2

e is
negligible and just use σ2

a. Otherwise, we use ε as a lower
bound for σ2

e and disregard σ2
a because we may be in a re-

gion of the feature-space where this measure is inaccurate.
Since we now have σ2

t ≤ σ2
a + σ2

e , this approximation has
the effect of producing a heuristic that has lower admissibil-
ity probability for a given value of α.

A second consideration is the handling of β in equation
2. If β is too large then it impossible to achieve the re-
quirement in LearnHeuristic line 18 because we cannot de-
crease the epistemic uncertainty sufficiently. However, if we
make β too small then we generate tasks that are too com-
plex for the heuristic to solve quickly. Coupled with this,
just ensuring σ2

e < ε is not sufficient because WUNNs
obtain an empirical estimate of the epistemic uncertainty

Algorithm 2: LearnHeuristic learn a likely-
admissible heuristic.

Input: { NumTasksPerIter, // number of
tasks per iteration

1 α, // admissibility probability
2 ε // epistemic uncertainty threshold

for GenerateTask
3 }
4 initialise a modelM as per equation 4
5 initialise a set D〈(F (S),R+)〉
6 repeat
7 for i ∈ 1 : NumTasksPerIter do
8 T = GenerateTask(M, ε)
9 solve T using max(yα, 0) as the heuristic to

obtain a plan π // floor
heuristic at 0 since D may
have negative support while
h∗ ≥ 0

10 foreach sj ∈ π do
11 if (sj 6= sg) then
12 compute yj , the cost-to-goal from sj
13 xj = F (sj)
14 D ∪ {(xj , yj)}
15 end
16 end
17 end
18 trainM from D until for all entries (xi, yi) we

have νe(xi) < ε and the training error∑
i(µ(xi)− yi)2 is sufficiently small

// ensure GenerateTask does
not create tasks similar to
tasks already trained on

19 until forever

which contains sampling errors. Therefore, it is prudent to
ensure that σ2

e < κε where κ ∈ (0, 1). In summary our
approach is as follows: start with some initial value for β,
say β := β0. Train for some maximum number of iterations
MaxTrainIter and at each iteration sample a mini-batch of
size MiniBatchSize from the training data. After each train-
ing iteration, if σ2

e < κε for all entries in the entire training
dataset then stop training early, otherwise complete train-
ing for MaxTrainIter iterations and then set β := γβ where
γ ∈ (0, 1). This criterion ensures that we either reduce the
epistemic uncertainty on the training data sufficiently or re-
duce the importance of the prior in the next iteration.

Next, we consider the choice of α. We want α to be as
large as possible so as to encourage admissibility. However,
if α is too large then the heuristic can grossly underestimate
the optimal cost-to-goal and this leads to more nodes being
generated during planning - in fact, this can make planning
infeasible. To mitigate this, we first introduce a time limit
tmax so that if the planner cannot solve a task in tmax seconds
we stop planning. We start with an initial value for α, say
α := α0, and we try to solve all NumTasksPerIter tasks with
yα within tmax seconds. We keep track of how many tasks

are solved and if the number of solved tasks in an iteration is
less than some threshold NumTasksPerIterThresh we update
α := max(α −∆, 0.5) where ∆ > 0. The idea behind this
update is that if we cannot solve enough tasks in an itera-
tion we sacrifice admissibility so that we can make learning
progress. We floor the value of α at 0.5 which then reverts
to the mean value ŷ.

Additional considerations include 1) we must cut-off
LearnHeuristicPrac after some NumIter number of itera-
tions; 2) Instead of a set D we use a list MemoryBuffer for
the training data and we store only the most recent Memo-
ryBufferMaxRecords added to the list; 3) when computing
σ2
e with the WUNN we must decide on the number of sam-

ples K to use from the network; and 4) we must decide on
appropriate priors for the weights of the WUNN µ0 and σ2

0 .

5 Experiments
In this section we demonstrate our algorithm on the 15-
puzzle, 24-puzzle, 24-pancake and 15-blocksworld do-
mains. In all domains, we used the following pa-
rameter values: ε = 1, NumTasksPerIter = 10,
NumTasksPerIterThresh = 6, α0 = 0.99, ∆ = 0.05, β0 =
0.05, κ = 0.64, MemoryBufferMaxRecords = 25, 000,
µ0 = 0, σ2

0 = 10, q = 0.95, K = 100. The number of it-
erations NumIter depends on the experiment as we describe
further below. We set γ as a function of NumIter by speci-
fying βNumIter = 0.00001 and solving γNumIterβ0 = βNumIter.
To reduce variance when training the WUNN we use the lo-
cal reparameterisation trick (Kingma, Salimans, and Welling
2015). All the networks use relu activations, have a single
hidden layer and are trained with the Adam optimiser. For
the WUNN we use an initial learning rate of 0.01 and S = 5
Monte Carlo samples to approximate the objective function
in equation 2. For the FFNN we use an initial learning rate
of 0.001. The network weights were initialised with He Nor-
mal initialization (He et al. 2015) while the biases were ini-
tialised to 0. We use IDA* for planning. When running the
final learned heuristic on test tasks we use σ2

t = σ2
a - this

makes the assumption that epistemic uncertainty is negligi-
ble for all states by the end of training.

For training the FFNN we train for TrainIter = 1000 iter-
ations using the entire memory buffer at each iteration. For
training the WUNN we train for MaxTrainIter = 5000 itera-
tions using a minibatch size of MiniBatchSize = 100 and we
use a sampling scheme that gives more weight to states with
epistemic uncertainty greater than or equal to κε. This can
be achieved by sampling from the following (unnormalised)
distribution, without replacement:

f(x) =

{
exp(σe(x)) if σ2

e(x) ≥ κε,
exp(−C) otherwise,

where C > 0. Since σe ≥ 0 this distribution gives more
weight to states with epistemic uncertainty that still need to
be reduced below the required threshold. We use C = 1 in
our implementation. In all our experiments we report aver-
age statistics over multiple runs and we include more de-
tailed tables with standard deviations for each statistic in the
supplementary material.

Suboptimality Experiments for the 15-puzzle
For the 15-puzzle we use a low-level feature representa-
tion of the raw game-state and 20 hidden neurons for both
the FFNN and WUNN. Previously, a representation was de-
scribed that requires 162 bits where for each 16 puzzle num-
ber, the location of that number is encoded with a 16 bit
one-hot vector (Ernandes and Gori 2004). We use a more ef-
ficient encoding that requires only 16× 2× 4 bits where for
each 16 puzzle number the horizontal and vertical locations
of that number are encoded with a 4 bit one-hot vector.

For the first experiment we aim to show that our ap-
proach results in low suboptimality. We run the algorithm
LearnHeuristicPrac to learn the neural heuristic. We run
the procedure for NumIter = 50 iterations, tmax = 60 and
MaxSteps = 1, 000. Once training is completed, we test the
performance of our algorithm on the standard 100 15-puzzle
benchmark tasks (Korf 1985) that have an average optimal
cost-to-goal of 53.05.

One problem that arises when using a representation of
the raw game-state is that such a representation does not ex-
hibit aleatoric uncertainty since the network can, in princi-
ple, learn a deterministic output for each input state. To al-
leviate this, we use dropout which is a popular technique to
inject noise into the training process by dropping out neu-
rons randomly during training. We use a dropout rate of
2.5% in the hidden layer when training the FFNN. Dropout
is commonly seen as a way to reduce overfitting (Srivastava
et al. 2014) but can also be viewed as a technique to esti-
mate aleatoric uncertainty (Osband 2016). In this context,
after dropout is applied, the latent feature-space of the hid-
den layer is insufficient to deterministically explain the cost-
to-goal observations which induces aleatoric uncertainty.

In addition, we train a second neural heuristic that uses
LearnHeuristicPrac but we make a modification that the
FFNN has one output neuron and therefore planning and
learning is done with ŷ only. This is consistent with pre-
vious approaches that learn neural heuristics (Arfaee, Zilles,
and Holte 2010; 2011; Ernandes and Gori 2004). Results are
shown in table 1 and are averages over 10 independent runs.
The experiment that uses a single output FFNN has N/A un-
der the α column while MD corresponds to using the admis-
sible Manhattan Distance heuristic. Columns “Generated”,
“Time”, “Subopt” and “Optimal” are the average nodes gen-
erated, planning time (in seconds), suboptimality 2 and per-
centage tasks solved optimally respectively.

We see that the single output FFNN produces a neural
heuristic that produces a high suboptimality of 10.75%. This
result conforms to what was previously described in the lit-
erature in that errors compound with each iteration (Arfaee,
Zilles, and Holte 2010; 2011). Using our approach, we can
achieve far lower suboptimality - for example, only 2.46%
for α = 0.90. However, we note that using α = 0.9 expands
9.76 times more nodes. This suggests that the improved op-
timality achieved in our algorithm comes at the price of in-
creased planning time. However, we can adjust the trade-off

2Average suboptimality is computed by taking ui =
yi
y∗
i
−1 for

each test task where yi is the cost-to-goal obtained from the planner
and y∗

i is the optimal cost-to-goal, then averaging all ui values.

between planning time and suboptimality by varying α. We
see that as α increases the trend is for suboptimality to de-
crease while nodes generated increases.

α Time Generated Subopt Optimal
MD 80.7 363, 028, 080 0.0% 100%
0.95 74.6 78, 787, 262 2.2% 67.8%
0.9 26.7 29, 342, 747 2.5% 65.2%
0.75 8.7 9, 357, 055 3.0% 59.0%
0.5 5.1 5, 284, 645 3.4% 52.3%
0.25 4.9 5, 107, 840 4.5% 38.3%
0.1 3.9 4, 285, 483 5.3% 30.7%
0.05 3.8 4, 189, 753 5.6% 25.3%
N/A 2.3 3,071,956 10.8% 10.9%

Table 1: Suboptimality results for 15-puzzle.

We note that previous work that trained on optimal plans
and that used 4 separate neural networks to get better heuris-
tic estimates was able to solve 63.86% tasks optimally (Er-
nandes and Gori 2004). Meanwhile our approach with α =
0.9 is able to achieve a slightly higher percentage of 65.2%.
3 We use only a single network for planning while we do not
have access to any training data of optimal plans.

Efficiency Experiments for the 15-puzzle
For the second experiment on the 15-puzzle we show that
our approach to generating tasks using GenerateTaskPrac
is more efficient than random task generation. In particular,
previous work has suggested an alternative way to generate
tasks (Arfaee, Zilles, and Holte 2010; 2011). The idea is to
simply increment the number of steps at each iteration us-
ing a parameter LengthInc. For example, if LengthInc = 10
we would first generate NumTasksPerIter tasks by taking 10
steps at random from the goal state, then 20 steps, then 30
steps and so on.

Two key considerations are required to illustrate effi-
ciency. Firstly, an efficient algorithm would learn about the
domain from a small number of tasks because it would gen-
erate tasks in accordance with the amount of new knowl-
edge it can gain from solving them. Secondly, an efficient
algorithm would solve new tasks quickly because it would
generate tasks that are incrementally more difficult than pre-
viously solved tasks.

Given these considerations our experimental setup is as
follows: we run LearnHeuristicPrac but we train a FFNN
with only a single output neuron that plans and learns with
ŷ. For this experiment we keep the number of tasks small,
so NumIter = 20 and we keep the time limit to solve
each task small as well, so tmax = 1. We then train addi-
tional FFNN networks using LearnHeuristicPrac but this
time instead of using GenerateTaskPrac to generate tasks,
we generate tasks using fixed steps back from the goal with
LengthInc ∈ {1, 2, 4, 6, 8, 10}.

3The statistic 63.86% was obtained from 700 test tasks with an
average optimal cost-to-goal of 52.62 that were not made public.
Meanwhile, we test on the standard 100 15-puzzle benchmark tasks
that have an average optimal cost-to-goal of 53.05.

Once the neural heuristics are trained we test performance
as follows: we generate a set of 100 test tasks {T testi }100i=1.
Task T testk is generated by taking k steps back at random
from the goal, so that each task in the test set should be
more difficult to solve than the previous one. We then give
each of the neural heuristics a time limit of 60 seconds to
solve as many test tasks as possible. We repeat this process
independently 10 times across each neural heuristic and we
furthermore run the experiment over 10 independent runs.

Table 2 shows our results. The experiment that uses Gen-
erateTaskPrac to generate tasks has GTP under the Length-
Inc column. Columns “Solved Train” and “Solved Test” are
the average percentage of tasks solved during training and
at test time respectively. Consider the case LengthInc = 1.
In this case 100% of training tasks are solved. However, be-
cause each successive iteration only takes 1 step back from
the goal and there are only a small number of tasks to learn
from, this neural heuristic only solves 38.59% of the test
tasks. Now consider the case LengthInc = 10. In this case
large steps are taken back from the goal but because there
is a short time limit to solve each task, this neural heuris-
tic can only solve 11.80% of training tasks. As a result, the
network doesn’t learn from enough tasks during training and
can therefore only solve 31.83% of the test tasks.

Our approach finds a balance between these two restric-
tions. The training tasks generated are incrementally more
difficult than previously observed training tasks because we
stop execution of the algorithm as soon as we observe a
state with high epistemic uncertainty. We can therefore solve
93.3% of tasks during training. Furthermore, because our
approach seeks uncertainty when generating tasks, each new
task that is trained on provides useful domain knowledge for
the neural heuristic to learn from. Therefore, we can solve
60.59% of the test tasks. In fact, our approach outperforms
all the values of LengthInc ∈ {1, 2, 4, 6, 8, 10} in terms of
performance on the test tasks. A further advantage of our
approach is that the parameter LengthInc, which is domain
dependant, does not need to be tuned for each new domain
- we use the same β0 and the same approach to set γ for all
experiments across the domains.

LengthInc Solved Train Solved Test
1 100% 38.6%
2 95.1% 48.2%
4 61.8% 51.4%
6 36.2% 39.6%
8 19.2% 35.2%
10 11.8% 31.8%

GTP 93.3% 60.6%

Table 2: Efficiency results for 15-puzzle.

Experiments for Other Domains
We run the same experiments for suboptimality on the 24-
puzzle, 24-pancake and 15-blocksworld domains. These do-
mains have large state-spaces and so using a low-level repre-
sentation is more difficult than in the case of the 15-puzzle.
Instead, we use high-level feature representations as input

to the network that are similar to previous approaches (Ar-
faee, Zilles, and Holte 2010; 2011). The features used make
extensive use of pattern databases (PDBs) (Korf and Felner
2002). PDBs are a general method of generating admissible
heuristics, making them a good choice of features for a va-
riety of domains. We use NumIter = 75, tmax = 5 × 60 and
MaxSteps = 5000 for these domains due to their increased
complexity over the 15-puzzle. We use 8 neurons for the
hidden layer for both the FFNN and WUNN and we do not
use dropout because the feature representations now natu-
rally induce aleatoric uncertainty. When planning we now
use max(yα, had) where had is the maximum of all the ad-
missible heuristics passed as features to the networks.

24-puzzle: we use 2 sets of disjoint 5-5-5-5-4 PDBs and
their sums as features (f1-f12). Additionally, we have a fea-
ture with the number of out-of-place tiles (f13), a feature
for the Manhattan distance (f14) and a feature for the po-
sition of the blank tile (f15). The total number of features
for this domain is 15 comprising of 14 admissible heuris-
tics (f1-14). For testing we use the standard 50 24-puzzle
benchmark tasks that have an average optimal cost-to-goal
of 100.78 (Korf and Taylor 1996).

24-pancake: we use 2 sets of location-based disjoint 5-
5-5-5-4 PDBs (Yang et al. 2008) and their sums as features
(f1-f12). Additionally, we have a binary feature indicating
whether the middle pancake is out of place, and the num-
ber of the largest out-of-place pancake. The total number of
features for this domain is 14 comprising of 12 admissible
heuristics (f1-f12). For testing, we generate 50 random tasks
that have an average optimal cost-to-goal of 22.56.

15-blocksworld: we use 12 4-block PDBs (f1-f12), the
number of out of place blocks (f13), and the number of
stacks of blocks (f14) as features. The total number of fea-
tures for this domain is 14 comprising of 13 admissible
heuristics (f1-f13). The goal state is chosen as the state with
all blocks in one stack. For testing, we generate 50 random
tasks that have an average optimal cost-to-goal of 21.72.

Table 3 show our results which average over 5 indepen-
dent runs. The rows with “Boot” under the α column are
results from a competing method that learns a single output
FFNN (Arfaee, Zilles, and Holte 2010), while “Gap” is the
domain specific gap heuristic for the 24-pancake (Helmert
2010) and “PDB” uses a memory intensive heuristic that
comprises of disjoint 6-6-6-6 PDBs with partially created
disjoined 8-8-8 PDBs for the 24-puzzle (Felner and Adler
2005). We see that, as in the case of the 15-puzzle, the single
output FFNNs have high suboptimality. With our approach
we can achieve far lower suboptimality, albeit at the price
of longer planning times. For example, with α = 0.9 we
obtain 2.6%, 1.3% and 0.07% suboptimality while previous
approaches obtain 6.1%, 10.3% and 6.9% suboptimality for
the 24-puzzle, 24-pancake and 15-blocksworld domains re-
spectively.4 As in the case of the 15-puzzle, the trend is that
as α increases, suboptimality decreases while nodes gener-

4For testing, the bootstrap method uses the standard 50 bench-
mark tasks for the 24-puzzle, 1000 tasks with an average optimal
cost-to-goal of 22.75 for the 24-pancake and 200 tasks with an av-
erage optimal cost-to-goal of 22.73 for the 15-blocksworld.

α Time Generated Subopt Optimal
24-puzzle

PDB ? 65, 135, 068, 005 0.0% 100%
0.95 2, 665 1, 233, 965, 823 2.2% 28.8%
0.9 1, 371 628, 101, 474 2.6% 20.0%
0.75 549 274, 003, 465 3.7% 5.2%
0.5 189 99, 244, 234 4.6% 1.2%
0.25 121 66, 147, 586 5.2% 0.0%
0.1 87 46, 988, 530 5.8% 0.0%
0.05 84 40, 046, 361 6.3% 0.0%
N/A 25 11, 719, 659 11.3% 0.0%
Boot 274 164, 589, 698 6.1% ?

24-pancake
Gap 0.03 48, 599.5 0.0% 100%
0.95 365 104, 132, 601 1.1% 76.0%
0.9 199 54, 089, 822 1.3% 72.4%
0.75 54 13, 001, 211 1.9% 59.2%
0.5 20 4, 530, 281 2.2% 53.2%
0.25 12 2, 511, 066 3.5% 37.2%
0.1 8 1, 162, 755 3.8% 30.8%
0.05 5 871, 908 4.0% 30.8%
N/A 1 210, 622 10.6% 8.4%
Boot 2 1, 856, 645 10.3% ?

15-blocksworld
0.95 56 115, 691, 681 0.02% 99.6%
0.9 54 112, 390, 208 0.07% 98.4%
0.75 51 101, 109, 757 0.23% 95.6%
0.5 38 69, 663, 441 1.0% 84.8%
0.25 44 63, 963, 572 4.3% 50.8%
0.1 36 50, 951, 658 9.7% 34.0%
0.05 29 42, 499, 655 13.4% 24.0%
N/A 21 31, 178, 090 7.1% 38.4%
Boot 16 3, 651, 438 6.9% ?

Table 3: Suboptimality results for 24-puzzle, 24-pancake
and 15-blocksworld.

ated increases. These experiments also illustrate that our im-
plementation is robust as we use the same parameters across
three domains and obtain similar outcomes. We also empha-
sise that our implementation works with both low-level and
high-level feature representations.

A final point of discussion is that our approach to learning
heuristics takes longer to train because solving tasks with a
likely-admissible heuristic requires more nodes to be gener-
ated during planning. We include a table with runtimes in
the supplementary material.

6 Concluding Remarks
In this paper we have utilised uncertainty to efficiently
learn likely-admissible heuristics. Our approach uses epis-
temic uncertainty to explore task-space and generate training
tasks of the right level to learn from. Meanwhile, we com-
bine epistemic and aleatoric uncertainty to learn a likely-
admissible heuristic that leads to low suboptimality. We il-
lustrate our approach empirically with a practical implemen-
tation based on Bayesian neural networks and demonstrate
that it results in low suboptimality that outperforms compet-
ing methods across a variety of domains.

Acknowledgements
The authors wish to thank the anonymous reviewers for their
thorough feedback and helpful comments.

References
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2010. Bootstrap
learning of heuristic functions. Proceedings of the 3rd An-
nual Symposium on Combinatorial Search 52–60.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence 175(16-17):2075–2089.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural networks. Pro-
ceedings of the 25th International Conference on Machine
Learning.
Ernandes, M., and Gori, M. 2004. Likely-admissible and
sub-symbolic heuristics. Proceedings of the 16th European
Conference on Artificial Intelligence 613–617.
Felner, A., and Adler, A. 2005. Solving the 24 puzzle with
instance dependent pattern databases. Proceedings of the
6th International Symposium on Abstraction, Reformulation
and Approximation 248–260.
Gal, Y., and Ghahramani, Z. 2015. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. arXiv:1506.02142.
Groshev, E.; Tamar, A.; Srivastava, S.; and Abbeel, P. 2017.
Learning generalized reactive policies using deep neural net-
works. arXiv:1708.07280.
Haslum, P., and Scholz, U. 2003. Domain knowledge
in planning: Representation and use. Workshop on PDDL
at International Conference on Automated Planning and
Scheduling.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. arXiv:1502.01852.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. Proceedings of the 3rd International Symposium
on Combinatorial Search 109–110.
Hernandez-Lobato, J. M., and Adams, R. 2015. Probabilis-
tic backpropagation for scalable learning of bayesian neural
networks. Proceedings of the 25th International Conference
on Machine Learning.
Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.;
Botvinick, M.; Shakir, M.; and Lerchner, A. 2017. beta-
vae: Learning basic visual concepts with a constrained vari-
ational framework. Proceed of the 5th International Confer-
ence on Learning Representations.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing
general single agent search methods using domain knowl-
edge. Artificial Intelligence 129 (1-2):219–251.
Kendall, A., and Gal, Y. 2017. What uncertainties do
we need in bayesian deep learning for computer vision?
ArXiv:1703.04977.
Kingma, D.; Salimans, T.; and Welling, M. 2015. Variational
dropout and the local reparameterization trick. Proceedings

of the 25th Advances in Neural Information Processing Sys-
tems.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 22:9–22.
Korf, R. E., and Taylor, L. A. 1996. Finding optimal so-
lutions to the twenty-four puzzle. Proceedings of the 13th
National Conference on Artificial Intelligence 1202–1207.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2018. Solving the rubik’s cube without human knowledge.
arXiv:1805.07470.
Murphy, K. P. 2012. Machine Learning A Probabilistic
Perspective. MIT Press.
Osband, I. 2016. Risk versus uncertainty in deep learning:
Bayes, bootstrap and the dangers of dropout. Workshop on
Bayesian Deep Learning at Advances in Neural Information
Processing System.
Pearl, J. 1984. Heuristics. Addison-Wesley.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. Proceedings of the 23rd National
Conference on Artificial Intelligence 357–362.
Shridhar, K.; Laumann, F.; and Liwicki, M. 2019. A com-
prehensive guide to bayesian convolutional neural network
with variational inference. arXiv:1901.02731.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125:119–153.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine Learn-
ing Research 15(1):1929–1958.
Sun, S.; Chen, C.; and Carin, L. 2017. Learning structured
weight uncertainty in bayesian neural networks. Proceed-
ings of the 20th International Conference on Artificial Intel-
ligence and Statistics 1283–1292.
Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. Proceedings of the
21st International Conference on Automated Planning and
Scheduling.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Artificial Intelligence (32):631–662.
Zahavi, U.; Felner, A.; Holte, R.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172 (4-5):514–540.

