
Zero-Shot Transfer with Deictic Object-Oriented
Representation in Reinforcement Learning

Ofir Marom1, Benjamin Rosman 1,2

1University of the Witwatersrand, Johannesburg, South Africa
2Council for Scientific and Industrial Research, Pretoria, South Africa

Abstract

Object-oriented representations in reinforcement learning have shown promise
in transfer learning, with previous research introducing a propositional object-
oriented framework that has provably efficient learning bounds with respect to
sample complexity. However, this framework has limitations in terms of the classes
of tasks it can efficiently learn. In this paper we introduce a novel deictic object-
oriented framework that has provably efficient learning bounds and can solve a
broader range of tasks. Additionally, we show that this framework is capable
of zero-shot transfer of transition dynamics across tasks and demonstrate this
empirically for the Taxi and Sokoban domains.

1 Introduction

A longstanding objective in reinforcement learning (RL) is transfer learning, where the aim is to
accelerate learning in an unseen task using knowledge gained in previously learned tasks [14]. Various
Markov decision process (MDP) representations have shown promise in this regard [5, 6, 7, 11, 9]. A
common choice among such representations is one where components of an MDP are described with
objects [7, 4, 12, 8]. In particular, Propositional Object-Oriented MDPs (Propositional OO-MDPs)
[4] introduce a framework to represent the state-space of an MDP in terms of objects while the
transition dynamics are represented in terms of propositional preconditions over object classes that
map to effects over attributes of the object classes. An appealing property of Propositional OO-MDPs
is that the transition dynamics have provably efficient learning bounds for deterministic environments
that have been shown to outperform competing model-based approaches for certain domains [3].

Unfortunately, the core restriction of Propositional OO-MDPs that the preconditions be described
only in terms of propositions tends to be a strong one and, as even the original authors point out,
precludes efficient learning of certain classes of tasks [3]. Such tasks include those where it is
required to distinguish between different objects of the same object class. As a specific example of
this, and further elaborated in subsection 2.3, consider the Sokoban domain where a person attempts
to push a box but cannot do so if that box is adjacent to a wall. In this case, there is no way of tying
the box that is adjacent to the person with the box that is adjacent to the wall with propositions. To
accommodate such tasks, the transition dynamics for Propositional OO-MDPs must be appended
with first-order predicates 1. However, this impacts the learning efficiency as well as the ability to
transfer between tasks since adding more objects now increases the number of preconditions that the
transition dynamics depend on.

In this paper we propose to overcome this limitation of Propositional OO-MDPs with a novel deictic
object-oriented representation, Deictic OO-MDPs. The key insight behind Deictic OO-MDPs is
the concept of deictic predicates. Deictic predicates are grounded only with respect to a central

1In this paper we refer to propositions as logic statements over object classes, while we refer to first-order
predicates as logic statements that depend on at least one grounded object.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

deictic object, therefore that object may relate itself to non-grounded object classes, but not to other
grounded objects. Returning to the Sokoban domain, a deictic predicate over boxes allows a specific
box to ascertain whether any wall is adjacent to it, but not whether a specific wall is adjacent to it. As
we formalise in section 2, Deictic OO-MDPs are defined in terms of a schema (or template) and so
for all tasks instantiated from that schema the number of preconditions that the transition dynamics
depend on remains constant. This makes transfer of the transition dynamics possible across all tasks
instantiated from that schema, which is illustrated empirically in section 4. Furthermore, Deictic
OO-MDPs allow for the efficient learning of transition dynamics for classes of tasks not possible
with propositional frameworks, as discussed in section 3.

2 Framework

2.1 Background

Most commonly an RL task is described as a discrete-time, finite-state and finite-action Markov
decision process (MDP) [13]. Given an MDP, M , a well-known model-based algorithm to learn a
near-optimal policy for M is Rmax [1], which is known to have polynomial sample complexity. The
KWIK (knows what it knows) [10] framework generalisesRmax to a broader range of representations,
such that if the transition dynamics can be learned with polynomial sample complexity under the
KWIK protocol, it is possible to construct an Rmax type algorithm to learn a near-optimal policy
for M . The main requirement of the KWIK framework is that when an agent is required to make
a prediction of the next state distribution given the agent’s current state and action, the agent may
choose to return ⊥ instead, meaning that the agent is unable to make an accurate prediction as it has
yet to explore the environment sufficiently. Furthermore, the number of times the agent may return ⊥
must have polynomial bound (which is called the KWIK bound).

The KWIK framework has been used in conjunction with object-oriented representations for efficient
learning [4]. The main idea behind object-oriented representations is that the state-space is made up
of grounded objects that are instantiations of object classes. Such representations for the state-space
were introduced with Relational MDPs that define a domain in terms of a schema [7].

Formally, the state-space for such a schema consists of a set of object classes C = {Ci}NC
i=1. Each

object class C ∈ C has a set of attributes Att(C) = {C.αi}NCi=1 and each attribute C.α ∈ Att(C) of
an object class has a domain Dom(C.α). Given a schema, a grounded state-space is instantiated by
first selecting a grounded object set which consists of n objects O = {oi}ni=1 where each o ∈ O is an
instance of some object class C. The value of attribute C.α for object o is denoted by o.α. Then the
grounded state-space, denoted SO, is an assignment of each o.α for all objects in O. The schema
state-space, denoted S, is the set of all states for all possible object sets O.

To make the notion of a schema state-space concrete, consider the classical Taxi domain [2] where
a taxi in a gridword has the task of picking up a passenger at some pickup location and dropping
them off at some destination location. The actions available to the taxi are North, East, South,
West, Pickup and Dropoff while walls limit the taxi’s movements. We introduce a more general
extension of this domain called the all-passenger any-destination Taxi domain where a taxi is tasked
to pick up multiple passengers and drop each of them off at one of any destination locations. The
taxi can only pick up one passenger at a time, so if a passenger is already in the taxi and the Pickup
action is taken while the taxi is at the pickup location of another passenger, the state does not change.

We can represent this more general Taxi domain with four object classes: Taxi, Wall, Passenger
and Destination. Each object class has attributes x and y for their location on the grid. Object class
Wall has an additional attribute pos to mark one of four positions in a square, while Passenger
has additional attributes in-taxi and at-destination to indicate if the passenger is in a taxi and at
a destination respectively. Given the schema for this domain we can instantiate a set of grounded
objects from the object classes and a resulting MDP. Figure 1 shows sample states of the schema.

Propositional OO-MDPs and Relational MDPs use similar state-space representations as described
above. Where they differ is in the definition of their transition dynamics. While Relational MDPs
use aggregation for preconditions [7], Propositional OO-MDPs use propositions for preconditions
[4]. Furthermore, the work on Relational MDPs assumes that the transition dynamics are known
and the focus is on learning generalised plans. Meanwhile, Propositional OO-MDPs assume that the
transition dynamics are unknown and need to be learned through interaction with the environment.

2

(a) (b)

Figure 1: P marks a passenger; D marks a destination; T marks a taxi; thicker lines mark walls. Five
possible states from the all-passenger any-destination Taxi domain schema.

2.2 Deictic object-oriented representation

Our Deictic OO-MDP framework uses the schema state-space representation described in subsection
2.1 while deictic predicate preconditions are used to define the schema transition dynamics as
described in this section. Let A be a set of actions. Then for each attribute C.α and action a ∈ A
define a set of effects Ea,C.α = {ei : Dom(C.α) → Dom(C.α)}Ka,C.αi=1 . Define a set of deictic
predicate preconditions Fa,C.α = {fi : O[C] × S → B}Da,C.αi=1 , where O[C] is a set that contains
objects with all possible attribute value assignments that are instances of C, and B = {0, 1}. Then the
probabilistic transition dynamics for C.α and a are defined by Pa,C.α : BDa,C.α ×Ea,C.α → [0, 1].
The schema transition dynamics P is the set of transition dynamics for all attributes and actions,
P = {Pa,C.α|C ∈ C, C.α ∈ Att(C), a ∈ A}. The schema reward dynamics are defined by
R : S ×A× S → R.

Given an object set O we can instantiate a grounded MDP MO,ρ = (SO, A, P,R, γ, ρ) where γ is a
discount rate and ρ is a distribution over initial states. Then if an agent is currently in state s ∈ SO
and takes action a, the transition dynamics for MO,ρ operate as follows: for each object o in s that is
an instance of C and each attribute C.α we compute the Boolean truth values B = {fi(o, s)}

Da,C.α
i=1

for the deictic predicates in Fa,C.α. Then for an effect e ∈ Ea,C.α we compute Pa,C.α(B, e) which
returns the probability of e occurring given B. This implies a distribution over effects which in turn
implies a distribution over the attribute values of o by applying the effect to o.α in s and obtaining
e(o.α) = o.α′ in s′.

For example, consider attribute Taxi.x and action East for the all-passenger any-destination Taxi
domain introduced in subsection 2.1. We can define a set of relative effects Reli(x) → x + i that
produce a shift of i squares from the current location x, as well as a deictic predicate TE(taxi, s) that
returns 1 if taxi has a wall one square to its east in s, otherwise 0. Then the transition dynamics can
be described for any taxi object as TE(taxi, s) = 1 =⇒ taxi.x← Rel0(taxi.x) with probability 1
and TE(taxi, s) = 0 =⇒ taxi.x← Rel1(taxi.x) with probability 1. For a slightly more complex
example consider attribute Passenger.in-taxi and action Pickup. The transition dynamics for this
attribute depend on three preconditions for which we require a deictic passenger object: is a taxi on
the same square as passenger? Is passenger.at-destination true? Is there any passenger in a taxi?

The key insight with Deictic OO-MDPs is that the parameters we pass to each precondition in Fa,C.α
are a grounded deictic object o that must be an instance of C and s which is a state of the schema, not
a grounded state. As a result these preconditions may not refer to specific objects in s; however, they
may relate o to object classes of the schema. For example, with TE(taxi, s) as defined above only
taxi is grounded while we never refer to a grounded object in s.

Given a resulting state s′, the reward dynamics operate by computing R(s, a, s′). For the purposes
of this paper we will assume that R is known while P needs to be learned. A subtle but important
requirement for our definition of Pa,C.α to be correct is that the set Ea,C.α must be invertible so that
if the current value assignment for some attribute C.α of a grounded object o in state s is o.α and we
take action a to subsequently observe o.α′ in s′ then there must be a unique e ∈ Ea,C.α such that
e(o.α) = o.α′. Clearly if this requirement is not met then either the effects are not able to correctly
capture the true transition dynamics or there are duplicate effects that lead to the same o.α′ which
creates ambiguity over which effect occurred.

3

2.3 Limitations of propositional object-oriented representation

It is beneficial to contrast the Deictic OO-MDP representation introduced in subsection 2.2 to
Propositional OO-MDPs. Propositions alone are insufficient to represent the transition dynamics for
the all-passenger any-destination Taxi domain. To see this, suppose we have two passenger objects
and the proposition On(Taxi, Passenger) with truth value 1. This can be translated as: a taxi
is on the same square as a passenger is true. Clearly this information is insufficient to determine
which passenger’s in-taxi attribute should change given the Pickup action. To overcome this we
must resort to first-order predicates over grounded objects of the form On(Taxi, passenger1) and
On(Taxi, passenger2). Note that the number of preconditions changes as we add more passenger
objects which complicates both learning and transfer procedures.

As a further example, consider the Sokoban domain where a person is required to push boxes to
some storage locations. However, the person cannot push a box if that box is adjacent to another
box or a wall. As discussed by the authors of Propositional OO-MDPs such domains are not
suitable for propositional representations [3]. Consider the propositions TW (Box, Person) and
TE(Box,Wall) both with truth value 1. The first term translates as: a box has a person one square
to its west is true, while the second translates as: a box has a wall one square to its east is true.
Then the conjunction TW (Box, Person) = 1 ∧ TE(Box,Wall) = 1 is insufficient to determine
the transition dynamics of the box’s x attribute when taking action East since there is no way to
know if the terms are referring to the same box. See Figure 2 for illustration. Deictic OO-MDPs
are able to represent these conditions without ambiguity. Consider the Box.x attribute with action
East. Define f1(box, s) to return 1 if box has a person one square to its west in s, otherwise
0. Define f2(box, s) to return 1 if box has a wall one squares to its east in s, otherwise 0. Then
f1(box, s) = 1 ∧ f2(box, s) = 1 =⇒ box.x← box.x+ 0.

In fact, representing the transition dynamics for this domain in terms of Deictic OO-MDPs is
straightforward. For a deictic person object there are four preconditions when the action East is
taken: is there a box one square east of person? Is there a box two squares east of person? Is there a
wall one square east of person? Is there a wall two squares east of person? Meanwhile for a deictic
box object there are three preconditions: is there a person one square west of box? Is there a wall one
square east of box? Is there a box one square east of box? The other actions are analogous.

(a) (b) (c)

Figure 2: For action East and the box adjacent to the person, in (2a) the effect is box.x ←
box.x + 0; in (2b) the effect is box.x ← box.x + 1 while the conjunction TW (Box, Person) =
1 ∧ TE(Box,Wall) = 1 is true in both cases. (2c) is a more complex Sokoban task with four boxes
from the “Micro-Cosmos” level pack which requires 209 steps to solve under an optimal policy.

3 Learning transition dynamics

Given a set of D preconditions we want to learn the transition dynamics for each attribute C.α and
action a. If the transition dynamics are deterministic this can be done using memorisation [10] with
KWIK bound 2D. However, this is prohibitive if D is large. Propositional OO-MDPs introduce a
learning algorithm called DOORMAX [4] for deterministic transition dynamics that, under certain
assumptions, has provably efficient KWIK bounds. Moreover, DOORMAX is able to learn from
multiple hypothesised effect sets and determine the correct effect set for each attribute and action.

The main assumption required for DOORMAX to be correct is that the transition dynamics for
each attribute and action must be representable as a full binary tree with propositions at the non-leaf
nodes and effects at the leaf nodes. Furthermore, each possible effect of an effect set can only occur

4

at most at one leaf node of the tree, except for a special effect called a “failure condition” that may
occur at multiple leaf nodes. A failure condition implies that globally no attribute changed when an
action was taken i.e. s = s′ when a is taken. See Figure 3a for how this represented for the Taxi.x
attribute with action East.

The intuition behind DOORMAX is that in many cases the number of preconditions that an effect
depends on is much smaller than D. Furthermore, since an effect can occur at most once in the
tree, we can invalidate many terms with a small number of observations by using conjunctions. For
example, suppose we observe the following different sets of terms that each produce the same effect
Taxi.x ← Taxi.x + 1: T1 = {TN (Taxi,Wall) = 0, TE(Taxi,Wall) = 0, TS(Taxi,Wall) =
0, TW (Taxi,Wall) = 0} and T2 = {TN (Taxi,Wall) = 1, TE(Taxi,Wall) = 0,
TS(Taxi,Wall) = 1, TW (Taxi,Wall) = 1}. Then we can determine from only two observations
that the relevant terms for this effect are the ones that occur in T1 ∧ T2 i.e. TE(Taxi,Wall) = 0. As
failure conditions can occur at multiple leaf nodes they need to be learned on a case by case basis.

We adapt the DOORMAX algorithm to Deictic OO-MDPs, which we call DOORMAXD. The
main difference forDOORMAXD is that we remove the notion of a global failure condition because
this depends on a grounded state comprised of grounded objects. Meanwhile the transition dynamics
of our representation are schema based to allow for transferability across tasks. Instead we require
that all effects apply to a single attribute. See Figure 3b for how this is represented for the Taxi.x
attribute with action East. To achieve this, we introduce a partition function over effects that groups
them into those that can occur at most at one leaf node and those that can occur at multiple leaf nodes.

(a) (b)

Figure 3: Full binary tree structure for the
transition dynamics of Taxi.x attribute and
action East. (3a) for Propositional OO-
MDPs; (3b) for Deictic OO-MDPs. Right
branches represent a truth value of 1.

(a) (b) (c)

Figure 4: Binary trees induced by Te1 and Te2 .
Right branches represent a truth value of 1.

Let F be a set of deictic predicate preconditions and E be a set of effects.

Definition 1. A term is a tuple (f, b) where f ∈ F and b ∈ B. A set of terms is denoted by T and a
set that contains sets of terms is denoted by T .

Definition 2. Term (f1, b1) mismatches term (f2, b2) if f1 = f2 and b1 6= b2

Definition 3. Π : E → B is a binary partition function over E and assigns each effect in E to one
of two partitions, 0 or 1. We call the tuple g = (E,Π) an effect type. Denote by Kg

0 and Kg
1 the

number of effects in partition 0 and 1 respectively. We use . notation to refer to an element in a tuple
g, so for example g.E refers to E in g

Definition 4. Let g be an effect type. Let M > 1 be a constant. Then Tree(g, F,M) is the set of
all full binary trees such that non-leaf nodes are a subset of F and leaf nodes are a subsets of g.E.
Furthermore, if g.Π assigns an effect in g.E to partition 1 then that effect can occur at most at one
leaf node and we call that effect conjunctive, otherwise that effect may occur at most at M leaf nodes
and we call that effect disjunctive.

Theorem 1. For attribute C.α and action a let F̂ be a set of size D that contains hypothesised
deictic predicate preconditions on which the transition dynamics of C.α when taking action a may
depend. Let Ĝ = {gi}Ni=1 be a set of size N that contains hypothesised effect types where each
e ∈ gi.E has domain and range Dom(C.α). Let K0 = maxg∈Ĝ K

g
0 and K1 = maxg∈Ĝ K

g
1 . Let

H = {Tree(g, F̂ ,M)|g ∈ Ĝ} for some constant M > 1. Then if exactly one h∗ ∈ H is true, the
transition dynamics forC.α and a can be learned with KWIK boundN(K0M+K1(D+1)+1)+N−1
by applying the learning procedure of Algorithm 1. The proof of Theorem 1 is in section 4 of the
supplementary material and is analogous to the KWIK bound proof for Propositional OO-MDPs [4].

5

Note that DOORMAXD, being an Rmax based algorithm, requires two procedures - one to learn
the transition dynamics from observed data and one to make predictions for planning. In this paper
we present only the learning procedure (see Algorithm 1), leaving out the prediction procedure as it
is analogous to that introduced for Propositional OO-MDPs [4]. For prediction, the essence of the
procedure is that for an attribute C.α and action a the input is a deictic object o that is an instance of
C and a state s, and it is required that for each effect type in Ĝ we can make a prediction that is not ⊥
and further that all the predictions of o.α′ are the same, otherwise return ⊥. The full procedure is
included in section 3 of the supplementary material.

Algorithm 1: DOORMAXD: learning procedure for C.α and a.
Input : o ∈ O[C], o.α′ ∈ Dom(C.α), s ∈ S

1 pass o and s to the deictic predicates in F̂ to retrieve a set of terms T
2 foreach g ∈ Ĝ do
3 foreach e ∈ g.E do
4 if T ge does not exist then
5 define T ge and initialise to the empty set, T ge ← φ
6 end
7 if e(o.α) = o.α′ then
8 if T ge = φ then
9 if (∃e′ ∈ g.E and Te′ ∈ T ge′) such that Te′ ⊆ T then

10 remove g from Ĝ
11 else
12 add T to T ge
13 end
14 else
15 if g.Π(e) = 0 then
16 add T to T ge
17 else
18 Ttemp ← T
19 T ← the only element in T ge
20 remove from T any terms that mismatch terms in Ttemp
21 T ge ← φ
22 add T to T ge
23 end
24 if (∃(e′ ∈ (g.E − {e}) and Te′ ∈ T ge′) such that (T ⊆ Te′ or Te′ ⊆ T)) or

(|T ge | > M) then
25 remove g from Ĝ
26 end
27 end
28 end
29 end
30 end

The key insight behind Algorithm 1 is that for all g ∈ Ĝ the set {T ge }e∈g.E must at all times induce
a binary tree subject to the constraints of the partition function g.Π. Each time we observe a set of
terms T and an associated effect e we update T ge and in doing so may discover that the resulting set
{T ge }e∈g.E can no longer induce an appropriate binary tree at which point we remove g from Ĝ. To
provide some intuition on the operations in the algorithm consider a case where F = {f1, f2, f3}
and there are two effects E = {e1, e2} where e1 is conjunctive and e2 is disjunctive. Consider the
following examples: Figure 4a: we currently have Te1 = {Te1 = {(f1, 1), (f2, 1), (f3, 1)}} and
Te2 = φ. Suppose we then observe e2 with T = {(f1, 1), (f2, 1), (f3, 1)}. Then Te2 is empty and
Te1 ⊆ T . Figure 4b: we currently have Te1 = {Te1 = {(f1, 1), (f2, 1), (f3, 1)}} and Te2 = {Te2 =
{(f1, 1), (f2, 1), (f3, 0)}}. Suppose we then observe e1 with T = {(f1, 1), (f2, 0), (f3, 0)}. As e1 is
conjunctive and Te1 is not empty we first remove mismatching terms. Then Te1 = {T = {(f1, 1)}}
and now T ⊆ Te2 . Figure 4c: we currently have Te1 = {Te1 = {(f1, 1)}} and Te2 = {Te2 =
{(f1, 0), (f2, 0), (f3, 0)}}. Suppose we then observe e2 with T = {(f1, 1), (f2, 0), (f3, 1)}. We add

6

T to Te2 and now Te1 ⊆ T . In all the above cases, we conclude that the effect type is invalid since
the observed data can no longer induce a binary tree subject to the specified constraints. Note that we
do not place any restrictions on the order in which the preconditions may appear in the tree, but there
is no reordering that can recover an appropriate binary tree given the data.

4 Experiments

4.1 All-passenger any-destination Taxi domain

We conduct two sets of experiments on this domain. In the first set we have one destination and we
fix the number of passengers, n. We generate a grounded MDP with an initial state by randomly
sampling n passenger locations and one destination location from one of six pre-specified locations
and we also sample a random taxi start location together with one of four wall configurations as
shown in Figure 1a. We apply 20 independent runs of the following procedure: we sample 10 test
MDPs with random initial states. We then randomly sample a training MDP and run DOORMAXD

on it for one episode until we reach the terminal state. Upon termination, we test performance by
running DOORMAXD for one episode on each of the 10 test MDPs, stopping an episode early if
we exceed 500 steps. We repeat this for 100 training MDPs. Since all the MDPs come from the same
schema we can share transition dynamics between our MDPs - but we only update the transition
dynamics on training MDPs. In our experiments we start with n = 1 passenger and increase to
n = 4 passengers. We run our experiments for Propositional OO-MDPs and two versions of Deictic
OO-MDPs. In the first, without transfer, we relearn the transition dynamics for each n while for the
second, with transfer, we transfer the previously learned transition dynamics each time we increase n.
We report results in Figure 5 that averages over the 20 independent runs the average number of steps
for the 10 test MDPs with error bars included.

(a) One passenger experimental results. (b) Two passenger experimental results.

(c) Three passenger experimental results. (d) Four passenger experimental results.

Figure 5: Experimental results for the all-passenger any-destination Taxi domain with different
number of passengers.

We see from the results that for this domain deictic representations outperform the propositional
representation as we increase the number of passengers. This is because with the propositional
representation we need to add more preconditions as we increase the number of passengers - in
fact the propositional representation is unable to learn the task when n = 4 even after 100 training
episodes. Furthermore, as the MDPs belong to the same schema it is beneficial to transfer the previous
transition dynamics under the deictic representation. Specifically, once we get to n = 4 passengers
the transition dynamics we transfer from the n = 3 experiment have learned the schema transition
dynamics completely and we have zero-shot transfer of the transition dynamics.

7

We observe from Figure 5 that using the deictic representation without transfer is actually learning
slightly faster as we add more passengers. This is somewhat misleading. What is actually happening
is that as the tasks become more complex the agent is able to learn more about the transition dynamics
over a single training episode, but that episode will require many more steps to complete. To illustrate
this and also highlight the robustness of the deictic representation with transfer methodology we
conduct a second set of experiments. These experiments are similar to those conducted before but we
now use a larger 10× 10 gridworld with five passengers and three destinations as in Figure 1b. In
these experiments we stop after 100 steps for each episode of the training MDPs. Furthermore, for
the deictic representation with transfer we simply transfer the learned transition dynamics of n = 4
passengers and do no additional learning on the new larger gridworld.

In Figure 6 we plot for all the experiments run the average number of steps relative to optimal number
of steps. We see that the deictic representation with transfer is able to solve the larger gridworld
optimally with no additional learning of the transition dynamics. Meanwhile the deictic representation
with no transfer which was decreasing up to n = 4 now has a jump between n = 4 and n = 5 because
the agent does not have the benefit of learning for a full training episode. We cap the graph’s y axis at
10 to make it more readable, but remark that the propositional representation exhibits exponentially
worse performance relative to optimal as the tasks become more complex. We include additional
details on the transition dynamics for this domain in section 1 of the supplementary material.

Figure 6: Average number of steps relative to optimal number of steps as we add more passengers -
for n = 5 we also increase the gridworld size and add more destinations hence it is marked with a ∗.

4.2 Sokoban domain

To demonstrate the benefits of Deictic OO-MDPs, we conduct an experiment on a more challenging
Sokoban domain. In this experiment we first learn the transition dynamics on an MDP with initial
state as in Figure 2a and continue learning until we have a prediction for every state and action
in the MDP. As it turns out, this simple toy MDP with 7, 961 states is enough to completely learn
the schema transition dynamics of this domain under the Deictic OO-MDP representation. Once
learned we zero-shot transfer the transition dynamics to a more complex Sokoban task as shown in
2c. This task comes from the “Micro-Cosmos” level pack and has approximately 106 states while the
optimal number of steps to solve this task 209. With no additional learning we run value iteration
and solve for the optimal policy. Note that the ability to transfer here is critical. The larger MDP has
approximately 125 times more states than the toy MDP. Running Rmax based algorithms directly on
the larger MDP is very slow because at each step it is required to compute a policy with a planning
algorithm such as value iteration that requires multiple iterations over the state-space to converge.
By transferring the transition dynamics learned in the toy MDP we can solve the larger MDP with
only a single run of value iteration which is extremely efficient. We include additional details on the
transition dynamics for this domain in section 2 of the supplementary material.

5 Concluding remarks

In this paper we have introduced a novel deictic object-oriented representation for RL. We have
shown that this representation can be described in terms of a schema that allows reuse of transition
dynamics across grounded MDPs instantiated from that schema and that this allows for zero-shot
transfer across such MDPs. Theoretically we have proved that under certain assumptions we can
efficiently learn deterministic transition dynamics. We conducted experiments on an extension of the
Taxi domain as well as a more challenging Sokoban domain and have shown that zero-shot transfer
of transition dynamics is possible with our representation.

8

Acknowledgments

The authors with to thank Google Travel and Conference Grants for their support. The authors also
wish to thank the anonymous reviewers for their thorough feedback and helpful comments.

References
[1] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

[2] T. G. Dietterich. The maxq method for hierarchical reinforcement learning. Proceedings of the
15th International Conference on Machine Learning, 1998.

[3] C. Diuk. An object-oriented representation for efficient reinforcement learning. PhD thesis,
Rutgers The State University of New Jersey-New Brunswick, 2010.

[4] C. Diuk, A. Cohen, and M. L. Littman. An object-oriented representation for efficient reinforce-
ment learning. Proceedings of the 25th International Conference on Machine learning, pages
240–247, 2008.

[5] S. Džeroski, L. DeRaedt, and K. Driessens. Relational reinforcement learning. Machine
Learning Journal, 43:7–52, 2001.

[6] S. Finney, N. Gardiol, L. P. Kaelbling, and T. Oates. Learning with deictic representations.
Technical report, Massachusetts Institute of Technology, 2002.

[7] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments
in relational mdps. Proceedings of the 18th Joint Conference on Artificial Intelligence, pages
1003–1010, 2003.

[8] K. Kansky, T. Silver, D. A. Mèly, M. Eldawy, M. Làzaro-Gredilla, X. Lou, N. Dorfman, S. Sidor,
S. Phoenix, and D. George. Schema networks: Zero-shot transfer with a generative causal model
of intuitive physics. Proceedings of the 34th International Conference on Machine Learning,
pages 1809–1818, 2017.

[9] G. Konidaris and A. Barto. Building portable options: Skill transfer in reinforcement learning.
Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pages
895–900, 2007.

[10] L. Li, M. L. Littman, and T. J. Walsh. Knows what it knows: A framework for self-aware
learning. Proceedings of the 25th International Conference on Machine Learning, pages
568–575, 2008.

[11] B. Ravindran and A. Barto. Relativized options: choosing the right transformation. Proceedings
of the 12th Yale Workshop on Adaptive and Learning Systems, pages 109–114, 2003.

[12] J. Scholz, M. Levihn, C. L. Isbell, and D. Wingate. A physics-based model prior for object-
oriented mdps. Proceedings of the 31st International Conference on Machine Learning, pages
1089–1097, 2014.

[13] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[14] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(1):1633–1685, 2009.

9

	Introduction
	Framework
	Background
	Deictic object-oriented representation
	Limitations of propositional object-oriented representation

	Learning transition dynamics
	Experiments
	All-passenger any-destination Taxi domain
	Sokoban domain

	Concluding remarks

