Belief Reward Shaping in Reinforcement Learning: Supplementary Material

Ofir Marom,¹ Benjamin Rosman^{1,2}

¹University of the Witwatersrand, Johannesburg, South Africa ²Council for Scientific and Industrial Research, Pretoria, South Africa

A Backgammon

This section describes the full details for the belief clusters and parameters settings used for this experiment in the main paper.

Notation	Description
dc	degree of contact
p1_bl	player 1 number of blots
p2_bl	player 2 number of blots
p1_ipt	player 1 number of inner points
p2_ipt	player 2 number of inner points
p1_pt	player 1 number of points
p2_pt	player 2 number of points
p1_pr	player 1 maximum prime
p2_pr	player 2 maximum prime
p1_iopp	player 2 checkers in player 1 inner board / on bar
p2_iopp	player 1 checkers in player 2 inner board / on bar

Table 1: Backgammon: description of notation used in tables 2 and 3.

Belief Cluster Criterion	μ_0	λ
dc>0, p1_bl>0	-0.5	3000
dc>0,p2_bl>0	0.5	3000
$dc>0, p1_ipt>1$	0.5	3000
$dc>0, p2_ipt>1$	-0.5	3000
dc>0, p1_pt>4	0.5	3000
dc>0, p2_pt>4	-0.5	3000
dc>0, p1_pr>1	0.5	3000
dc>0, p2_pr>1	-0.5	3000

Table 2: Backgammon: simple set of prior beliefs.

For the simple set of prior beliefs in table 2 the criterions are chosen so that the positions are "improvements" over the starting position as when we start a game each side has 0 blots, 1 inner point, 4 points and a maximum prime of 1. The complex set of priors are more advanced because they scale the reward based on the position (i.e. having 5 blot is considered worse than 2 blots) and restrict certain rewards to situations when the position is beneficial (i.e. there is an

Belief Cluster Criterion	μ_0	λ	Range
dc>0, p1_bl=i	$-1.5 \frac{Min(i,5)}{15}$	3000	$i \in [0, 15]$
dc>0, p2_bl=i	$1.5 \frac{Min(i,5)}{15}$	3000	$i \in [0, 15]$
dc>0, p1_iopp>0, p1_ipt=i	$0.5\frac{1}{6}$	3000	$i \in [0, 6]$
dc>0, p2_iopp>0, p2_ipt=i	$-0.5 \frac{i}{6}$	3000	$i \in [0, 6]$
$dc>0, p1_pt=i$	$0.5 \frac{i}{7}$	3000	$i \in [0,7]$
$dc>0$, $p2_pt=i$	$-0.5 \frac{i}{7}$	3000	$i \in [0,7]$
dc>0, p1_iopp>0, p1_pr=i	$0.5 \frac{i}{7}$	3000	$i \in [0,7]$
dc>0, p2_iopp>0, p2_pr=i	$-0.5 \frac{i}{7}$	3000	$i \in [0,7]$

Table 3: Backgammon: complex set of prior beliefs.

opponent checker in the player's inner board or on the bar). For the complex set of priors each i in table 3 is a separate belief cluster with its own prior mean and prior mean pseudo-count.

Furthermore, note that that the neural network has 4 output nodes to account for gammon / backgammon wins. It should be understood from the table above that $\mu_0 = c$ is actually a vector [c, c, -c, -c] where the first two elements represents wins for player 1 and the last two elements represent wins for player 2.