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Abstract
An important problem in reinforcement learning is the need for greater sample efficiency. One approach to dealing with

this problem is to incorporate external information elicited from a domain expert in the learning process. Indeed, it has

been shown that incorporating expert advice in the learning process can improve the rate at which an agent’s policy

converges. However, these approaches typically assume a single, infallible expert; learning from multiple and/or unreliable

experts is considered an open problem in assisted reinforcement learning. We present CLUE (cautiously learning with

unreliable experts), a framework for learning single-stage decision problems with action advice from multiple, potentially

unreliable experts that augments an unassisted learning with a model of expert reliability and a Bayesian method of pooling

advice to select actions during exploration. Our results show that CLUE maintains the benefits of traditional approaches

when advised by reliable experts, but is robust to the presence of unreliable experts. When learning with multiple experts,

CLUE is able to rank experts by their reliability and differentiate experts based on their reliability.

Keywords Assisted reinforcement learning � Interactive reinforcement learning � Agent teaching � Expert advice

1 Introduction

Single-stage decision problems (SSDPs), otherwise known

as contextual bandits, are a type of reinforcement learning

(RL) problem with a wide range of useful applications

[1–3]. For example, consider the problem of a doctor who

can observe a patient’s symptoms and medical history and

must prescribe the right set of treatments to improve the

patient’s condition. These types of problems have attracted

research looking to augment the doctor with a software

agent, with the long-term goal of making such diagnoses

more comprehensive and widely available [4, 5].

As another example, consider the scenario of a robot

frail-care assistant, tasked with monitoring its patient and

assisting in daily tasks. Suppose this robot has already

learned how to optimally perform each individual task (e.g.

mobility assistance, dispensing medicine, etc.), but has yet

to learn which tasks to perform in which situations, based

on the observations it can make through its sensors. In such

a scenario, it is crucial for the robot to learn which tasks to

perform for given observations, as there is a great deal of

risk involved should the robot perform the wrong task. For

example, if the patient has slipped and fallen, the correct

response might be to call for help. If the robot does not

perform these tasks, serious harm could come to the

patient.

In both examples, it is important for the autonomous

agent to learn the problem with as few samples as possible,

for a number of reasons. Primarily, these types of problems

may be very complex, with a large space of possible

observations and decisions. For example, the medical

diagnosis problem may consist of hundreds of symptoms

and treatments. Additionally, data acquisition may be dif-

ficult, either because the agent is acting in the real-world,

thus potentially damaging itself and its surroundings, or

because of ethical and safety issues, especially when

dealing with human patients.
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One approach to tackling the need for sample efficiency

is to incorporate external information in the learning pro-

cess [6]. For example, an autonomous medical diagnosis

system could be advised by a doctor who instructs the

agent to prescribe certain treatments in response to certain

combinations of symptoms and medical history. Given the

potential complexity, it may not always be feasible to elicit

all of this information before learning starts. Instead, the

human advisor can advise the agent as it learns, in response

to its performance. Indeed, previous work has shown that

the interactive incorporation of expert advice can improve

the rate at which an RL agent converges to a given per-

formance threshold, provided that said advice is correct [7].

To increase the amount of external information avail-

able to an agent, it may be desirable to incorporate advice

from multiple experts. However, this introduces its own

problems when multiple experts offer conflicting advice for

the same situation. Here the agent must decide which

advice to follow and which to ignore. In general, expert

advisers, especially humans, can give incorrect advice,

either in error or through active malice [8]. Overcoming

these problems has been identified as an open problem in

the field of Assisted RL [6].

In order to address these issues, we present CLUE, a

framework for learning SSDPs with policy advice from

multiple, potentially unreliable experts. Our contributions

consist of the framework itself, as well as Bayesian

approaches to modelling expert reliability and pooling

advice from multiple experts to facilitate decision-making.

We demonstrate in a number of randomly generated SSDP

environments that CLUE benefits from advice given by

reliable experts, but is robust against advice given by

experts that may be unreliable to some degree.

2 Background and related work

2.1 Single-stage decision problems

Reinforcement learning (RL) is a field of machine learning

in which decision-making entities, known as agents, learn

how to interact with an environment in order to maximise

some cumulative reward signal [9]. Of the many types of

RL problems, this research concerns itself with single-

stage decision problems (SSDPs), also known as contextual

bandits [10], with discrete states and actions. In this setting,

the agent observes some state s 2 S, selects some action

a 2 A and receives some reward or utility rðs; aÞ 2 R from

the environment. Each round of observation, action selec-

tion and environment feedback is referred to as a trial, and

each trial is independent from previous trials.

The medical diagnosis example from the previous sec-

tion can be posed as an SSDP, with the set of observable

symptoms and medical history forming the state space, the

set of available treatments forming the action space and the

reward signal being a function of the patient’s health,

whether or not they have experienced negative side effects,

etc. The frail-care assistance robot example can also be

posed as an SSDP, with each state being composed of the

observations made by the robot. Unlike the medical diag-

nosis example, the action space here is made up of high-

level strategies, rather than low-level actions such as joint

angles and motor velocities. The reward may be related to

the well-being of the patient.

A policy p : S! A is a function that maps each state to

an action, and the goal of an agent within an SSDP is to

learn the optimal policy p�ðsÞ that maximises EUðpðsÞjsÞ,
where EUðajsÞ denotes the expected utility (i.e. expected

reward) of choosing an action a in state s. The expected

utility function is typically not given and must be learned

by the agent through its interactions with the environment.

One common approach to learning this function is to

maintain an action value function Qðs; aÞ � EUðajsÞ,
which can be updated after each trial via some weighted

average of observed r(s, a), such as in the update rule:

Qðst; atÞ  Qðst; atÞ þ aðrt � Qðst; atÞÞ; ð1Þ

where a 2 ð0; 1� is the step size parameter and controls the

rate at which the agent learns [9]. For stationary problems,

a may be assigned the value of 1
kðs;aÞ, where k(s, a) is the

number of times the state-action pair (s, a) has been

encountered. As this is always calculated at the end of a

trial, kðs; aÞ� 1.

In order to ensure the agent’s interactions with the

environment are sufficient to learn a good estimate of

EUðajsÞ, a balance must be struck between acting opti-

mally according to this estimate (so-called exploitation)

and improving estimates for other state-action pairs (so-

called exploration). Many different approaches exist to

balance exploration and exploitation, with some common

examples including epsilon greedy, adaptive greedy,

explore-then-exploit (ETE) and upper confidence bound

(UCB) [11, 12].

Epsilon greedy agents maintain a parameter � 2 ½0; 1�
such that with probability � the agent acts randomly (ex-

ploration) and otherwise selects the action a� that maximises

Q(s, a) (exploitation). In practice, the value of � is often

decayed over time. Adaptive greedy agents maintain a

parameter z, such that for a given state s, the agent exploits if

Qðs; a�Þ[ z, otherwise exploring. As with �, z is often

decayed over time. ETE agents partition the entire set of

trials into two phases determined by tb, such that the agent

explores when t\tb and exploits when t� tb. UCB agents

select the action thatmaximises some combination ofQ(s, a)

and the size of a confidence interval within which that
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estimate lies. Using a parameter c to balance exploration and

exploitation, a UCB agent selects the action that maximises

Qðs; aÞ þ c
ffiffiffiffiffiffiffiffiffi

2 lnðtÞ
Nðs;aÞ

q

, where N(s, a) denotes the number of

times action a has been selected for state s [12].

2.2 Assisted reinforcement learning

Assisted reinforcement learning (ARL) is a framework that

encompasses a wide range of RL methods that incorporate

information external to the environment in the learning

process [6]. While the focus of this paper is on contextual

bandits rather than the full RL problem, the ARL frame-

work is nevertheless applicable. Some examples of ARL

approaches include RL from demonstration [13] and

transfer learning in RL [14]. Of particular relevance to this

work is interactive RL (IRL), in which an expert (either

human of software-based) provides information to the

agent during the learning process, usually as a response to

the behaviour of the agent [15].

IRL methods can be classified based on the type of

advice the expert gives. In reward-shaping approaches

[16], the expert modifies the reward signal provided to the

agent (e.g. by providing feedback when the agent selects

certain actions). In policy-shaping approaches [17, 18], the

expert modifies the agent’s policy, typically by advising an

action for a given state and having this action override the

agent’s policy whenever that state is encountered. Both

approaches are preferred for different situations and

domains. In this paper, we focus on policy shaping, as

state-action advice can be more easily elicited from human

experts in our domains of interest (particularly the medical

diagnosis domain), requires minimal similarity between the

agent and expert [7], and is more robust to infrequent and

inconsistent feedback [18].

Many (but not all) approaches in ARL assume the

advice to be coming from a single, infallible expert.

However, this assumption does not always hold, especially

when the expert is human [8]. Suboptimal advice could be

the result of communication error, erroneous domain

knowledge or a malicious expert. The problem of incor-

porating unreliable advice is especially salient when advice

is retained rather than discarded after use, as erroneous

advice can impact performance wherever the advice is

reused [19]. Furthermore, incorporating advice from mul-

tiple experts introduces the possibility of two or more

experts offering contradicting advice, requiring the agent to

choose which advice is more likely to be correct [20]. The

problems of incorporating advice from unreliable experts

and from multiple experts are considered open questions in

ARL [6].

2.3 Related work

Several approaches have attempted to deal with the prob-

lems of learning from multiple experts and dealing with

incorrect advice. Gimelfarb, Sanner and Lee [16] tackle

both problems by combining reward-shaping advice as a

weighted sum of potential functions, with weights repre-

senting the belief that an expert is correct being updated as

the agent learns. The decision-making rules in Sect. 3.2 are

directly inspired by this Bayesian combination of advice.

Griffith et al. [18] tackle the problem of incorrect advice by

modelling the reliability of an expert using a static

parameter C 2 ð0; 1Þ when assessing whether an action is

optimal. Such a model of reliability is expanded on in

Sect. 3.1.

Both of the aforementioned approaches rely on reward-

shaping advice and are thus incompatible with the policy-

shaping advice considered in this paper. The policy reuse

in Q-learning (PRQ) algorithm probabilistically selects

transferred policies (or the agent’s learned policy) to fol-

low, updating the probability of selecting a policy using the

reward gained following it [17]. PRQ can be used to

address the problems of learning from multiple, potentially

unreliable experts [19], and a comparison between PRQ

and the approach presented in this paper is made in

Sect. 4.3.

Other approaches that consider unreliable information

(albeit with different temporalities and types of advice)

include the normalised actor–critic algorithm, an RL from

demonstration approach which refines an initial policy

obtained from potentially imperfect demonstrations [21]

and the joint learning framework for deferral to multiple

experts, a classification algorithm, in which a classifier is

learnt together with a deferrer which learns when to defer

to one or more experts, which may have incorrect domain

knowledge or biases [22].

3 Methodology

The aim of this paper is to devise an algorithm that can

model the reliability of multiple experts and use these

models to combine the action advice given by the experts

to learn an optimal policy for an SSDP. To that end, we

present CLUE (cautiously learning with unreliable

experts), a framework for learning to solve SSDPs with

action advice from multiple, potentially unreliable experts.

High-level pseudocode is provided in Algorithm 1.
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We now outline how CLUE operates and the specific

contributions this work makes. CLUE involves three

actors: an environment, an agent and a panel E of one or

more experts. The environment is a standard SSDP envi-

ronment, as discussed in Sect. 2.1. Namely, for trial t, it

samples state st, accepts action at from the agent and

returns reward rt. At the end of the trial, each expert e in

panel E receives hst; at; rti and may independently offer

their own advice, ðst; aðeÞÞ on what action the agent should

have taken this trial. How and when an expert decides to

offer advice differs between experts (see Sect. 4). It is

worth noting here that, although we choose to have the

expert give advice at the end of the trial in this work, this

can occur instead at the start of a trial without requiring any

change to the CLUE algorithm.

The agent is composed of three components, the first of

which is a learning algorithm, which uses the information

hst; at; rti to learn a policy, such as the action value update

rule in Eq. 1. The second component, and one of the

contributions of this work, is a model of the reliability of

each expert (see Sect. 3.1). This model is necessary for

learning which pieces of advice are to be followed and

which are to be ignored. When an expert utters a piece of

advice at the end of a trial, the agent uses its own infor-

mation about the environment (such as a Q function) to

evaluate the advice and update the model (see Sect. 3.1). If

the state space of a problem can be divided into n ‘‘areas of

expertise’’, n models can be maintained for a single expert.

The third component, and another contribution of this

work, is a decision-making process which uses the infor-

mation learned by the learning algorithm and the models of

each expert to select an action for a state while exploring,

given any advice it has previously received for that state

(see Sect. 3.2). This component is designed to augment the

existing action selection algorithms that do not account for

expert advice, such as those presented in Sect. 2.1.

3.1 Modelling experts

The first contribution we address is how an agent working

within the CLUE framework models the reliability of each

expert. We say that an expert is reliable if its advice is

always correct (i.e. optimal), otherwise being unreliable.

Intuitively, we can think of an expert as being unreliable to

some degree. For example, an expert that offers correct

advice in 95% of trials, while still unreliable, is more

reliable than an expert that is always wrong. Following

related work [18], we model an expert’s reliability,

q 2 ½0; 1�, as the probability of the expert giving correct

advice, where q ¼ 0 corresponds to an expert whose advice

is always wrong and q ¼ 1 corresponds to a reliable expert.

We can model a probability distribution of the value of q
using a Beta distribution Betaq½a; b�, whose shape is

determined by the parameters a; b[ 0 [23]. These

parameters can be thought of as counts, with a and b
recording the number of times correct or incorrect advice

was given, respectively.

At the end of trial t, the agent must update this distri-

bution for each expert that gave advice for st sometime in

the past. To do this, the agent can evaluate the advice as

either optimal or suboptimal, given its own information. In

this work, we set xt ¼ 1 if Qðst; aðeÞt Þ ¼ maxaQðs; aÞ, and
xt ¼ 0 otherwise, where a

ðeÞ
t denotes the advice received

from expert e. In order to allow for inconsistent experts

(e.g. an expert whose performance degrades over time), we

update the expected value E½q� using a recency-weighted

moving average with weight parameter d 2 ½0; 1�,
Etþ1½q� ¼ ð1� dÞEt½q� þ dxt; ð2Þ

where E0½q� is determined by prior counts a0 and b0. If the
state space has been divided into n ‘‘areas of expertise’’,

across which the reliability of an expert may differ, a

CLUE agent can maintain n of the above models and

update them separately, provided the ‘‘areas of expertise’’

are known to the agent (see Sect. 4.4).
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3.2 Making decisions

We now turn our attention to the problem of how E½q� can
inform the decision-making process. Suppose that, at the

start of trial t, the agent observes state st and recalls any

advice that some subset Et � E of experts offered for state

st in trials ½0; . . .; t � 1�. In order for the agent to be able to

surpass the performance of the experts advising it, we only

allow the agent to consider expert advice when exploring.

Determining when the agent explores depends on the

underlying action selection algorithm (see Sect. 2.1). For

algorithms such as epsilon greedy, adaptive greedy and

ETE, this is easily explicitly determined by their respective

parameters. For UCB, the agent can be said to be exploring

if argmax
a

Qðs; aÞ 6¼ argmax
a

Qðs; aÞþc
ffiffiffiffiffiffiffiffiffi

2 lnðtÞ
Nðs;aÞ

q

:

If exploring, the agent must choose between the action

suggested by the underlying action selection algorithm or

between following advice it has received for st, in which

case it must choose which advice to follow. If Et ¼£, no

advice has been offered, such as may happen at the

beginning of the learning process, and the agent must act

without advice according to its underlying action selection

algorithm.

If jEtj � 1, at least one expert has offered advice. A

naı̈ve approach may be to follow the advice of the expert

with the highest expected reliability. However, this

approach loses information that could be provided by

consensus among experts (so-called wisdom of the crowd

[24]) or by adversarial experts (whose advice is almost

always wrong, thus informing the agent which actions not

to take).

In order to take advantage of this information, we

employ a Bayesian method of pooling advice, inspired by

similar approaches in potential-based reward shaping [16]

and in crowd-sourced data labelling [25]. Let a� denote the

optimal action for state st and v
ðeÞ
t denote the advice

utterance given by expert e for st, with Vt denoting the set

fvðeÞt je 2 Etg. Our aim, therefore, is to calculate Pðaj ¼
a�jVtÞ for each aj 2 A. To do this, we employ Bayes’ rule

as follows:

Pðaj ¼ a�jVtÞ ¼
PðVtjaj ¼ a�ÞPðaj ¼ a�Þ

PjAj
k¼0 PðVtjak ¼ a�ÞPðak ¼ a�Þ

: ð3Þ

If nothing is known about the environment prior to learn-

ing, a reasonable assumption would be to assume that each

action has a uniform prior probability of being optimal.

Under this assumption, Eq. 3 reduces to:

Pðaj ¼ a�jVtÞ ¼
Q

e2Et
PðvðeÞt jaj ¼ a�Þ

PjAj
k¼0

Q

e2Et
PðvðeÞt jak ¼ a�Þ

; ð4Þ

which combines all the available advice for st to calculate

the probability of each aj being optimal. Note that, if for a

particular domain one can reasonably assume a non-uni-

form prior distribution of Pða ¼ a�Þ, this distribution can

be incorporated into Eq. 3 without fundamentally changing

this decision-making process.

All that remains is to calculate PðvðeÞt jaj ¼ a�Þ. Recalling
that the probability of the advice being correct is equal to

E½qðeÞ� and assuming that, if the advice is incorrect, the

expert is equally likely to advise any suboptimal action,

then:

PðvðeÞt jak ¼ a�Þ ¼
E½qðeÞ� v

ðeÞ
t ¼ ak

1� E½qðeÞ�
jAj � 1

v
ðeÞ
t 6¼ ak

8

>

<

>

:

ð5Þ

Substituting Eq. 5 into Eq. 4, we can calculate the proba-

bility of each action in A being optimal and can set

abest ¼ argmaxa Pða ¼ a�jVtÞ. In a similar approach to

both epsilon greedy and probabilistic policy reuse [17], the

agent selects action abest with probability Pðabest ¼ a�jVtÞ,
and otherwise acts as if Et ¼£. This allows for a trade-off

between following advice and exploring as normal, where

the former is more likely if the agent is confident that abest
is optimal. If the state space has been divided into n ‘‘areas

of expertise’’ and the agent knows which states belong in

which area, then the agent can maintain n separate models

for each expert and substitute the appropriate value of

E½qðeÞ� into Eq. 5 for the state.

In the above formulations, we have assumed that the

estimated E½qðeÞ� accurately represents the underlying reli-

ability of the expert e. This is not always the case, however,

especially at the start of learning. Erring on the side of

caution, we can compensate for the over-estimation of the

reliability of particularly bad experts by introducing a

threshold parameter T 2 ½0; 1�, such that if

Pðabest ¼ a�jVtÞ\T , the agent acts without advice. This

approach ensures that the agent will only follow advice if it

is sufficiently confident that the advice is correct.

4 Experiments

Having outlined the CLUE framework, we now present a

number of experiments to show that a) when advised by at

least one reliable expert, CLUE outperforms an equivalent

unassisted agent, b) when advised by unreliable experts

who are likely to give incorrect advice, CLUE asymptoti-

cally converges to the same threshold of convergence as

that achieved by an equivalent unassisted agent, thereby

being robust against incorrect advice, and c) when advised

by multiple experts with different degrees of reliability,

CLUE is correctly able to rank experts by their reliability
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and exploit this information to potentially improve

performance.

To show that the performance of CLUE generalises, we

run experiments on multiple, randomly generated envi-

ronments. To generate these environments, we create

influence diagrams (IDs) [26], whose state and action

variables (VS and VA) define the state- and action space,

respectively, with random conditional probability distri-

butions, utility functions and graph structures. Each vari-

able has a binary domain f0; 1g, so that jSj ¼ 2jVSj and

jAj ¼ 2jVAj. To ensure that each ID represents a well-

formed bandit problem, we restrict the graph structure to a

directed acyclic graph. We also ensure that all state nodes

are parents of action nodes (for full observability), all

action nodes are parents of the reward node (so that all

actions have some effect on the reward), no action nodes

are descendants of another action node (so that only a

single round of decision-making occurs), and that no state

nodes are children of an action node (as states are observed

before decision-making). Rewards are scaled between �1
and 1, so that results across environments are comparable.

Thus the simulated environments are representative of a

wide range of discrete bandit problems.

In order to control frequency and quality of advice, all

experiments are conducted with simulated experts, with

human expert studies lying outside the scope of this work.

Our experiments are conducted around properties one

might expect of a human expert, such as variance in advice

quality, tolerance of poor agent performance and expertise

over different regions of the state space.

Many ARL approaches limit the number of interactions

between experts and agents, so as to simulate the potential

cost of communication, and thus, conditions are imposed

upon the expert to ensure it gives advice where it is most

needed [7]. In this work, we adopt the following conditions

which must be satisfied for the expert to give advice:

t � t0 � l; ð6Þ
X

t0 	 i	 t

EUða�i jsiÞ � EUðaijsiÞ
t � t0

� c; ð7Þ

where t is the current time, t0 is the last time the expert gave

advice, a�i is the optimal action for state si, ai is the action

taken by the agent at time i, l is an interval parameter

controlling the frequency of advice giving and c is a tol-

erance parameter controlling how tolerant the expert is of

suboptimal behaviour from the agent [27].

In order to simulate reliability, each expert e is con-

trolled by a true reliability parameter qðeÞtrue. When offering

advice, the expert will advise the optimal action a� (ob-

tained from a ‘‘ground truth’’ model of the environment)

with probability qðeÞtrue, or else will randomly advise any

other action. Thus an expert with qðeÞtrue ¼ 1 is reliable, while

one with qðeÞtrue ¼ 0 never advises the optimal action. An

expert with qðeÞtrue ¼ 1
jAj therefore advises actions with uni-

form random probability. As CLUE models reliability only

through inconsistencies in optimal and suboptimal evalu-

ations of advice (Sect. 3.1), the number of times an action

has been advised for a state, or the fact that advised actions

for a state may change on subsequent visits, does not affect

how the expert’s reliability is modelled.

4.1 Panel comparisons

In this set of experiments, we compare the reward obtained

in each trial by the agents advised by different panels of

experts. The rewards obtained by the agents training over

80, 000 trials across 100 random environments with 10

state variables (jSj ¼ 1024) and 3 action variables (jAj ¼ 8)

are averaged and plotted against trials. LOWESS smooth-

ing is employed for legibility [28], with the standard

deviation represented by the shaded areas. We compare the

performance of each agent with three panels of experts.

The first, a Single Reliable Expert, consists of one expert

that always gives correct advice (qtrue ¼ 1). The second, a

Single Unreliable Expert, consists of one expert that

always gives incorrect advice (qtrue ¼ 0). The third, a

Varied Panel, consists of seven experts with varying

degrees of unreliability (Ptrue ¼ f0; 0:1; 0:25; 0:5;
0:75; 0:9; 1g).

Agents tested include a baseline agent, which does not

incorporate expert advice, a Naı̈ve Advice Follower (NAF),

which follows any advice it has received for a state

(choosing randomly between contradicting advice) other-

wise acting as the baseline agent, and CLUE, which aug-

ments the baseline agent with the framework discussed in

Sect. 3 (a0 ¼ 1 ¼ b0, T ¼ 2
jAj, d ¼ 0:5). The four tested

baselines are epsilon greedy (� decays from 1 to 0 across

80% of trials), adaptive greedy (z decays from 1 to �1
across 80% of trials), ETE (tb ¼ 20; 000) and UCB

(c ¼ 0:25), all of which employ the action value update

rule in Eq. 1 (Q0 ¼ 0; a ¼ 1
kðs;aÞ). Results are plotted in

Fig. 1.

For qtrue ¼ 1, both CLUE and NAF converge faster than

all baselines as they quickly benefit from the optimal

advice provided by the reliable expert. A demonstration of

the robustness of CLUE comes when qtrue ¼ 0. In this

scenario, NAF exclusively follows suboptimal advice and

thus is unable to converge to the optimal policy. CLUE on

the other hand is able to identify that the expert is unreli-

able and defaults to its underlying action selection algo-

rithm, performing identically to the baselines. For the

Varied Panel, the performance of NAF lies somewhere
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between the two single-expert cases, as it receives a mix of

advice, and cannot discern which advice is advantageous to

follow. CLUE is able to differentiate between reliable and

unreliable experts and benefits from the former despite the

presence of the latter. In all cases, CLUE either converges

faster than the baseline when good advice is available, or

otherwise converges at the same rate as the baseline.

4.2 Reliability estimates

To investigate the results obtained in Sect. 4.1, we plot the

value of E½qðeÞ� over time for the same expert panels. For

the sake of space, we consider a single baseline (epsilon

greedy) for all remaining experiments. Results are plotted

in Fig. 2.

For the single-expert cases, the value of E½q� converges
towards the correct value of qtrue (1 and 0, respectively),

with the final estimates being E½q� ¼ 0:995 for the Single

Reliable Expert and E½q� ¼ 0:005 for the Single Unreliable

Expert. For the Varied Panel, each expert is correctly

ranked according to their reliability and the value of E½qðeÞ�
for each expert e correctly converges towards the true value

of qðeÞtrue, even faster than the single-expert cases. This

accuracy in the estimates of reliability explains the per-

formance obtained in the experiments in Sect. 4.1.

4.3 Comparison with policy reuse Q-learning

In this set of experiments, we compare CLUE with the

PRQ algorithm [17], which addresses the problem of

incorporating the advice of multiple, unreliable experts by

probabilistically selecting which advice to follow, adjust-

ing these probabilities using the reward obtained by fol-

lowing them (see Sect. 2.3). Results are compared across

100 random environments with 10, 000 trials, where jVSj ¼
7 and jVAj ¼ 3, plotted in Fig. 3. We use hyperparameters

s ¼ 0, Ds ¼ 0:05 for PRQ. In addition to the panels pre-

sented in Sect. 4.1, we also introduce a Single Random

Expert (qtrue ¼ 0:5), to represent a largely unreliable expert

with a higher-than-random chance of advising optimally.

The PRQ agent performs exceptionally well when a

reliable expert is present, even outperforming CLUE with

the Single Reliable Expert, as it learns to identify and

follow the correct expert. However, its performance is

hampered with the unreliable expert, as it takes longer for it

to learn to identify and ignore the suboptimal advice. When

the expert’s policy is not optimal, but is nevertheless better

than random (as 0:5[ 1
jAj), as with the Single Random

Expert, the PRQ agent learns early on that following the

expert’s advice is better than its initial policy, resulting in

an initial boost to performance, but is unable to surpass the

performance of the expert. CLUE, on the other hand, is

able to benefit from the higher-than-random chance of

receiving optimal advice, but is still able to surpass the

expert’s performance. These comparisons further demon-

strate the robustness of CLUE with less-than-ideal experts.

4.4 Experts with non-uniform reliability

In this set of experiments, we consider experts whose

reliability is non-uniform over the state space. In particular,

we consider the case where S is divided into two ‘‘areas of

expertise’’. For each run, states are randomly assigned to

one of two sets, with uniform random probability. Each

expert in a panel has two qtrue values, one for each set,

which determine the probability of giving optimal advice.

We consider four panels: a Single Bad Expert

(qtrue ¼ ½0:2; 0�), a Single Good Expert (qtrue ¼ ½1; 0:8�), a
Single Extreme Expert (qtrue ¼ ½1; 0�) and Experts with

opposite areas of expertise (Ptrue ¼ f½1; 0�; ½0; 1�g). We

compare CLUE with 2 models (one for each set) and

CLUE with a single model (representing the case where the

‘‘areas of expertise’’ are not known to the agent). As in

Sect. 4.1, results are averaged over 100 environments

(jVSj ¼ 10, jVAj ¼ 3), with each agent training for 80,000

trials. Results are plotted in Fig. 4.

The Single Bad and Single Good Expert cases do not

differ noticeably from the Single Unreliable and Single

Reliable Expert cases in Sect. 4.1, with both versions of

CLUE performing equally well, as the difference between

the two reliabilities is not significant in either case. In the

Single Extreme Expert case, the single-model CLUE

receives only a minor boost in performance, as it is unable

to sort the correct advice received in the one set of states

from the incorrect advice received in the other, and thus

estimates a reliability that lies somewhere between the two

extremes. The two-model CLUE is able to differentiate the

correct advice from the incorrect advice and is able to

benefit in the states where correct advice is offered and

defaulting to the baseline behaviour in the states where

incorrect advice is offered.

The benefits of the two-model approach are made clear

in the final panel, where two experts are reliable within

their ‘‘area of expertise’’ and completely unreliable else-

where. Once again, the single-model CLUE receives only a

small boost to performance, but the two-model CLUE is

able to identify the correct expert to follow in both sets of

states and, since correct advice is available in every state, is

able to achieve performance as if being advised by only a

single reliable expert.

These experiments show that CLUE is able to benefit

from whatever correct advice is present when it is aware of

the ‘‘areas of expertise’’ across which the experts differ in

reliability. However, the results also show that when this is

not the case, as with the single-model CLUE, the agent is
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nevertheless robust to the perceived inconsistencies of the

experts, defaulting to the baseline performance at worst.

bFig. 1 Comparisons of the three panels with CLUE, NAF and a

baseline agent. Baselines used are a epsilon greedy, b adaptive

greedy, c ETE and d UCB. Note that CLUE and the baseline are

nearly identical for qtrue ¼ 0

Fig. 2 A comparison of E½qðeÞ� for each panel with an epsilon greedy baseline. The Legend denotes the value of qtrue

Fig. 3 A comparison of CLUE, PRQ and an epsilon greedy baseline for each panel

Fig. 4 Comparison of single-model CLUE, two-model CLUE and an epsilon greedy baseline with panels of experts with two ‘‘areas of

expertise’’
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5 Conclusion

This work presented the CLUE framework for learning

SSDPs with policy advice from multiple, potentially

unreliable experts. Our contributions consist of a method

of modelling and updating reliability estimates for each

expert and, using these estimates to combine policy

advice to inform action selection. Our results show that

CLUE maintains the benefits of traditional ARL

approaches when advised by reliable experts but is

robust to experts being unreliable to some degree, in

both single- and multi-expert scenarios. When the expert

is non-uniformly reliable across different ‘‘areas of

expertise’’, our results show that CLUE maintains these

benefits when the areas are known and is robust to the

inconsistencies when they are not known. This work may

allow for easier integration of external information in the

learning process, ultimately contributing towards tackling

more complex problems with greater sample efficiency.

The explicit modelling of expert reliability allows for a

more transparent decision-making process, as it can

easily be ascertained why a CLUE agent did or did not

follow a given piece of advice.

The experiments in this work are conducted with sim-

ulated experts and environments. This greater control over

factors external to the agent (such as the frequency and

quality of advice) allows for a clearer understanding of the

behaviour of the CLUE agent itself. However, the real-

world efficacy of CLUE can only truly be tested with real-

world environments and experts (agent or human). Human

experts in particular may introduce further complexities in

the consistency and quality of advice. While outside the

scope of this work, we consider the investigation of the

performance of CLUE under real-world conditions a high

priority for future work.

Other future extensions of the CLUE framework may

include generalising it to the full RL problem, which may

require changes to the decision-making rule (e.g. following

advice for an entire episode rather than a single time step)

or to the kinds of advice offered (such as rule-based advice

[19] or entire policies [17]). Other extensions may seek to

address how CLUE can be modified to accommodate

continuous action or state spaces (another open problem in

ARL [6]), or how multiple ‘‘areas of expertise’’ may be

learned if they are not initially known.
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