
Facilitating Safe Sim-to-Real through Simulator Abstraction and
Zero-shot Task Composition

Tamlin Love1∗, Devon Jarvis1∗, Geraud Nangue Tasse1∗, Branden Ingram1, Steven James1, Benjamin Rosman1

Abstract— Simulators are a fundamental part of training
robots to solve complex control and navigation tasks. This
is due to the speed and safety they offer in comparison
to training directly on a physical system, where exploration
may drive the system towards dangerous action for itself
and its environment. However, simulators have a fundamental
drawback known as the “reality gap”, which describes the
discrepancy in performance which occurs when a robot trained
in simulation performs the same task in the real world. The
reality gap is prohibitive as it means many of the most powerful
recent advances in reinforcement learning (RL) cannot be
used with robots due to their high sample complexity which
makes physical training infeasible. In this work we introduce a
framework for applying high sample complexity RL algorithms
to robots by leveraging recent advances in hierarchical RL and
skill composition. We demonstrate that adapting hierarchical
RL techniques allows us to close the reality gap at multiple
levels of abstraction. As a result we are able to train a
robot to perform combinatorially many tasks within a domain
with minimal training on a physical system or steps of error
correction. We believe this work provides an important starting
framework for applying hierarchical RL to perform sim-to-real
generalisation at multiple levels of abstraction.

I. INTRODUCTION

Reinforcement Learning (RL) algorithms provide a power-
ful toolkit for learning optimal control or navigation policies
for robots, and their adoption in robotics has been spurred by
a number of recent advances [1], [2], [3]. These advances,
however, have occurred predominantly in non-physical do-
mains such as game worlds [4] and simulators [5], [6]. Since
exploration is a key component of RL, it is often infeasible
and unsafe to train an agent in anything but a non-physical
system, where the cost and damage from exploration can
be mitigated or avoided. Thus, deploying an RL agent on a
physical system remains an open challenge, made worse by
the “reality gap”. This describes the fact that no simulator is
perfectly able to replicate reality. The consequence is that an
agent which performs well in simulation is not guaranteed
to perform comparably in the real-world.

Due to the discrepancy between simulators and the real-
world, the reality gap is an example of a domain adaptation
[7], [8] problem in which an agent must train in a source
domain but generalise to performing well in another target
domain [9]. The degree of discrepancy between the domains
depends on the fidelity of the simulator itself, as well as

*Equal Contribution
1School of Computer Science and Applied Mathematics,

University of the Witwatersrand, Johannesburg, South Africa
{tamlin.love,devon.jarvis,geraud.tasse}@wits.ac.za

a) b)

c) d)

Fig. 1. Visualisation and real world correspondence of the low fidelity
simulation of the real four-rooms domain. a) The agent in the abstract
skill-level simulator. b) Centres of each grid-state displayed on top of the
overhead camera feed. c) Segmentation mask for robot and colour tags
identification in the overhead camera feed. d) Localisation of the robot with
position and angle in the real world four rooms domain.

the complexity of the task the agent is being trained to
perform. Thus, the goal of domain adaptation is for the
agent to learn robust and broadly useful features and policies
which are common between the source and target domains.
Importantly, this does not necessitate that the source domain
be a perfect replica of the target domain. Consequentially,
it does not require a simulator as the source domain to
be any higher fidelity than is useful for learning a policy
which transfers between domains. This is a consideration
which we aim to leverage with the goal of providing a
safe robot learning framework that also accommodates high
sample complexity learning algorithms and compositional
generalisation of skills.

We introduce a framework which can facilitate a combi-
natorial explosion of skills within a robotics domain while
utilising physical system training sparingly, and only in a
safe manner. Our framework is depicted in Figure 2 and
our design philosophy can be summarized as follows: the
more difficult the task, the less physical system training
should be done. To avoid training in a complex continuous

Primitive Skills

In
cr

ea
si

ng
 D

if
fi

cu
lt

y
 o

f
L

ea
rn

in
g

Ta
sk

Low-level Tasks

Task Composition

Temporal Sequences

Trained on Physical System

Increasing D
anger

 of T
raining

Trained on Simulation
(Skill-level Simulator)

Value Function Composition
 (Zero-Shot)

Temporal Logics
 (Zero-Shot)

 Error
Correction

Fig. 2. Hierarchical abstraction of simulation which aims to leverage the benefits of training an agent in the real world while containing the risk of damage.
The more dangerous a task is to train the higher the level of abstraction in training, containing the risk of real world training to the most basic skills.
Similarly, the more possible tasks there are at a level of abstraction the less time is needed for individual training, leading to zero-shot skill composition
and temporal logic.

space simulator at the level of actuators, we instead use an
abstract simulator at the level of primitive skills. Learning
the primitive skills is the only point at which we train on
a physical system. This provides us with an abstraction,
allowing us to thereafter operate in a discrete, higher-level
of simulation where we train an agent to perform a set of
low-level tasks (one step higher in abstraction than primitive
skills). This is easy to do in simulation, but importantly
due to the abstraction of the simulator there will be less
discrepancy when transferring these tasks to the real-world.
This is because the abstract simulator would only need to
match the real-world in dynamics relative to primitive skills,
rather than the far more intricate level of actuator dynamics.

Having learned the low-level tasks, we are then able
to easily learn complex behaviours in a simple simulator,
leveraging recent advances in RL. This allows us to draw
on techniques to generalise to combinatorially many higher-
level tasks and tasks requiring temporal logic in a zero-shot
manner. Thus, no further training is required for these more
difficult tasks as long as they can be composed from a set
of low-level tasks in the same domain. The effect of this is
that for complex tasks, we can avoid training on a physical
system, and instead train in simulation in a way that allows
zero-shot generalisation onto the hardware. We describe our
entire framework in more detail in Section IV. Prior to this
we provide a background on the related works which aim
to tackle sim-to-real generalisation in Section II, as well as
the necessary background Section III. Finally, we present our
results and conclusions in Sections V and VI respectively.

II. RELATED WORK

Due to the potential benefits, addressing the reality gap
has received a significant amount of attention in recent
years from multiple fields, such as robotics and computer
vision. The problem of transferring control policies from
simulation to the real world can be viewed as an instance
of domain adaptation, where a model trained in a source
domain is transferred to a new target domain. One of the
key assumptions behind these domain adaption methods is

that the different domains share common characteristics such
that representations and behaviours learned in one will prove
useful for the other [10]. However, most approaches tend to
either increase the sample complexity of training or rely on a
fine-tuned adaptation to a simulator which may not generalise
in its own right. For the first set of approaches which
increase sample complexity, the most promising are domain
randomisation [11] and dynamics randomisation [10]. This
entails adding noise to some aspect of the simulator such
that a model cannot learn to exploit idiosyncrasies in the
simulator to artificially improve performance. Additionally,
if by adding noise the simulator is randomly pushed towards
being more reflective of the real world then the model will
generalise significantly better. Thus, these methods rely on
the real-world dynamics being within the sample space of the
simulator dynamics. In general the noise is often added to the
low-level dynamics of the simulator, but can also be added to
the hyper-parameters of the simulator. Our approach avoids
utilising noise due to the nature of our abstraction, where we
can be certain skill-level dynamics of the simulator overlaps
with that of the real world.

Other methods have aimed to learn a network which adapts
a simulator policy to a real-world domain [12], [13] and
generally aim to push the model to learn invariant features
that are common between source and target domain [14],
[15], [16]. This latter group of methods includes learning
to adjust a simulator in a manner which mitigates the
discrepancies between the simulator and real-world domains.
For example the Neural-Augmented Simulation (NAS) trains
a recurrent neural network to predict the discrepancies be-
tween the simulator and reality and then uses the network
to augment and adapt the simulator to have more realistic
dynamics [13]. This approach improves upon the even more
tailored approaches of learning a forward model of the
real-world dynamics [17], [18], [19]. Unfortunately, due to
the accumulation of errors over time, unless any of these
learned-simulator based approaches are nearly perfect they
will be limited to short time horizons, which is prohibitive for
training RL agents. Thus, there is still a need to explore new

ideas to improving sim-to-real generalisation. One recent
idea of interest is the use of a small amount of real-world
data at the beginning of a training pipeline which serves to
improve the simulator’s accuracy [13], [20]. Specifically, this
small amount of real-world data is used to train the simulator
error prediction or an inverse-RL model. In this work we
begin similarly with a small amount of real-world training.
However, to the best of our knowledge, addressing the reality
gap by simulating the environment at a more abstract level
and employing hierarchical RL has not been explored. Unlike
these approaches we leverage the fact that it is advantageous
to utilise an abstracted simulator using skill-level dynamics
rather than actuator-level dynamics.

III. BACKGROUND

We use the standard RL formulation where the tasks to
be solved by an agent are modeled as Markov decision
processes (MDPs). An MDP is a tuple (S,A, P,R, γ) where
S is the set of states an agent can be in, A is the set of actions
the agent can take in each each state, P : S×A×S 7→ [0, 1]
is a transition function that gives the probability of an agent
moving to a new state after taking an action in its current
state, R : S × A 7→ [RMIN, RMAX] ⊂ R is the bounded
reward function for the task, and γ is a discount factor that
represents how much the agent should value recent rewards
over later ones.

The goal of the agent is to learn a policy π : S 7→ A
that maximises the rewards it receives in the environment.
To this end, each policy is often associated with a state-value
function V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at)] and an action-
state-value function Qπ(s, a) = Eπ [R(s0, a0) + γV π(s1)].
The optimal policy π∗ is then the policy that maximises these
value functions for all states and actions. A popular method
for learning these policies is by using Q-learning [21]. Here,
the agent iteratively learns the optimal action-value function
Q∗ = maxπ Q

π(s, a) by using an ϵ-greedy behaviour policy
and updating its Q-function using its estimate of next state
values:

Q(s, a)
α←−

[
Q(s, a)−

(
R(s, a) + γmax

a′
Q(s′, a′)

)]
(1)

where α is the learning rate and s′ is the next state after
taking action a in state s. Given an (approximately) optimal
Q-function, the agent can always recover the (approxi-
mately) optimal policy by acting greedily over its Q-function:
π∗(s) = argmaxa Q

∗(s, a).

A. Logical Skill Composition

One of the main drawbacks of RL is the high sample
complexity of learning policies, even in simulation—when
the tasks are very complex and their rewards are sparse. Skill
composition is an approach that has gained traction in recent
years [22], [23], [24], [25] to reduce this sample complexity
problem by learning low-level skills and composing them to
obtain a wide range of novel skills without further learning.
Recently, a Boolean task algebra which enables tasks to be
specified as Boolean combinations of a set of low-level (base)
ones was introduced [26]. This enables their policies to be

obtained by composing the value functions of those low-
level tasks accordingly. To achieve this, they first learn goal
based value functions Q̄(s, g, a) for each low-level task using
extended reward functions:

R̄(s, g, a, s′) :=

{
R̄MIN if g ̸= s and s′ is terminal
R(s, a) otherwise,

where R̄MIN is a constant large negative penalty that the
agent gives itself for achieving the wrong goals—we will
use the simple penalty R̄MIN = RMIN used in prior work
[27]. These goal based value functions are referred to as
world value functions (WVFs) owing to the fact that they
learn how to achieve all goals in the environment irrespective
of the specific task rewards [28]. Similarly to regular value
functions, WVFs can be learned using a goal oriented version
of Q-learning where the agent: keeps track of the goals
reached at the end of each episode in a goal buffer, samples
goals from that buffer to reach in each episode, and updates
its Q-values for each goal using the Q-learning update rule:

Q̄(s, g, a)
α←−

[
Q̄(s, g, a)−

(
R(s, g, a) + γmax

a′
Q̄(s′, g, a′)

)]
Once the WVF for each low-level task is learned, they can

be composed zero-shot [26] to obtain their disjunction (∨),
conjunction (∧), and negations (¬) as follows:

Q̄∗
A∨B = Q̄∗

A ∨ Q̄∗
B := max{Q̄∗

A, Q̄
∗
B}

Q̄∗
A∧B = Q̄∗

A ∧ Q̄∗
B := min{Q̄∗

A, Q̄
∗
B}

Q̄∗
¬A = ¬Q̄∗

A :=
(
Q̄∗

SUP + Q̄∗
INF

)
− Q̄∗

A,

where Q̄∗
SUP and Q̄∗

INF are respectively the WVFs for
the tasks where every goal is desirable and undesirable.

B. Reward Machines

One difficulty with the standard MDP formulation is that
the agent is often required to solve a complex long-horizon
task using only a scalar reward signal as feedback from
which to learn. To overcome this, reward machines (RMs)
have been proposed [29], which provide structured feedback
to the agent in the form of a finite state machine. RMs encode
a reward function using a set of propositional symbols P
that represent abstract environment features. They consist
of a finite set of states U , each of which represents a set
of propositions that are true at the given environment state.
Transitions between RM states are governed by δu, and the
RM emits a reward function according to δr. A particular
instantiation of an RM that is used in practice is a simple
reward machine (SRM), which restricts the form of the state-
reward function to be δr : U×2P → R [29]. In other words,
when a transition between u, u′ ∈ U is made, the SRM emits
a single scalar instead of a function (as in the case of RMs).

To incorporate RMs into the RL framework, the agent
must be able to determine which abstract propositions are

true at any given state. To achieve this, the agent is equipped
with a labelling function L : S × A × S → 2P that
assigns truth values to the propositions based on the agent’s
interaction with its environment. The agent can then learn a
policy in a new decision process where the reward function in
the original MDP is replaced with the RM, which is defined
by the tuple ⟨S,A, P, γ,P, L, U, u0, F, δu, δr⟩. The agent’s
aim is now to learn a policy over the joint MDP and RM
state space π : S × U → A, which can be achieved with
standard algorithms such as Q-learning [29]. An example
of a Reward Machine to navigate the four rooms domain is
shown in Figure 3.

IV. METHODS

Our approach to mitigating the reality gap can be sum-
marized in three steps, and shown graphically in Figure 2.
These steps involve firstly abstracting the simulator into what
we refer to as a “skill-level simulator”, from which low-
level tasks are learned. Secondly, zero-shot value function
composition is utilised to compose tasks in order to solve
more complex problems. Thirdly, we utilise temporal logics
in order to generate task sequences.

A. Skill-level Simulator

To avoid the difficulties associated with using a high fi-
delity simulator for training we instead work with an abstract
simulator which captures only the necessary structure in the
source domain which is common with the target domain.
This is achieved by training a set of primitive skills on
a physical system. It is key that these primitive skills be
small and easy enough to learn that training is safe and
quick, avoiding the usual pitfalls of training on a physical
system. Additionally, the use of early training on the physical
system has been used to make downstream sim-to-real easier
in prior work [13][20][30][31]. This abstracts the simulator
away from the level of actuators and instead simulates the
environment in terms of discrete primitive skills. By learning
in the skill-level simulator we are then able to train policies
for low-level tasks (sequence of skills). Figure 5 shows the
returns obtained during training of the WVFs and VFs of
said tasks. Similarly to previous work [32], we observe that
learning WVFs has the additional benefit of faster training
than regular VFs—since the WVF learns how to achieve
all goals leading to better goal-directed exploration during
learning.

B. Value Function Composition

Our second step is to leverage the recent RL advancement
of zero-shot value function composition [26], described in
Section III-A, which provides super-exponential growth in
the number of possible tasks an agent can perform just
from learning low-level tasks in the skill-level simulator.
This alone speeds up learning significantly in our frame-
work. However, due to the discrete nature of the skill-level
simulator and resulting value functions it is necessary to
perform error correction when transferring to the continuous
real-world. Error correction would then be performed after

every primitive skill which is time-consuming and a potential
drawback of our framework. Thus, we leverage another level
of abstraction introduced in the RL literature: temporal logic
of task composition [29].

C. Temporal Logics

Temporal logic of task composition defines a problem as a
sequence of steps to be completed by modelling the sequence
with an RM. Thus the task of making a cup of coffee would
be split into adding coffee granules to a cup, adding sugar,
pouring hot water, etc. This is beneficial as we can use the
RM to perform error correction only at the level of transitions
between RM states as opposed to after transitions in the
skill-level states (after each skill is performed). Thus, we
have multiple levels of abstraction, each serving a purpose in
minimizing physical risks, speeding up learning and reducing
the amount of error correction needed when switching from
sim-to-real respectively. The aim of this work is to provide
a helpful framework for robot sim-to-real generalisation by
applying hierarchical and compositional techniques from RL
to split a learning problem into multiple levels of abstraction.
The benefit is that by training a very few easy and safe
primitive skills on a physical system the framework can
facilitate a combinatorial explosion of skills within a domain,
culminating in zero-shot generalisation to temporal logic
sequences of complex tasks.

V. RESULTS

In order to test1 the benefits of our approach, we conducted
a number of experiments in a real-world “four rooms”
domain on a Kobuki TurtleBot2. The “four rooms” domain
consists of four square rooms, connected by doors which can
be open or closed. In the skill-level simulation, the domain is
represented by a discrete grid of cells connected by a move-
forward skill (each room being 5×5 cells), with goal states in
the centres of rooms. Three primitive actions (move forward
one cell, turn left 90◦, turn right 90◦) were hand-trained
on the robot. The policy of the robot was trained using the
three levels of complexity described in Section III, namely
naive Q-learning, value function composition from naive Q-
learning with low-level tasks and lastly with temporal logics.

The error-correction procedure was designed to be a
simple and naı̈ve approach to match the robot’s state to that
of the simulated agent. We suspended a webcam above the
domain and placed colour markers on the robot to allow
for its location and orientation to be tracked (shown in
Figure 1b)-d)). A grid of coordinates was superimposed on
the webcam feed to map the simulated gridworld to the
real world. The error-correcting procedure attempts to move
the robot to the corresponding discretized position of the
simulated agent following the same policy. As such, an
error-correcting step may consist of a rotation or forward
movement towards the coordinates of the grid cell.

In the first set of experiments, we consider the problem
of moving from the bottom-left room to the top-right. For

1Code is available at: https://github.com/tamlinlove/kuricomposition

a) RM for Task 1

b) RM for Task 2

Fig. 3. Example of an RM used to complete task 2 in the four rooms domains. The agent will navigate from the bottom left to top left and finally to
the top right. dwest, dnorth, dsouth, r1, r2 and r3 are respectively propositions that are true when the agent is in front of the west door, in front of the
north door, in front of the south door, in the middle of the top-left room, in the middle of the top-right room in the middle of the bottom-right room. The
Ui symbols represent state which track the sequence of propositions that are used and correspond to value functions which are relevant to the state.

Successful Runs Total Time (s) Correction Time (%) Distance from Goal (pixels) Number of Corrections
Average STD Average STD Average STD Average STD

Transferred Policy, No Correction 3/5 12.80 0.01 0 0 38.78 13.49 0 0
Transferred Policy + Correction 5/5 199.83 34.98 93.50 1.44 5.59 2.76 175 32.81

VFC Policy + Correction 5/5 205.72 29.20 93.53 0.82 4.35 2.98 179.4 28.32
Temporal Logics + Correction 3/3 49.55 2.27 73.98 1.13 10.21 3.73 34.33 2.05

TABLE I
THE RESULTS FOR THE FIRST SET OF EXPERIMENTS (GOAL STATE: TOP-RIGHT, ALL DOORS OPEN).

Successful Runs Total Time (s) Correction Time (%) Distance from Goal (pixels) Number of Corrections
Average STD Average STD Average STD Average STD

Transferred Policy, No Correction 0/3 N/A N/A N/A N/A N/A N/A N/A N/A
VFC Policy + Correction 3/3 304.03 6.13 93.57 0.14 3.46 1.42 265.67 6.18

Temporal Logics + Correction 4/4 154.04 29.65 86.26 2.66 6.17 1.71 125.25 27.84

TABLE II
THE RESULTS FOR THE SECOND SET OF EXPERIMENTS (GOAL STATE: BOTTOM-RIGHT, BOTTOM DOOR CLOSED).

naive Q-learning this is learned directly as part of the broader
training of navigation the entire domain, where the robot is
trained to move from any source and to any target room
where each combination is treated as its own task. For the
value function composition the low-level tasks involve the
agent learning to move to any two target rooms. To get to one
specific target room, the intersection between two low-level
task rooms is used. Finally, for the temporal logics instead
of learning to move between a sequence of rooms to reach
the target, the transition between rooms is modelled with an
RM and so the robot is only required to learn how to move
between adjacent rooms with the composed value functions.
For example, the RM used to perform task 1 is shown in
Figure 3a). Thus, the full set of methods we compare are:
a simulated naive Q-learning policy transferred directly to
the robot (no error-correction), the same policy with error-
correction after every discrete action, a composed value-
function policy with error-correction (which we call the VFC
Policy) and a policy obtained using temporal logics with
error correction after each RM state (so that error correction
only happens at doorways and room centres). Each method is
evaluated using the metrics of “successful runs” (the number
of successful runs, where a run is considered failed if the
robot crashes into a wall), “total time” (the total time in
seconds to perform a run), “correction time” (the percentage

of time spent correcting the robot’s position), “distance from
goal” (the distance, in pixels on the webcam feed, from the
final goal at the end of the run), and “number of corrections”
(the number of error-correction steps performed in a run).
Results are averaged over the number of successful runs and
detailed in Table I.

While the directly transferred policy executes quickly, it
has a poor success rate, and even the runs that do succeed end
up relatively far from the centre of the room. Applying error-
correction after every step of the policy greatly improves
the success rate and final position accuracy, at the cost of
time. The benefits of the composed value functions is not
seen on the real world generalisation but significantly speeds
up the training time of robots using our framework. Finally,
the temporal logics method strikes a balance between speed
and safety, achieving a comparable success rate to the error-
correction after ever step but using less error corrections and
time to complete the task. In the second set of experiments,
the task is to move from the bottom-left room to the bottom-
right room. However, the door between the two rooms is
closed, forcing the robot to take a less-direct path. With
a greater distance to traverse and more doorways to pass
through, this represents a harder task for the robot. The same
methods are evaluated using the same metrics as before,
tabulated in Table II. From these results we may draw the

a) Task 1 Trajectory

b) Task 2 Trajectory

Fig. 4. Desired trajectories for the experiment 1 (shown in a) and
experiment 2 (shown in b). Note that for experiment 2 the door between the
bottom left (source) and bottom right (target) is closed forcing the robot to
take the longer path through the rooms. The RM and temporal logics allows
for zero-shot generalization to such changes in the environment, unlike naive
Q-learning.

0 2000 4000 6000 8000 10000

Episodes

−2

0

2

4

6

8

10

A
ve

ra
ge

R
et

ur
n

WV F

V F

Fig. 5. Average returns per episode obtained when learning WVFs and
regular VFs in the four-rooms simulation. The shaded regions represent 1
standard error over the returns obtained when training the following 10
tasks: Navigate to the ”bottom-left room”, ”bottom-right room”, ”top-right
room”, ”top-left room”, ”front of left door”, ”front of top door”, ”front of
right door” and ”front of bottom door”.

same conclusions. Naive Q-learning without error correction
is not a reliable procedure for completing the task, and
does significantly worse on this more challenging second
task which requires a longer sequence of accurate decisions.

The value function composition method (we omit naive Q-
learning with error correction since it is equivalent at test
time to the value function composition but trains significantly
slower) is safe and reliably completes the task but is very
slow. Similarly to the first task, temporal logics with state-
machine error corrections is both reliable and efficient at
completing the task, demonstrating the benefits of the final
level of abstraction.

VI. CONCLUSION

To date the application of RL in robotics has been limited
due to the danger of training real world systems. This
has meant training has traditionally required the use of a
simulator to avoid the risk of damaging expensive equipment.
However, transferring a policy learned in simulation to the
real world is not trivial due to the reality gap. We demonstrate
a novel framework for solving this problem by training a
robot in an abstracted simulator we dubbed the “skill-level
simulator” and leveraging value function composition with
temporal logics from prior work in RL. This framework
allowed a robot to learn a set of primitive actions which
can then be used to learn low-level tasks in the skill-level
simulator. These low-level task value functions can then be
composed in a combinatorial and sequential fashion without
the need for additional training. This approach allowed us
to solve complex problems while only needing to train
a small set of primitive skills in the real world and yet
still outperformed comparative baselines. The abstracted
simulator and error correcting mechanisms also alleviated
the risks associated with traditional sim-to-real systems. We
believe this work provides a powerful first framework for
training complex robot policies which balance safety, training
efficiency and reliability considerations. Importantly, many
aspects of the framework are self-contained, such as the
error correction, which is left purposefully basic in this
work, or method of determining the value function used to
navigate the domain. Thus, there is room for future work to
improve upon pieces of the framework while still utilizing
the demonstarted benefits of the levels of abstraction.

REFERENCES

[1] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11). Citeseer,
2011, pp. 465–472.

[2] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[3] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6023–6029.

[4] D. Arumugam, J. K. Lee, S. Saskin, and M. L. Littman, “Deep
reinforcement learning from policy-dependent human feedback,” arXiv
preprint arXiv:1902.04257, 2019.

[5] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 2020,
pp. 737–744.

[6] B. Osiński, A. Jakubowski, P. Ziecina, P. Miłoś, C. Galias, S. Homo-
ceanu, and H. Michalewski, “Simulation-based reinforcement learn-
ing for real-world autonomous driving,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
6411–6418.

[7] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, 2018.

[8] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine, and
J. Tan, “Simgan: Hybrid simulator identification for domain adaptation
via adversarial reinforcement learning,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
2884–2890.

[9] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conference on Robot
Learning. PMLR, 2018, pp. 734–743.

[10] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[11] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[12] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky, “Domain-adversarial training
of neural networks,” The journal of machine learning research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[13] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, “Sim-to-
real transfer with neural-augmented robot simulation,” in Conference
on Robot Learning. PMLR, 2018, pp. 817–828.

[14] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-domain
image generation,” arXiv preprint arXiv:1611.02200, 2016.

[15] A. A. Rusu, M. VeVcerı́k, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” in Conference on robot learning. PMLR, 2017, pp. 262–270.

[16] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” arXiv preprint
arXiv:1412.3474, 2014.

[17] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics mod-
els,” in 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2015, pp. 3223–3230.

[18] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 4019–4026.

[19] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining model-
based policy search with online model learning for control of physical
humanoids,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 242–248.

[20] R. Jeong, J. Kay, F. Romano, T. Lampe, T. Rothorl, A. Abdol-
maleki, T. Erez, Y. Tassa, and F. Nori, “Modelling generalized forces
with reinforcement learning for sim-to-real transfer,” arXiv preprint
arXiv:1910.09471, 2019.

[21] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
King’s College, Cambridge, 1989.

[22] E. Todorov, “Compositionality of optimal control laws,” in Advances
in Neural Information Processing Systems, 2009, pp. 1856–1864.

[23] A. Saxe, A. Earle, and B. Rosman, “Hierarchy through composition
with multitask LMDPs,” International Conference on Machine Learn-
ing, pp. 3017–3026, 2017.

[24] B. Van Niekerk, S. James, A. Earle, and B. Rosman, “Composing value
functions in reinforcement learning,” in International Conference on
Machine Learning, 2019, pp. 6401–6409.

[25] S. Alver and D. Precup, “Constructing a good behavior basis for
transfer using generalized policy updates,” in International Conference
on Learning Representations, 2022.

[26] G. Nangue Tasse, S. James, and B. Rosman, “A Boolean task algebra
for reinforcement learning,” Advances in Neural Information Process-
ing Systems, vol. 33, pp. 9497–9507, 2020.

[27] G. Nangue Tasse, S. James, and B. Rosman, “Generalisation in lifelong
reinforcement learning through logical composition,” in International
Conference on Learning Representations, 2021.

[28] G. Nangue Tasse, S. James, and B. Rosman, “World value functions:
Knowledge representation for multitask reinforcement learning,” in

The 5th Multi-disciplinary Conference on Reinforcement Learning and
Decision Making (RLDM), 2022.

[29] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, “Using
reward machines for high-level task specification and decomposition
in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2018, pp. 2107–2116.

[30] J. P. Hanna and P. Stone, “Grounded action transformation for robot
learning in simulation,” in Thirty-first AAAI conference on artificial
intelligence, 2017.

[31] S. Desai, H. Karnan, J. P. Hanna, G. Warnell, and P. Stone, “Stochastic
grounded action transformation for robot learning in simulation,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 6106–6111.

[32] G. Nangue Tasse, B. Rosman, and S. James, “World value functions:
Knowledge representation for learning and planning,” arXiv preprint
arXiv:2206.11940, 2022.

