
Learning Object-Centric Representations for
High-Level Planning in Minecraft

Steven James 1 Benjamin Rosman 1 George Konidaris 2

Abstract
We propose a method for autonomously learn-
ing an object-centric representation of a high-
dimensional environment that is suitable for plan-
ning. Such abstractions can be immediately trans-
ferred between tasks that share the same types of
objects, resulting in agents that require fewer sam-
ples to learn a model of a new task. We demon-
strate our approach on a series of Minecraft tasks
to learn object-centric representations—directly
from pixel data—that can be leveraged to quickly
solve new tasks. The resulting learned represen-
tations enable the use of a task-level planner, re-
sulting in an agent capable of forming complex,
long-term plans.1

1. Introduction
Model-based methods are a promising approach to improv-
ing sample efficiency in reinforcement learning. However,
they require the agent to either learn a highly detailed
model—which is infeasible for sufficiently complex prob-
lems (Ho et al., 2019)—or to build a compact, high-level
model that abstracts away unimportant details while retain-
ing only the information required to plan. This raises the
question of how best to build such an abstract model.

Recent work has shown how to learn an abstraction of a
task that is provably suitable for planning with a given set
of high-level actions (Konidaris et al., 2018). However,
these representations are highly task-specific and must be
relearned for any new task, or even any small change to an
existing task. This makes them fatally impractical, espe-
cially for an agent that must solve multiple complex tasks.

1School of Computer Science and Applied Mathematics,
University of the Witwatersrand, Johannesburg, South Africa
2Department of Computer Science, Brown University, Prov-
idence RI 02912, USA. Correspondence to: Steven James
<steven.james@wits.ac.za>.

Workshop on Object-Oriented Learning at ICML 2020. Copyright
2020 by the author(s).

1Results and videos can be found at the following URL:
https://sites.google.com/view/mine-pddl

We propose extending these methods by including addi-
tional structure—namely, that the world consists of objects,
and that similar objects are common amongst tasks. This
can substantially improve learning efficiency, because an
object-centric model can be reused wherever that same ob-
ject appears in a problem, and can also be generalised across
objects that behave similarly—object types.

We assume that the agent is able to individuate objects in
its environment, and propose a method for building object-
centric abstractions given only the data collected by execut-
ing high-level skills. These abstractions specify both the ab-
stract object attributes that support high-level planning, the
object types, and an object-relative lifted transition model
that can be instantiated in a new problem. This reduces the
samples required to learn a new task by allowing the agent
to avoid relearning the dynamics of previously-seen objects.

We demonstrate our approach in a series of Minecraft tasks
(Johnson et al., 2016), where an agent autonomously learns
PPDDL (Younes & Littman, 2004) representations of high-
dimensional tasks from raw pixel input, and transfers these
abstractions to new tasks, reducing the number of operators
that must be learned from scratch.

2. Background
We assume that tasks are modelled as semi-Markov decision
processesM = 〈S,O, T ,R〉 where (i) S is the state space,
(ii) O(s) is the set of temporally-extended actions known as
options available at state s, (iii) T describes the dynamics
of the environment, specifying the probability of arriving
in state s′ after option o is executed from s, and (iv) R is
the reward function. An option o is defined by the tuple
〈Io, πo;βo〉, where Io is the initiation set that specifies the
states in which the option can be executed, πo is the option
policy which specifies the action to execute, and βo specifies
the probability of the option ceasing execution in each state
(Sutton et al., 1999).

In this work, we use the object-centric formulation from
Ugur & Piater (2015) to represent our state space S: in
a task with n objects, the state is represented by the set
{fa, f1, f2, . . . , fn}, where fa is a vector of the agent’s fea-
tures, and fi is a vector of features or attributes particular to

https://sites.google.com/view/mine-pddl

Learning Object-Centric Representations for High-Level Planning in Minecraft

object i. Note that the feature vector describing each object
can itself be arbitrarily complex, such as an image or voxel
grid—in this work, we use pixels. Our state space represen-
tation differs from the standard approach in that individual
objects have already been factored into their constituent
low-level attributes. Practically, this means that the agent is
aware that the world consists of objects, but is unaware of
what the objects are, or if there are multiple instantiations
of the same object present. It is also easy to see that differ-
ent tasks will likely have differing numbers of objects with
potentially arbitrary ordering; our abstract representation
should thus be agnostic to this.

2.1. State Abstractions for Planning

We intend to learn an abstract representation suitable for
planning. Prior work has shown that a sound abstract rep-
resentation must necessarily be able to estimate the set of
initiating and terminating states for each option (Konidaris
et al., 2018). In classical planning, this corresponds to the
preconditions and effect of each high-level action operator.

The precondition is defined as Pre(o) = Pr(s ∈ Io), which
is a probabilistic classifier that expresses the probability that
option o can be executed at state s. Similarly, the effect
or image represents the distribution of states an agent may
find itself in after executing o from states drawn from some
initial distribution Z: Pr(s′ | s, o), s ∼ Z (Konidaris et al.,
2018). Since the precondition is a probabilistic classifier
and the effect is a probabilistic density estimator, they can
be learned directly from option execution data.

For large or continuous state spaces, estimating the ef-
fect of an option is impossible because the worst case re-
quires learning a distribution conditioned on every state.
However, if we assume that terminating states are inde-
pendent of starting states, we can make the simplification
Pr(s′ | s, o) = Pr(s′ | o) (Konidaris et al., 2018). Such
options are referred to as subgoal options (Precup, 2000).

Subgoal options are not overly restrictive, since they are
options that drive an agent to some set of states with high re-
liability. However, it is likely an option may not be subgoal.
In this case, we can partition an option’s initiation set into a
finite number of subsets, so that it is approximately subgoal
when executed from any of the individual subsets. That is,
we partition an option o’s start states into finite regions C
such that Pr(s′ | s, o, c) ≈ Pr(s′ | o, c), c ∈ C. As a result,
the agent needs only to model |C| effects for each option.

3. Object-Oriented Abstract Representations
Although prior work (Konidaris et al., 2018) allows an agent
to autonomously learn an abstract representation that en-
ables fast task-level planning, generalisability is restricted—
since the symbols are distributions over states in the current

Phase 1: Par-
tition into sub-
goal options

Phase 2:
Estimate

objects-centric
preconditions

and effects

Phase 3:
Generate

propositional
forward model

Phase 4:
Merge objects

into types

Phase 5: Lift
abstractions

based on
object type.

Phase 6:
Instantiate ab-
stractions for
current task.

Figure 1: The full process of learning lifted representations.
Red nodes represent problem-specific representations, while
green nodes can be transferred between tasks.

task, they cannot be reused in new ones. We now introduce
an object-centric generalisation of a learned symbolic repre-
sentation that admits transfer. Transfer here can be achieved
when the state space representation contains features cen-
tred on objects in the environment. To achieve this, we must
discover the types of objects, the abstract attributes that char-
acterise each type, and the high-level operators describing
the dynamics of the world.

3.1. Learning portable object-centric representations

An overview of our approach is given by Figure 1. We
explain our approach by walking through the procedure on
a single Minecraft task, and then demonstrate how these
high-level representations can be transferred to new tasks.2

Our Minecraft task consists of five rooms with various items
positioned throughout. Rooms are connected with either
regular doors which can be opened by direct interaction, or
puzzle doors which require the agent to pull a lever next
to the door to open. The world is described by the state of
each of the objects (given by each object’s appearance as a
600× 800 RGB image), the agent’s view and inventory.3

The agent possesses high-level skills, such as
ToggleDoor and WalkToItem. Execution is
stochastic—opening doors occasionally fails, and
the navigation skills are noisy in their execution. To solve
the task, an agent must first collect the pickaxe, use it to
break the gold and redstone blocks and collect the resulting
items. It must then navigate to the crafting table, where
it uses the collected items to first craft gold ingots and
subsequently a clock. Finally, it must navigate to the chest
and open it to complete the task. This requires an extremely
long-horizon, hierarchical plan—the shortest plan that
solves the task consists of 28 options that require hundreds
of low-level continuous actions.

2Owing to space constraints, we defer the exact implementation
and domain details to the appendix.

3To make learning easier, we compress the state space by down-
scaling images and applying PCA to a greyscaled version, preserv-
ing the top 40 principal components.

Learning Object-Centric Representations for High-Level Planning in Minecraft

Phases 1–3 (as in Konidaris et al., 2018): After collect-
ing transition data by executing options in the domain, the
agent first partitions these options so that they approximately
preserve the subgoal property. It then learns the precondi-
tions for each option by fitting a classifier to each partition’s
initiation states. Next, a density estimator is used to esti-
mate the effect of each partitioned option. The agent learns
distributions over only the objects affected by the option,
learning one estimator for each object. Each of these is a
proposition in our PPDDL vocabulary V .

For each partitioned option o, the agent has learned a pre-
condition classifier Îo and effect estimator β̂o. In order
to construct a PPDDL representation, however, the pre-
condition and effects must be specified in terms of state
distributions (propositions) only. Effects are modelled as
such, and so pose no problem, but the learned precondition
is a classifier rather than a state distribution. The agent
must therefore determine which set of propositions from
V best represents the precondition. This is achieved by
replacing o’s precondition with every P ∈ ℘(V)4 such
that

∫
S Îo(s)G(s)ds > 0,G =

∏
p∈P p. In other words,

the agent considers every combination of propositions P
and samples data from their conjunction. If such data is
classified as positive by Îo, then P is used to represent the
precondition. The preconditions and effects are now spec-
ified using distributions over state variables—this is our
abstract propositional representation, suitable for planning.

Phases 4–5: At this point, the agent has learned an ab-
stract, but task-specific, representation. Unfortunately, there
is no opportunity for transfer, because each object is treated
as unique. To overcome this, we must define the notion of
object types.

In general, two objects are functionally identical if one
object can be substituted for another while preserving all
preconditions and effects. In practice, however, we can
use a weaker condition to construct object types. Since the
precondition for an object-centric skill usually depends only
on the object it is interacting with, and because we have
subgoal options that do not depend on the initial state, we
can group objects by effects only.

Definition 1. Assume that option o has been partitioned into
n subgoal options. Object i’s effect profile under option o is
denoted by EffectProfile(i, o) =

{
Eo(1)i , . . . , Eo(n)i

}
,where

Eo(k)i is object i’s effect distribution. Two objects i and j are
effect-equivalent if EffectProfile(i, o) = EffectProfile(j, o)
for every o in O.

Using the effects, the agent can determine whether objects i
and j are similar, based on effect profiles, and if so, merge
them into the same object class. Having determined the

4℘(V) denotes the powerset of V .

types, multiple propositions over objects of the same type
are simply replaced with a single predicate parameterised
by that class type. For example, if there are four doors in
the domain, then the agent can replace four propositions
representing each door closed with a single ClosedDoor
predicate parameterised by an object of type door.

Phase 6: If the task dynamics are independent of the pre-
cise identity of each object, then our typed representation
is sufficient for planning. However, in many domains the
object-centric state space is not Markov. For example, in a
task where only a particular key opens a particular door,
the state of the objects alone is insufficient to describe
dynamics—the identities of the key and door are neces-
sary too. A common strategy in this case is to augment
an ego- or object-centric state space with problem-specific,
allocentric information to preserve the Markov property
(Konidaris et al., 2012; James et al., 2018). We denote X as
the space of problem-specific state variables, and S as the
object-centric state space. The above complication does not
negate the benefit of learning transferable abstract represen-
tations, as existing operators learned in S can be augmented
with propositions over X on a per-task basis. In general,
local information relative to individual objects will transfer
between tasks, but problem-specific information, such as an
object’s global location, must be relearned each time.

For each partitioned option o with sets of start and end
states Io, βo ⊆ S × X , the agent re-partitions Io such that
Pr(x′ | xi, o) = Pr(x′ | xj , o)∀xi, xj ∈ κ, (·, x′) ∈ βo for
κ ⊆ Io. This forms partitioned subgoal options in both S
and X . Denoting λ ⊆ X as the set of end states after re-
partitioning, the agent can ground the operator by appending
κ to the precondition and λ to the effect (if it differs from
κ), where κ and λ are treated as problem-specific propo-
sitions. Finally, these problem-specific propositions must
be linked with the grounded objects being acted upon. The
agent therefore adds a precondition predicate conditioned
on the identity of the grounded objects (see Figure 7 and the
appendix for examples). Without this modification, it would
be possible to open any door at that location. The final plan
discovered by the agent is illustrated by Figure 3.

3.2. Transfer to Multiple Tasks

We next investigate transferring operators between five
procedurally-generated tasks, where each task differs in
the location of the objects and doors. The agent cannot thus
simply use a plan found in one task to solve another. For a
given task, we transfer all operators learned from previous
tasks, and then continue to collect samples using uniform
random exploration until we are able to produce a model
which predicts that the optimal plan can be executed. We
report the number of operators transferred between tasks
averaged over 80 runs with random task orders (Figure 4).

Learning Object-Centric Representations for High-Level Planning in Minecraft

(a) symbol 37 (b) symbol 9 (c) psymbol 24

(d) symbol 64 (e) symbol 65

(:action Toggle-Door-partition-1a
:parameters (?w - type0 ?x - type1)
:precondition (and (notfailed)

(symbol_37 ?w) (symbol_9 ?x)
(= (id ?x) 1) (psymbol_24))

:effect (and (symbol_64 ?x) (symbol_65 ?w)
(not (symbol_9 ?x))
(not (symbol_37 ?w)))

)

(f) A learned typed PDDL operator for one partition of
the Toggle-Door option. The predicates underlined
in red must be relearned for each new task, while the
rest of the operator can be safely transferred.

Figure 2: Our approach learns that, in order to open a particular door, the agent must be standing in front of a closed door
(symbol 37) at a particular location (psymbol 24), and the door must be closed (symbol 9). The effect of the skill is
that the agent finds itself in front of an open door (symbol 64) and the door is open (symbol 65). type0 and type1
refer to the “agent” and “door” classes, while id is a fluent specifying the identity of the grounded door object, and is linked
to the problem-specific symbol in red.

Figure 3: The path traced by the agent solving the first task. Coloured lines and shapes represent different option executions.

1 2 3 4 5
Number of Tasks Seen

0

10

20

30

40

50

60

N
um

be
r o

f O
pe

ra
to

rs

Transfer
No Transfer

Figure 4: The orange bars represent the number of operators
that must be learned to produce a sufficiently accurate model
to solve the task. The blue bars represent the number of
operators transferred between tasks. As the number of tasks
increase, the number of new operators that must be learned
decreases. Error bars represent one standard deviation.

4. Related Work and Conclusion
The most closely related work is that of Ugur & Piater
(2015), who learn object-centric PDDL representations for

planning. Their notion of an object type is similar, but object
features are specified prior to learning, and discrete relations
between object properties such as width and height are given.
Object-oriented MDPs (Guestrin et al., 2003; Diuk et al.,
2008; Marom & Rosman, 2018) specify states as sets of
objects belonging to classes with associated attributes. We
show how to learn an object-oriented representation along
with the class types (which generalise over objects) as well
as the abstract high-level dynamics model, while allowing
for arbitrary effects.

Prior results in relational reinforcement learning have shown
how to learn parameterised representations of skills (Finney
et al., 2002; Pasula et al., 2004; Zettlemoyer et al., 2005), but
the high-level symbols or attributes that constitute the state
space are given. Conversely, we learn such representations
from raw sensory input.

We have demonstrated how to learn a high-level, object-
centric representation (including the type system, predicates
and high-level operators) directly from pixel data. Our repre-
sentation generalises across objects and can be transferred to
new tasks, and provides an avenue for solving sparse-reward,
long-term planning problems.

Learning Object-Centric Representations for High-Level Planning in Minecraft

References
Ames, B., Thackston, A., and Konidaris, G. Learning sym-

bolic representations for planning with parameterized
skills. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2018.

Andersen, G. and Konidaris, G. Active exploration for
learning symbolic representations. In Advances in Neural
Information Processing Systems, pp. 5016–5026, 2017.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Diuk, C., Cohen, A., and Littman, M. An object-oriented
representation for efficient reinforcement learning. In Pro-
ceedings of the 25th international conference on Machine
learning, pp. 240–247. ACM, 2008.

Ester, M., Kriegel, H., Sander, J., and Xu, X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In 2nd International Conference on
Knowledge Discovery and Data Mining, volume 96, pp.
226–231, 1996.

Finney, S., Gardiol, N., Kaelbling, L., and Oates, T. The
thing that we tried didn’t work very well: deictic repre-
sentation in reinforcement learning. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial
Intelligence, pp. 154–161, 2002.

Guestrin, C., Koller, D., Gearhart, C., and Kanodia, N. Gen-
eralizing plans to new environments in relational MDPs.
In Proceedings of the 18th International Joint Confer-
ence on Artificial intelligence, pp. 1003–1010. Morgan
Kaufmann Publishers Inc., 2003.

Ho, M. K., Abel, D., Griffiths, T. L., and Littman, M. L.
The value of abstraction. Current Opinion in Behavioral
Sciences, 29:111–116, 2019.

James, S., Rosman, B., and Konidaris, G. Learning to
plan with portable symbols. ICML/IJCAI/AAMAS 2018
Workshop on Planning and Learning, 2018.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. The
malmo platform for artificial intelligence experimentation.
In Proceedings of the 25th International Joint Conference
on Artificial Intelligence, pp. 4246–4247, 2016.

Konidaris, G., Scheidwasser, I., and Barto, A. Transfer in
reinforcement learning via shared features. Journal of
Machine Learning Research, 13(May):1333–1371, 2012.

Konidaris, G., Kaelbling, L., and Lozano-Pérez, T. From
skills to symbols: Learning symbolic representations for
abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61(January):215–289, 2018.

Marom, O. and Rosman, B. Zero-shot transfer with deictic
object-oriented representation in reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 2297–2305, 2018.

Pasula, H., Zettlemoyer, L., and Kaelbling, L. Learning
probabilistic relational planning rules. In Proceedings of
the Fourteenth International Conference on Automated
Planning and Scheduling, pp. 73–81, 2004.

Platt, J. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Ad-
vances in large margin classifiers, 10(3):61–74, 1999.

Precup, D. Temporal abstraction in reinforcement learning.
PhD thesis, University of Massachusetts Amherst, 2000.

Rosenblatt, N. Remarks on some nonparametric estimates of
a density function. The Annals of Mathematical Statistics,
pp. 832–837, 1956.

Sutton, R., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1-2):
181–211, 1999.

Ugur, E. and Piater, J. Bottom-up learning of object cate-
gories, action effects and logical rules: From continuous
manipulative exploration to symbolic planning. In Pro-
ceedings of the 2015 IEEE International Conference on
Robotics and Automation, pp. 2627–2633, 2015.

Younes, H. and Littman, M. PPDDL 1.0: An extension to
PDDL for expressing planning domains with probabilistic
effects. Technical report, 2004.

Zettlemoyer, L., Pasula, H., and Kaelbling, L. Learning
planning rules in noisy stochastic worlds. In Proceed-
ings of the Twentieth National Conference on Artificial
Intelligence, pp. 911–918, 2005.

Learning Object-Centric Representations for High-Level Planning in Minecraft

A. Minecraft Task Description
Our Minecraft task consists of five rooms with various items
positioned throughout. Rooms are connected with either
regular doors, which can be opened by direct interaction, or
puzzle doors, which require the agent to pull a lever next
to the door to open. The world is described by the state
of each of the objects (given by each object’s appearance
as a 600× 800 RGB image), the agent’s view, its location
and current inventory. Figure 5 illustrates the state of each
object in the world at the beginning of the task.

Figure 5: The state of each object in the world at the start of
a task. From left to right, the images represent the agent’s
point of view, the four doors, the pickaxe, the chest, and the
redstone and gold blocks. The inventory is not shown here.

The agent is provided with the following high-level skills:
(i) WalkToItem—the agent will approach an item if it is in
the same room. (ii) AttackBlock—the agent will break
a block, provided it is near the block and holding the pick-
axe. (iii) PickupItem—the agent will collect the item if
it is standing in front of it. (iv) WalkToNorthDoor—the
agent will approach the northern door in the cur-
rent room. (v) WalkToSouthDoor—the agent will
approach the southern door in the current room.
(vi) WalkThroughDoor—the agent will walk through
a door to the next room, provided the door is open.
(vii) CraftItem—the agent will create a new item from
ingredients in its inventory, provided it is near the craft-
ing table. (viii) OpenChest—the agent will open the
chest, provided it is standing in front of it and possesses the
clock. (ix) ToggleDoor—the agent will open or close the
door directly in front of it. The execution of these skills
is stochastic—opening doors occasionally fails, as does at-
tacking and collecting objects, and the navigation skills are
noisy in their execution. Note that many of these options
are either primitive actions or short chains of composed
low-level actions.

The agent begins in the first room with an empty inventory,

and must open the chest while holding a clock in order to
complete the task. To achieve this, the agent must locate
and collect the pickaxe. Then it must find both the gold and
redstone blocks, break each using the pickaxe, and collect
the resulting item. Having collected both the gold and red-
stone, it must navigate to the crafting table, where uses the
collected items to first craft gold ingots, and subsequently a
clock. Finally, it must navigate to the chest and open it to
complete the task. This requires an extremely long-horizon,
hierarchical plan—the shortest plan that solves the first task
consists of 28 options that require hundreds of low-level
continuous actions to be executed.

B. Learning a Portable Representation for
Minecraft

In order to learn a high-level representation, we first apply
a series preprocessing steps to reduce the dimensionality
of the state space. We downscale images to 160× 120 and
then convert the resulting images to greyscale. We apply
principal component analysis to a batch of images collected
from the different tasks and keep the top 40 principal com-
ponents. This allows us to represent each object (except the
inventory, which is a one-hot encoded vector of length 5) as
a vector of length 40.

Partitioning We collect data from a task by executing
options uniformly at random. We record state transition data
as well as, for each state, which options could be executed.
We then partition options using the DBSCAN clustering
algorithm (Ester et al., 1996) to cluster the terminating states
of each option into separate effects. This approximately
preserves the subgoal property, as described in Section 2
and previous work (Andersen & Konidaris, 2017; Konidaris
et al., 2018; Ames et al., 2018).

Preconditions Next, the agent learns a precondition clas-
sifier for each of these approximately partitioned options
using an SVM (Cortes & Vapnik, 1995) with Platt scaling
(Platt, 1999). We use states initially collected as negative
examples, and data from the actual transitions as positive
examples. We employ a simple feature selection proce-
dure to determine which objects are relevant to the option’s
precondition. We first compute the accuracy of the SVM
applied to the object the option operates on, performing a
grid search to find the best hyperparameters for the SVM
using 3-fold cross validation. Then, for every other object
in the environment, we compute the SVM’s accuracy when
that object’s features are added to the SVM. Any object that
increases the SVM accuracy is kept. Having determined the
relevant objects, we fit a probabilistic SVM to the relevant
objects’ data.

Learning Object-Centric Representations for High-Level Planning in Minecraft

Effects A kernel density estimator (KDE) (Rosenblatt,
1956) with Gaussian kernel is used to estimate the effect of
each partitioned option. We learn distributions over only
the objects affected by the option, learning one KDE for
each object. We use a grid search with 3-fold cross vali-
dation to find the best bandwidth hyperparameter for each
estimator. Each of these KDEs is an abstract symbol in our
propositional PDDL representation.

Propositional PDDL For each partitioned option, we now
have a classifier and set of effect distributions (propositions).
However, to generate the PDDL, the precondition must
be specified in terms of these propositions. We use the
same approach as Konidaris et al. (2018) to generate the
PDDL: for all combinations of valid effect distributions,
we test whether data sampled from their conjunction is
evaluated positively by our classifiers. If they are, then that
combination of distributions serves as the precondition of
the high-level operator.

Type Inference Before determining the class each object
belongs to, we first define the notion of an object type:

Definition 2. Assume that option o has been partitioned
into n subgoal options o(1), . . . , o(n). Object i’s profile
under option o is denoted by

Profile(i, o) =
{
{Po(1)

i , Eo(1)i }, . . . , {Po(n)
i , Eo(n)i }

}
,

where Po(k)
i is the distribution over object i’s states present

in the precondition for partition k, and Eo(k)i is object i’s
effect distribution.5

Definition 3. Two objects i and j are option-equivalent
if, for a given option o, Profile(i, o) = Profile(j, o). Fur-
thermore, two objects are equivalent if they are option-
equivalent for every o in O.

The above definition implies that objects are equivalent if
one object can be substituted for another while preserving
the abstract preconditions and effects. Such objects can be
grouped into the same object type, since for the purpose of
planning, they are functionally indistinguishable. In prac-
tice, however, we can use a weaker condition to construct
object types. Since the precondition for an object-centric
skill usually depends only on the object it is interacting with,
and because we have subgoal options that do not depend on
the initial state, we can group objects by effects only.

Definition 4. Assume that option o has been partitioned
into n subgoal options. Object i’s effect profile under option
o is denoted by

EffectProfile(i, o) =
{
Eo(1)i , . . . , Eo(n)i

}
,

5These precondition and effect distributions can be null if the
object is not acted upon.

where Eo(k)i is object i’s effect distribution. Two ob-
jects i and j are effect-equivalent if EffectProfile(i, o) =
EffectProfile(j, o) for every o in O.

To determine the type of each object, we assume first that
they all belong to their own class. For each pair of objects i
and j, we determine whether effect profiles are similar. This
task is made easier because certain objects do not undergo
effects with certain options. For example, the gold block
cannot be toggled, while a door can. Thus it is easy to see
that they are not of the same type. To determine whether
two distributions are similar, we simply check whether the
KL-divergence is less than a certain threshold. Having
determined the types, we can simply replace all similar
propositions with a predicate parameterised by an object of
that class type.

C. Visualising Operators for Minecraft
In Figures 6–9, we illustrate some learned operators for
the Minecraft tasks. All predicates and operators can be
found at the following URL: https://sites.google.
com/view/mine-pddl.

https://sites.google.com/view/mine-pddl
https://sites.google.com/view/mine-pddl

Learning Object-Centric Representations for High-Level Planning in Minecraft

(a) symbol 13 (b) symbol 4 (c) symbol 55

(d) psymbol 8 (e) symbol 58 (f) symbol 59

(:action Open-Chest-partition-0
:parameters (?w - type0 ?x - type6 ?y - type9)
:precondition (and (notfailed) (symbol_13 ?w)

(symbol_4 ?x) (symbol_55 ?y)
(psymbol_8))

:effect (and (symbol_58 ?x) (symbol_59 ?w)
(not (symbol_4 ?x)) (not (symbol_13 ?w)))

)

(g) A learned typed PDDL operator for the Open-Chest skill. The
predicate in red indicates a problem-specific symbol that must be
relearned for each new task, while the rest of the operator can be
safely transferred.

Figure 6: Our approach learns that, in order to open a chest, the agent must be standing in front of a chest (symbol 13),
the chest must be closed (symbol 4), the inventory must contain a clock (symbol 55) and the agent must be standing at
a certain location (psymbol 8). The result is that the agent finds itself in front of an open chest (symbol 58) and the
chest is open (symbol 59). type0 refers to the “agent” class, type6 the “chest” class and type9 the “inventory” class.

(a) symbol 37 (b) symbol 9 (c) psymbol 24

(d) symbol 64 (e) symbol 65

(:action Toggle-Door-partition-1a
:parameters (?w - type0 ?x - type1a)
:precondition (and (notfailed) (symbol_37 ?w)

(symbol_9 ?x) (psymbol_24))
:effect (and (symbol_64 ?x) (symbol_65 ?w)

(not (symbol_9 ?x)) (not (symbol_37 ?w)))
)

(f) A learned typed PDDL operator for a partition of the
Toggle-Door option. The predicate in red indicates a problem-
specific symbol that must be relearned for each new task, while the
rest of the operator can be safely transferred.

Figure 7: Our approach learns that, in order to open a particular door, the agent must be standing in front of a closed door
(symbol 37) at a particular location (psymbol 24), and the door must be closed (symbol 9). The effect of the skill is
that the agent finds itself in front of an open door (symbol 64) and the door is open (symbol 65). type0 refers to the
“agent” class, type1a refers to an instantiation of a “door” class, which is a subclass of type1.

(a) symbol 38 (b) symbol 64 (c) psymbol 24

(d) symbol 50 (e) psymbol 12

(:action Through-Door-partition-3-256a
:parameters (?w - type0 ?x - type1a)
:precondition (and (notfailed) (symbol_38 ?w)

(symbol_64 ?x) (psymbol_24))
:effect (and (symbol_50 ?w) (psymbol_12)

(not (symbol_38 ?w)) (not (psymbol_24)))
)

(f) Typed PDDL operator for a partition of the Through-Door
option. The predicate in red indicates a problem-specific symbol that
must be relearned for each new task, while the rest of the operator
can be safely transferred.

Figure 8: Abstract operator that models the agent walking through a door. In order to do so, the agent must be standing in
front of an open door (symbol 38) at a particular location (psymbol 24), and the door must be open (symbol 64). As
a result, the agent finds itself in the middle of a room (symbol 50) at a particular location (psymbol 12).

Learning Object-Centric Representations for High-Level Planning in Minecraft

(a) symbol 15 (b) symbol 2 (c) psymbol 17

(d) symbol 19 (e) symbol 20

(:action Attack-partition-0-76a
:parameters (?w - type0 ?x - type7)
:precondition (and (notfailed) (symbol_15 ?w)

(symbol_2 ?x) (psymbol_17))
:effect (and (symbol_19 ?x) (symbol_20 ?w)

(not (symbol_2 ?x)) (not (symbol_15 ?w)))
)

(f) Typed PDDL operator for a partition of the Attack option. The
predicate in red indicates a problem-specific symbol that must be
relearned for each new task, while the rest of the operator can be
safely transferred.

Figure 9: Abstract operator that models the agent attacking an object. In order to do so, the agent must be standing in front
of a gold block (symbol 15) at a particular location (psymbol 17), and the gold block must be whole (symbol 2).
As a result, the agent finds itself in front of a disintegrated block (symbol 20), and the gold block is disintegrated
(symbol 19).

