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Abstract
We present a framework for autonomously learn-
ing a portable representation that describes a col-
lection of low-level continuous environments. We
show that these abstract representations can be
learned in a task-independent egocentric space
specific to the agent that, when grounded with
problem-specific information, are provably suf-
ficient for planning. We demonstrate transfer in
two different domains, where an agent learns a
portable, task-independent symbolic vocabulary,
as well as operators expressed in that vocabulary,
and then learns to instantiate those operators on a
per-task basis. This reduces the number of sam-
ples required to learn a representation of a new
task.

1. Introduction
A major goal of artificial intelligence is creating agents
capable of acting effectively in a variety of complex en-
vironments. Robots, in particular, face the difficult task
of generating behaviour while sensing and acting in high-
dimensional and continuous spaces. Decision-making at this
level is typically infeasible—the robot’s innate action space
involves directly actuating motors at a high frequency, but it
would take thousands of such actuations to accomplish most
useful goals. Similarly, sensors provide high-dimensional
signals that are often continuous and noisy. Hierarchical
reinforcement learning (Barto & Mahadevan, 2003) tackles
this problem by abstracting away the low-level action space
using higher-level skills, which can accelerate learning and
planning. Skills alleviate the problem of reasoning over
low-level actions, but the state space remains unchanged;
efficient planning may therefore also require state space
abstraction.
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One approach is to build a state abstraction of the environ-
ment that supports planning. Such representations can then
be used as input to task-level planners, which plan using
far more compact abstract state descriptors. This mitigates
the issue of reward sparsity and admits solutions to long-
horizon tasks, but raises the question of how to build the
appropriate abstract representation of a problem. This is
often resolved manually, requiring substantial effort and
expertise on the part of the human designer.

Fortunately, recent work demonstrates how to learn a prov-
ably sound symbolic representation autonomously, given
only the data obtained by executing the high-level actions
available to the agent (Konidaris et al., 2018). A major short-
coming of that framework is the lack of generalisability—
the learned symbols are grounded in the current task, so an
agent must relearn the appropriate representation for each
new task it encounters (see Figure 1). This is a data- and
computation-intensive procedure involving clustering, prob-
abilistic multi-class classification, and density estimation in
high-dimensional spaces, and requires repeated execution
of actions within the environment.

(a) The distribution over posi-
tions from where the agent is
able to interact with the door.

(b) In the new task, the
learned distribution is no
longer useful since the door’s
location has changed.

Figure 1: An illustration of the shortcomings of learning
task-specific state abstractions (Konidaris et al., 2018). (a)
An agent (represented by a red circle) learns a distribution
over states (x, y, θ tuples, describing its position in a room)
in which it can interact with a door. (b) However, this
distribution cannot be reused in a new room with a different
layout.

The contribution of this work is twofold. First, we introduce
a framework for deriving a symbolic abstraction over an ego-
centric state space (Agre & Chapman, 1987; Guazzelli et al.,
1998; Finney et al., 2002; Konidaris et al., 2012).1 Because
such state spaces are relative to the agent, they provide a

1Egocentric state spaces have also been adopted by recent
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suitable avenue for representation transfer. However, these
abstractions are necessarily non-Markov, and so are insuffi-
cient for planning. Our second contribution is thus to prove
that the addition of very particular problem-specific infor-
mation (learned autonomously from the task) to the portable
abstractions results in a representation that is sufficient for
planning. This combination of portable abstractions and
task-specific information results in lifted action operators
that are transferable across tasks, but which have parameters
that must be instantiated on a per-task basis.

We describe our framework using a simple toy domain, and
then demonstrate successful transfer in two domains. Our
results show that an agent is able to learn abstractions that
generalise to tasks with different dynamics, reducing the
experience required to learn a representation of a new task.

2. Background
We assume that the tasks faced by an agent can be mod-
elled as a semi-Markov decision process (SMDP) M =
〈S,O, T ,R〉, where S ⊆ Rn is the n-dimensional continu-
ous state space and O(s) is the set of temporally-extended
actions known as options available to the agent at state s.
The reward function R(s, o, τ, s′) specifies the feedback
the agent receives from the environment when it executes
option o from state s and arrives in state s′ after τ steps.
T describes the dynamics of the environment, specifying
the probability of arriving in state s′ after option o is ex-
ecuted from s for τ timesteps: T oss′ = Pr(s′, τ | s, o).
An option o is defined by the tuple 〈Io, πo, βo〉, where
Io = {s | o ∈ O(s)} is the initiation set that specifies
the states in which the option can be executed, πo is the
option policy which specifies the action to execute, and βo
is the termination condition, where βo(s) is the probability
of option o halting in state s.

2.1. Portable Skills

The primary goal of transfer learning (Taylor & Stone,
2009) is to create an agent capable of leveraging knowledge
gained in one task to improve its performance in a different
but related task. We are interested in a collection of tasks,
modelled by a family of SMDPs.

We first consider the most basic definition of an agent, which
is anything that can perceive its environment through sen-
sors, and act upon it with effectors (Russell & Norvig, 2009).
In practice, a human designer will usually build upon the ob-
servations produced by the agent’s sensors to construct the
Markov state space for the problem at hand, while discard-
ing unnecessary sensor information. Instead we will seek to

reinforcement learning frameworks, such as VizDoom (Kempka
et al., 2016), Minecraft (Johnson et al., 2016) and Deepmind Lab
(Beattie et al., 2016).

effect transfer by using both the agent’s sensor information—
which is typically egocentric, since the agent carries its own
sensors—in addition to the Markov state space.

We assume that tasks are related because they are faced by
the same agent (Konidaris et al., 2012). For example, con-
sider a robot equipped with various sensors that is required
to perform a number of as yet unspecified tasks. The only
aspect that remains constant across all these tasks is the pres-
ence of the robot, and more importantly its sensors, which
map the state space S to a portable, lossy, and egocentric
observation space D. We define an observation function
φ : S → D that maps states to observations and depends on
the sensors available to the agent. We assume the sensors
may be noisy, but that the noise has mean 0 in expectation,
so that if s, t ∈ S, then s = t =⇒ E[φ(s)] = E[φ(t)]. To
differentiate, we refer to S as problem space (Konidaris &
Barto, 2007).

Augmenting an SMDP with this egocentric data produces
the tupleMi = 〈Si,Oi, Ti,Ri,D〉 for each task i, where
the egocentric observation space D remains constant across
all tasks. We can use D to define portable options, whose
option policies, initiation sets and termination conditions
are all defined egocentrically. Because D remains constant
regardless of the underlying SMDP, these options can be
transferred across tasks (Konidaris & Barto, 2007).

2.2. Abstract Representations

We wish to learn an abstract representation to facilitate plan-
ning. A probabilistic plan pZ = {o1, . . . , on} is defined
to be the sequence of options to be executed, starting from
some state drawn from distribution Z. It is useful to intro-
duce the notion of a goal option, which can only be executed
when the agent has reached its goal. Appending this option
to a plan means that the probability of successfully execut-
ing a plan is equivalent to the probability of reaching some
goal.

A representation suitable for planning must allow us to cal-
culate the probability of a given plan successfully executing
to completion. As a plan is simply a chain of options, it
is therefore necessary (and sufficient) to learn when an op-
tion can be executed, as well as the outcome of doing so
(Konidaris et al., 2018). This corresponds to learning the
precondition Pre(o) = Pr(s ∈ Io), which expresses the
probability that option o can be executed at state s ∈ S,
and the image Im(Z, o), which represents the distribution
of states an agent may find itself in after executing o from
states drawn from distribution Z. Figure 2 illustrates how
the precondition and image are used to calculate the proba-
bility of executing a two-step plan.

In general, we cannot model the image for an arbitrary
option; however, we can do so for a subclass known as
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Z

o1?

Io1

(a) The agent begins at distri-
bution Z, and must determine
the probability with which it
can execute the first option o1.

Z

o1

o2?

Z1

Io2

(b) The agent estimates the ef-
fect of executing o1, given by
Z1. It must then determine
the probability of executing
o2 from Z1.

Figure 2: (a–b) An agent attempting to calculate the proba-
bility of executing the plan pZ = {o1, o2}, which requires
knowledge of the conditions under which o1 and o2 can be
executed, as well as the effect of executing o1 (Konidaris
et al., 2018).

subgoal options (Precup, 2000), whose terminating states
are independent of their starting states (Konidaris et al.,
2018). That is, for any subgoal option o, Pr(s′ | s, o) =
Pr(s′ | o). We can thus substitute the option’s image for its
effect: Eff(o) = Im(Z, o) ∀Z.

Subgoal options are not overly restrictive, since they refer
to options that drive an agent to some set of states with
high reliability, which is a common occurrence in robotics
owing to the use of closed-loop controllers. Nonetheless,
it is likely an option may not be subgoal. It is often possi-
ble, however, to partition an option’s initiation set into a
finite number of subsets, so that it possesses the subgoal
property when initiated from each of the individual subsets.
That is, we partition an option’s start states into classes C
such that Pr(s′ | s, c) ≈ Pr(s′ | c), c ∈ C (see Figure 3).
In practice, the agent achieves this by clustering state tran-
sition samples based on effect states, and assigning each
cluster to a partition. For each pair of partitions we then
check whether their start states overlap significantly, and
if so merge them, which accounts for probabilistic effects
(Andersen & Konidaris, 2017; Konidaris et al., 2018; Ames
et al., 2018).

2.2.1. ABSTRACT OPTIONS

We may also assume that the option is abstract—that is, it
obeys the frame and action outcomes assumptions (Pasula
et al., 2004). Thus for each abstract option, we can decom-
pose the state into two sets of variables s = [a, b] such that
executing the option results in state s′ = [a, b′], where a
is the subset of variables that remain unchanged. We refer

Io

Pr(s' | o, c2) 

Pr(s' | o, c3) 

Pr(s' | o, c0) 

Pr(s' | o, c1) 

Figure 3: Option o is not subgoal, but we can partition
the initiation set Io into 4 subsets c0, . . . , c3, such that the
option is subgoal when initiated from each of these sets.

to the variables that are modified by an option as its mask.
Whereas subgoal options induce an abstract MDP or plan-
ning graph, abstract subgoal options allow us to construct
a propositional model corresponding to a factored abstract
MDP or STRIPS representation (Fikes & Nilsson, 1971).

In order to construct a symbolic representation, we first par-
tition options to ensure they are (abstract) subgoal options.
We then estimate the precondition and effect for each of the
partitioned options. Estimating the precondition is a classifi-
cation problem, while the effect is one of density estimation.
Finally, for all valid combinations of effect distributions, we
construct a forward model by computing the probability that
states drawn from their grounding lies within the learned
precondition of each option, discarding operators with low
probability of occurring. This procedure is illustrated by
Figure 4, but for more detail see Konidaris et al. (2018).

3. Learning Portable Representations
To aid in explanation, we make use of a simple continu-
ous task where a robot navigates the building illustrated in
Figure 5a. The problem space is the xy-coordinates of the
robot, while we use an egocentric view of the environment
(nearby walls and windows) around the agent for transfer.
These observations are illustrated in Figures 5b–d.

The robot is equipped with options to move between dif-
ferent regions of the building, halting when it reaches the
start or end of a corridor. It possesses the following four
options: (a) Clockwise and Anticlockwise, which
move the agent in a clockwise or anticlockwise direction
respectively, (b) Outward, which moves the agent down
a corridor away from the centre of the building, and (c)
Inward, which moves it towards the centre.

We could adopt the approach of Konidaris et al. (2018) to
learn an abstract representation using transition data in S.
However, that procedure generates symbols that are distribu-
tions over xy-coordinates, and are thus tied directly to the
particular problem configuration. If we were to simply trans-
late the environment along the plane, the xy-coordinates
would be completely different, and our learned representa-
tion would be useless.
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Given transition data
collected by executing
options

Partition
into subgoal

options

Estimate
preconditions

and effects

Generate
abstract

forward model

Figure 4: The process of learning symbolic representations (Konidaris et al., 2018). The abstract model can take various
forms, such as a factored MDP or a PPDDL description (Younes & Littman, 2004). The shaded nodes are learned from data
by the agent autonomously.

(a) (b) (c) (d)

Figure 5: (a) A continuous navigation task where an
agent navigates between different regions in xy-space.
Walls are represented by grey lines, while the two
white bars represent windows. Arrows describe the
agent’s options. (b–d) Local egocentric observations.
We name these window-junction, dead-end and
wall-junction respectively.

To overcome that limitation, we propose learning a symbolic
representation overD instead of S . Transfer can be achieved
in this manner (provided φ is non-injective2) because D
remains consistent across SMDPs, even if the state space or
transition function do not.

Given only data produced by sensors, the agent proceeds to
learn an abstract representation, and identifies three portable
symbols. These symbols are exactly those illustrated by
Figure 5. The learned operators are listed in Table 1, where
it is clear that naı̈vely considering egocentric observations

2We require that φ be non-injective, since the ability to transfer
depends on two distinct states in S being identical in D. If this is
not the case, we can do no better than learning using only S.

alone is insufficient for planning purposes: the agent does
not possess an option with probabilistic outcomes, but the
Inward option appears to have probabilistic effects due to
aliasing.

A further challenge appears when the goal of the task is
defined in S . If we have goal G ⊆ S , then given information
from D, we cannot determine whether we have achieved
the goal. This follows naturally from the property that φ is
non-injective: consider two states s, t ∈ S such that s 6= t
and φ(s) = φ(t) = d ∈ D. If s ∈ G, but t /∈ G, then
knowledge of d alone is insufficient to determine whether
we have entered a state in G. We therefore require additional
information to disambiguate such situations, allowing us to
map from egocentric observations back into S.

We can accomplish this by partitioning our portable options
based on their effects in S, resulting in options that are
subgoal in both D and S . Recall that options are partitioned
to ensure the subgoal property holds, and so each partition
defines its own unique image distribution. If we label each
problem-space partition, then each label refers to a unique
distribution in S and is sufficient for disambiguating our
egocentric symbols. Figure 6 annotates the domain with
labels according to their problem-space partitions. Note that
the partition numbers are completely arbitrary.

Generating agent-space symbols results in lifted symbols
such as dead-end(X), where dead-end is the name for
a distribution over D, and X is a partition number that must
be determined on a per-task basis. Note that the only time
problem-specific information is required is to determine
the values of X, which grounds the portable symbol in the
current task.

Table 1: A list of the six subgoal options, specifying their preconditions and effects in agent space only.

Option Precondition Effect

Clockwise1 wall-junction window-junction
Clockwise2 window-junction wall-junction
Anticlockwise1 wall-junction window-junction
Anticlockwise2 window-junction wall-junction
Outward wall-junction ∨ window-junction dead-end

Inward dead-end

{
window-junction w.p. 0.5

wall-junction w.p. 0.5



Learning Portable Representations for High-Level Planning

#1

#2

#3 #6#4 #5

#7

#8

Figure 6: Each number refers to the initiation set of an op-
tion partitioned in problem space. For readability, we merge
identical partitions. For instance, #2 refers to the initia-
tion sets of a single problem space partition of Outward,
Clockwise and Anticlockwise.

The following result shows that the combination of agent-
space symbols with problem-space partition numbers pro-
vides a sufficient symbolic vocabulary for planning. (The
proof is given in the supplementary material.)

Theorem 1 The ability to represent the preconditions and
image of each option in agent space, together with the parti-
tioning in S, is sufficient for determining the probability of
being able to execute any probabilistic plan p from starting
distribution Z.

4. Generating a Task-Specific Model
Our approach can be viewed as a two-step process. The first
phase learns portable symbolic operators using egocentric
transition data from possibly several tasks, while the second
phase uses problem-space transitions from the current task
to partition options in S . The partition labels are then used as
parameters to ground the previously-learned portable opera-
tors in the current task. We use these labels to learn linking
functions that connect precondition and effect parameters.
For example, when the parameter of Anticlockwise2
is #5, then its effect should take parameter #2. Figure 7
illustrates this grounding process.

These linking functions are learned by simply executing
options and recording the start and end partition labels of
each transition. We use a simple count-based approach that,
for each option, records the fraction of transitions from one
partition label to another. A more precise description of this
approach is specified in the supplementary material.

A combination of portable operators and partition num-
bers reduces planning to a search over the space Σ ×
N, where Σ is the set of generated symbols. Alterna-
tively (and equivalently), we can generate either a fac-
tored MDP or a PPDDL representation (Younes & Littman,
2004). To generate the latter, we use a function named

partition to store the current partition number and
specify predicates for the three symbols derived in the
previous sections: window-junction, dead-end and
wall-junction. The full domain description is pro-
vided in the supplementary material.

5. Inter-Task Transfer
In our example, it is not clear why one would want to learn
portable symbolic representations—we perform symbol ac-
quisition in D and instantiate the operators for the given
task, which requires more computation than directly learn-
ing symbols in S. We now demonstrate the advantage of
doing so by learning portable models of two different do-
mains, both of which feature continuous state spaces and
probabilistic transition dynamics.

5.1. Rod-and-Block

We construct a domain we term Rod-and-Block in which a
rod is constrained to move along a track. The rod can be
rotated into an upward or downward position, and a number
of blocks are arranged to impede the rod’s movement. Two
walls are also placed at either end of the track. One such
task configuration is illustrated by Figure 8.

The problem space consists of the rod’s angle and its x
position along the track. Egocentric observations return the
types of objects that are in close proximity to the rod, as
well as its angle. In Figure 8, for example, there is a block
to the left of the rod, which has an angle of π. The high-
level options given to the agent are GoLeft, GoRight,
RotateUp, and RotateDown. The first two translate the
rod along the rail until it encounters a block or wall while
maintaining its angle. The remaining options rotate the rod
into an upward or downward position, provided it does not
collide with an object. These rotations can be done in both
a clockwise and anti-clockwise direction.

We learn a symbolic representation using egocentric tran-
sitions only, following the same procedure as prior work
(Konidaris et al., 2018): first, we collect agent-space transi-
tions by interacting with the environment. We then partition
the options in agent space using the DBSCAN clustering
algorithm (Ester et al., 1996) so that the subgoal property
approximately holds. This produces partitioned agent-space
options. Finally, we estimate the options’ preconditions
using a support vector machine with Platt scaling (Cortes
& Vapnik, 1995; Platt, 1999), and use kernel density esti-
mation (Rosenblatt, 1956; Parzen, 1962) to model effect
distributions.3

The above procedure results in portable high-level operators,
one of which is illustrated by Figure 9. These operators

3We provide more details in the supplementary material.
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Given transition data collected
by executing options

Partition
into subgoal

options

Estimate
preconditions

and effects

Generate
abstract

forward model

Partition
options

based on
effects in S

Learn transitions be-
tween partition labels

under each option

Ground portable operators
using partition labels for
preconditions and effects.

Figure 7: The full process of learning portable representations from data. In nodes coloured red, the agent learns
representations using egocentric data from all previously encountered tasks, while the green nodes denote where the agent
learns using problem-space data from the current task only.

Figure 8: The Rod-and-Block domain. This particular task
consists of three obstacles that prevent the rod from moving
along the track when the rod is in either the upward or
downward position. Different tasks are characterised by
different block placements.

can be reused for new tasks or configurations of the Rod-
and-Block domain—we need not relearn them when we
encounter a new task, though we can always use data from
a new task to improve them. More portable operators are
given in the supplementary material.

Once we have learned sufficiently accurate portable oper-
ators, they need only be instantiated for the given task by
learning the linking between partitions. This requires far
fewer samples than classification and density estimation
over the state space S, which is required to learn a task-
specific representation.

To illustrate this, we construct a set of ten tasks ρ1, . . . , ρ10
by randomly selecting the number of blocks, and then ran-
domly positioning them along the track. Because tasks
have different configurations, constructing a symbolic rep-
resentation in problem space requires relearning a model
of each task from scratch. However, when constructing
an egocentric representation, symbols learned in one task
can immediately be used in subsequent tasks. We gather
k transition samples from each task by executing options
uniformly at random, and use these samples to build both
task-specific and egocentric (portable) models.

In order to evaluate a model’s accuracy, we randomly select
100 goal states for each task, as well as the optimal plans
for reaching each from some start state. Each plan consists
of two options, and we denote a single plan by the tuple
〈s1, o1, s2, o2〉. LetMρi

k be the forward model consisting

of high-level preconditions and effects constructed for task
ρi using k samples. We calculate the likelihood of each
optimal plan under the model: Pr(s1 ∈ Io1 | M

ρi
k ) ×

Pr(s′ ∈ Io2 | M
ρi
k ), where s′ ∼ Eff(o1). We build models

using increasing numbers of samples, varying the number of
samples in steps of 250, until the likelihood averaged over
all plans is greater than some acceptable threshold (we use
a value of 0.75), at which point we continue to the next task.
The results are given by Figure 11a.

5.2. Treasure Game

We next apply our approach to the Treasure Game, where
an agent navigates a continuous maze in search of treasure.
The domain contains ladders and doors which impede the
agent. Some doors can be opened and closed with levers,
while others require a key to unlock.

(a) (b)
(:action Up Clockwise_1
:parameters()
:precondition (and (sym_18) (sym_11))
:effect (and (sym_12) (not sym_18))

)

(c)

Figure 9: (a) The precondition for
RotateUpClockwise1, which states that in order
to execute the option, the rod must be left of a wall facing
down. The precondition is a conjunction of these two
symbols—the first (sym 18) is a distribution over the rod’s
angle only, while the second (sym 11) is independent of
it. (b) The effect of the option, with the rod adjacent to the
wall in an upward position. (c) PDDL description of the
above operator, which is used for planning.
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The problem space consists of the xy-position of the agent,
key and treasure, the angle of the levers (which determines
whether a door is open) and the state of the lock.

The egocentric space is a vector of length 9, the elements
of which are the type of sprites in each of the nine direc-
tions around the agent, plus the “bag” of items collected
by the agent. The agent possesses a number of high-level
options, such as GoLeft and DownLadder. More details
are given by Konidaris et al. (2018).

We construct a set of ten tasks ρ1, . . . , ρ10 corresponding to
different levels of the Treasure Game,4 and learn portable
models. We test their sample efficiency as in Section 5.1.
An example of a portable operator, as well as its problem-
space partitioning, is given by Figure 10, while the number
of samples required to learn a good model of all 10 levels is
given by Figure 11b.

(a) (b)

(:action DownLadder_1
:parameters()
:precondition (and (sym_80))
:effect (and (sym_622) (not sym_80))
)

(c)

Figure 10: (a) The precondition (top) and positive effect
(bottom) for the DownLadder operator, which states that
in order to execute the option, the agent must be standing
above the ladder. The option results in the agent standing on
the ground below it. The black spaces refer to unchanged
low-level state variables. (b) Three problem-space parti-
tions for the DownLadder operator. Each of the circled
partitions is assigned a unique label and combined with the
portable rule in (a) to produce a grounded operator. (c) The
PDDL representation of the operator specified in (a).

5.3. Discussion

Naturally, learning problem-space symbols results in a sam-
ple complexity that scales linearly with the number of tasks,
since we must learn a model for each new task from scratch.
Conversely, by learning and reusing portable symbols, we
can reduce the number of samples we require as we en-

4We made no effort to design tasks in a curriculum-like fashion.
The levels are given in the supplementary material.

(a) Results for the Rod-and-Block domain.

(b) Results for the Treasure Game domain.

Figure 11: Cumulative number of samples required to learn
sufficiently accurate models as a function of the number of
tasks encountered. Results are averaged over 100 random
permutations of the task order. Standard errors are specified
by the shaded areas.

counter more tasks, leading to a sublinear increase. The
agent initially requires about 600 samples to learn a task-
specific model of each Rod-and-Block configuration, but
decreases to roughly 330 after only two tasks. Similarly,
1600 samples are initially needed for each level of the Trea-
sure Game, but only 900 after four levels, and about 700
after seven.

Intuitively, one might expect the number of samples to
plateau as the agent observes more tasks. That we do not is
as a result of the exploration policy—the agent must observe
all relevant partitions at least once, and selecting actions
uniformly at random is naturally suboptimal. Nonetheless,
we still require far fewer samples to learn the links between
partitions than learning a full model from scratch.

In both of our experiments, we construct a set of 10 domain
configurations and then test our approach by sampling 100
goals for each, for a total of 1000 tasks per domain. Our
model-based approach learns 10 forward models, and then
uses them to plan a sequence of actions to achieve each
goal. By contrast, a model-free approach would be required
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to learn all 1000 policies, since every goal defines another
unique SMDP that must be solved. Furthermore, it is unclear
how to extend these techniques to deal with tasks whose
state space dimensionality differ.

Our approach treats the problem as a two-step procedure:
we first learn representations using only D, and then use
only S to ground the representations to our current task. A
naı̈ve alternative would be to simply combine S and D and
learn representations over the combined state space. How-
ever, doing so would result in models that are not wholly
transferable. For example, in the Treasure Game, the agent
would learn that to climb down a ladder, it must be standing
on top of the ladder and at some xy-position. In a new
task, the agent would recognise that it is standing on a lad-
der, but its coordinates would likely be different and so the
precondition would not apply.

We depart from most model-based approaches in that we rely
on the portable observation space D for transfer. This raises
questions regarding how hard it is to specify D, and the sen-
sitivity of the egocentric observation space to the resulting
representations. Fortunately, it is not too hard to provide
an egocentric view of the agent: as mentioned, for many
real-world problems with embodied agents, this amounts
to the agent carrying its own sensors, while for simulated
problems (such as those presented here) one can simply
centre the input observation on the agent’s reference frame.
We note, too, that there has been work on autonomously
discovering portable observation spaces (Snel & Whiteson,
2010), but this is orthogonal to our work.

Finally, we remark that transfer will naturally depend on,
and be sensitive to, the characteristics of D. The question
of sensitivity has been extensively studied in the context
of learning a single policy (Konidaris et al., 2012, Section
4.3.4), where results indicate that policy learning erodes
gradually with the usefulness of D. Practically, this is a
concern for learning the option policies, and so we will only
remark that if D is sufficient to learn the options (which we
assume has already taken place), then it is sufficient to learn
the corresponding representations.

6. Related Work
There has been some work in autonomously learning pa-
rameterised representations of skills, particularly in the field
of relational reinforcement learning. Finney et al. (2002),
Pasula et al. (2004) and Zettlemoyer et al. (2005), for in-
stance, learn operators that transfer across tasks. However,
the high-level symbolic vocabulary is given; we show how
to learn it. Ames et al. (2018) adopt a similar approach to
Konidaris et al. (2018) to learn symbolic representations for
parameterised actions. However, the representation learned
is fully propositional (even if the actions are not) and cannot

be transferred across tasks. Ugur & Piater (2015) are able
to discover parameterised symbols for robotic manipulation
tasks, but discrete relations between object properties such
as width and height are given.

Relocatable action models (Sherstov & Stone, 2005; Leffler
et al., 2007) assume states can be aggregated into “types”
which determine the transition behaviour. State-independent
representations of the outcomes from different types are
learned and improve the learning rate in a single task. How-
ever, the mapping from lossy observations to states is pro-
vided to the agent, since learning this mapping is as hard as
learning the full MDP.

There is a large body of literature in the fields of meta-
learning and lifelong learning devoted to methods that learn
an internal or latent representation that generalises across
a distribution of tasks (Jonschkowski & Brock, 2015; Hig-
gins et al., 2017; Kirkpatrick et al., 2017; Finn et al., 2017;
de Bruin et al., 2018). When presented with a new task,
agents subsequently learn a policy based on its internal
representation in a model-free manner. In contrast, our ap-
proach learns an explicit model which supports forward
planning, and is independent of the task or reward structure.

More recently, Zhang et al. (2018) propose a method for
constructing portable representations for planning. However,
the mapping to abstract states is provided, and planning is
restricted solely to the equivalent of an egocentric space.
Similarly, Srinivas et al. (2018) learn a goal-directed latent
space in which planning can occur. However, the goal must
be known upfront and be expressible in the latent space. We
do not compare to either, since both are unsuited to tasks
with goals defined in problem space, and neither provides
soundness guarantees.

7. Summary
We have introduced a framework for autonomously learn-
ing portable representations for planning. Previous work
(Konidaris et al., 2018; Ames et al., 2018) has shown how to
learn a high-level representation suitable for planning, but
these representations are directly tied to the task in which
they were learned. Ultimately, this is a fatal flaw—should
any of the environments change even slightly, the entire
representation would need to be relearned from scratch.
Conversely, we demonstrate that an agent is able to learn a
portable representation given only data gathered from op-
tion execution. We also show that the addition of particular
problem-specific information results in a representation that
is provably sufficient for learning a sound representation
for planning. This allows us to leverage experience in solv-
ing new unseen tasks—an important step towards creating
adaptable, long-lived agents.
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M., Küttler, H., Lefrancq, A., Green, S., Valdés, V., Sadik,
A., et al. DeepMind lab. arXiv preprint arXiv:1612.03801,
2016.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine Learning, 20(3):273–297, 1995.

de Bruin, T., Kober, J., Tuyls, K., and Babuška, R. Integrat-
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Supplementary Material:
Learning Portable Representations for High-Level Planning

Steven James 1 Benjamin Rosman 1 George Konidaris 2

1. Proof of Sufficiency
In this section, we show that a combination of agent-space symbols with problem-space partition labels provides a sufficient
symbolic vocabulary for planning. We begin by defining the notion of X -space options, whose initiation sets, policies and
termination conditions are all defined in state space X .

Definition 1. Let OX be the set of all options defined over some state space X . That is, each option o ∈ OX has a policy
πo : X → A, an initiation set Io ⊆ X and a termination function βo : X → [0, 1].

Problem-space options are thus denoted OS , while OD are agent-space options. We now define a partitioned option as
follows:

Definition 2. Given an option o ∈ OX , define a relation ∼o on Io so that x ∼o y ⇐⇒ Pr(x′ | x, o) = Pr(x′ | y, o) for
all x, y, x′ ∈ X . Then ∼o is an equivalence relation which partitions Io. Label each equivalence class in Io/ ∼o with a
unique integer α. A partitioned subgoal option is then the parameterised option o(α) = 〈[α], πo, βo〉, where [α] ⊆ Io is the
set of states in equivalence class α.

We define a probabilistic plan pZ = {o1, . . . , on} to be the sequence of options to be executed, starting from some state
drawn from distribution Z. It is useful to introduce the notion of a goal option, which can only be executed when the agent
has reached its goal. Appending the goal option to a plan means that the probability of successfully executing a plan is
equivalent to the probability of reaching some goal. The act of planning now reduces to a search through the space of all
possible plans— ending with a goal option—to find the one most likely to succeed.

Our representation must therefore be able to evaluate the probability that an arbitrary plan, ending in goal option, successfully
executes. However, the options in the plan may be either problem- or agent-space options. In order to show that agent-space
representations and their associated problem-space partition labels are sufficient for planning with both types of options, we
first define a function that maps problem-space partitions to subsequent problem-space partitions:

Definition 3. A linking function L is a function that specifies the problem-space partition the agent will enter, given the
current problem-space partition and executed option. That is, L(α, o, β) = Pr(β | o, α), where o ∈ O, α, β ∈ Λ and Λ is
the set of problem-space partitions induced by all options.

We next need the following result, which demonstrates that we are able to model the true dynamics using problem-space
partitions and agent-space effects:

1School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa 2Department of
Computer Science, Brown University, Providence RI 02912, USA. Correspondence to: Steven James <steven.james@wits.ac.za>.

Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the
author(s).



Learning Portable Representations for High-Level Planning

Lemma 1. Let ω ∈ OD be a partitioned agent-space option, and denote ω(α) as that same option which has been further
partitioned in problem space, with problem-space partition α. Let s, s′ ∈ S and x, x′ ∈ D such that x′ ∼ Pr(· | x, s, ω) and
s′ ∼ Pr(· | s, ω(α)) with E[φ(s′)] = x′. Finally, assume s ∈ [β], where β is some partition label. Then,

Pr(s′ | s, x, x′, ω(α), β) =
g(x′, ω, α, β)∫

[α]
Pr(t | o(α))dt

, where

g(x′, ω, α, β) =

{
Pr(x′ | ω) if β = α

0 otherwise.

Proof. Recall that ω(α) obeys the subgoal property in both D and S. Thus the transition probability is simply its image,
given that it is executable at the current state. Thus we have:

Pr(s′ | s, x, x′, ω(α), β) = Pr(x′ | s ∈ [α], ω(α), β)

=
Pr(x′, s ∈ [α] | ω(α), β)

Pr(s ∈ [α] | ω(α), β)
.

Now β 6= α =⇒ s /∈ [α], and so Pr(x′, s ∈ [α] | ω(α), β) = 0. Conversely, β = α =⇒ s ∈ [α] and so
Pr(x′, s ∈ [α] | ω(α), β) = Pr(x′ | ω). Furthermore,

Pr(s ∈ [α] | ω(α), β) =

∫
[α]

Pr(t | ω[α])dt.

Therefore, we have

Pr(s′ | s, x, x′, ω(α), β) =
g(x′, ω, α, β)∫

[α]
Pr(t | ω(α))dt

,

where g is defined above.

The above states that, if the starting state s is in the problem-space partition of the executed option, then the transition
probabilities are exactly those under the subgoal option. However, if s is not in the correct partition, then the probability is 0
because we cannot execute the option. Thus we consider only starting states in [α] and set everything else to 0. Finally, we
renormalise over [α] to ensure that the transition remains a proper distribution. This is sufficient to predict the effect in agent
space, since we can just apply the observation function φ to s′ to compute Pr(x′ | s′). We can now proceed with our main
result:

Theorem 1. The ability to represent the preconditions and image of each option in agent space, together with the partitioning
in S , is sufficient for determining the probability of being able to execute any probabilistic plan p from starting distribution
Z.

Proof. For notational convenience, we denote ω as a partitioned agent-space option, ω(α) as a partitioned agent-space option
with problem-space partition α, and o(α) as a problem-space option with Io = [α] ⊆ S. Because the only difficulty lies in
evaluating the precondition of a problem-space option, assume without loss of generality that pZ = {ω0, . . . , ωn−1, o(αn)}.
pZ is a plan consisting of a number of agent-space options followed by a problem-space option. Finally, we note that Z is a
start distribution over D and S. We denote the initial agent- and problem-space distributions as D0 and S0 respectively.

The image of an option in agent space is specified by the image operator

Zi+1 = Im(Zi, ωi;αi), with Z0 = D0.

Note that the agent-space image is conditioned on the problem-space partition, as Lemma 1 showed that we required it to
compute the effects in agent space. We can define the problem-space image similarly, although we will not require it to
learn a sufficient representation:
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Ẑi+1 = Im(Ẑi, ωi, αi), with Ẑ0 = S0.

The probability of being able to execute pZ is given by

Pr(x0 ∈ Iω0 , . . . , xn−1 ∈ Iωn−1 , sn ∈ Io(αn)),

where xi ∼ Zi and sn ∼ Ẑn. By the Markov property, we can write this as

Pr(sn ∈ Io(αn))

n−1∏
i=0

[Pr(xi ∈ Iωi
)] .

If we can estimate the starting problem-space partition α0 and linking function L, then we can evaluate this quantity as
follows:

Pr(sn ∈ Io(αn)) = Pr(sn ∈ [αn])

= Pr(s0 ∈ [α0])

n−1∏
i=0

L(αi, ωi(αi), αi+1)

=

∫
S

Pr(s ∈ [α0])S0(s)ds×
n−1∏
i=0

L(αi, ωi(αi), αi+1),

and

Pr(xi ∈ Iωi
) =

i∏
j=1

L(αj−1, ωj−1, αj)×
∫
D

Pr(xi ∈ Iωi
)Zi(x;αi)dx.

Thus by learning the precondition and image operators in D, partitioning the options in problem-space, and learning the
links between these partitions, we can evaluate the probability of an arbitrary plan executing.
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2. Learning a Portable Representation in Agent Space
Partitioning We collect data from a task by executing options uniformly at random and scale the state variables to be in
the range [0, 1]. We record state transition data as well as, for each state, which options could be executed. We then partition
options using the DBSCAN clustering algorithm (ε = 0.03) to cluster the terminating states of each option into separate
effects, which approximately preserves the subgoal property.

Preconditions Next, the agent learns a precondition classifier for each of these approximately partitioned options using
an SVM with Platt scaling. We use states initially collected as negative examples, and data from the actual transitions as
positive examples. We employ a simple feature selection procedure to determine which state variables are relevant to the
option’s precondition. We first compute the accuracy of the SVM applied to all variables, performing a grid search to find
the best hyperparameters for the SVM using 3-fold cross validation. Then, we check the effect of removing each state
variable in turn, recording those that cause the accuracy to decrease by at least 0.02. Finally, we check whether adding each
of the state variables back improves the SVM, in which case they are kept too. Having determined the relevant features, we
fit a probabilistic SVM to the relevant state variables’ data.

Effects A kernel density estimator with Gaussian kernel is used to estimate the effect of each partitioned option. We learn
distributions over only the variables affected by the option. We use a grid search with 3-fold cross validation to find the
best bandwidth hyperparameter for each estimator. Each of these KDEs is an abstract symbol in our propositional PDDL
representation.

Propositional PDDL For each partitioned option, we now have a classifier and set of effect distributions (propositions).
However, to generate the PDDL, the precondition must be specified in terms of these propositions. We use the same approach
as prior work to generate the PDDL: for all combinations of valid effect distributions, we test whether data sampled from
their conjunction is evaluated positively by our classifiers. If they are, then that combination of distributions serves as the
precondition of the high-level operator.

3. Learning Linking Functions
We can learn linking functions by simply executing options, and recording for each transition the start and end partition
labels. Let Γ(o) be the set of problem-space partition labels for option o, and Λ =

⋃
o∈O Γ(o) the set of all partition labels

over all options. Note that each label λ ∈ Λ refers to a set of initiation states [λ] ⊆ S. We present a simple count-based
approach to learning these functions, but note that any appropriate function-learning scheme would suffice:

1. Given a set of agent-space subgoal options that have subsequently been partitioned in S , gather data from trajectories,
recording tuples 〈s, d, o, s′, d′〉 representing initial states in both S and D, the executed option, and the subsequent
states.

2. Determine the start and end partitions of the transition. The start partition is the singleton c = {γ | γ ∈ Γ(o), s ∈ [Γ(o)]},
while the end labels are given by the set β = {λ | λ ∈ Λ, s′ ∈ [λ]}. In practice, we keep all states belonging to each
partition and then calculate the L2-norm to the closest states in each partition. We select those partitions whose distance
is less than some threshold.

3. Denote Lo as the linking function for option o which stores the number of times transitions between different partition
labels occur. Increment the existing count stored by Lo(c, β), and keep count of the number of times the entry (o, c)
has been updated.

4. Normalise the linking functions Lo by dividing the frequency counts by the number of times the entry for c was updated.
We have now learned the link between the parameters of the precondition and effect for each option.
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4. PPDDL Description for the Navigation Task

; Automatically generated ToyDomainV0 domain PPDDL file.
(define (domain ToyDomain)

(:requirements :strips :probabilistic-effects :conditional-effects :rewards :fluents)
(:predicates

(notfailed)
(wall-junction)
(window-junction)
(dead-end)

)

(:functions (partition))

;Action Inward-partition-0
(:action Inward_0
:parameters()
:precondition (and (dead-end) (notfailed))
:effect (and (when (= (partition) 6) (and (wall-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 5))))
(when (= (partition) 3) (and (wall-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 4))))
(when (= (partition) 1) (and (window-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 2))))
(when (= (partition) 8) (and (window-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 7))))
)

)

;Action Outward-partition-0
(:action Outward_1
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 2) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 1))))
(when (= (partition) 5) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 6))))
(when (= (partition) 4) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 3))))
(when (= (partition) 7) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 8))))
)

)

;Action Outward-partition-0
(:action Outward_2
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 2) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 1))))
(when (= (partition) 5) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 6))))
(when (= (partition) 4) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 3))))
(when (= (partition) 7) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 8))))
)

)

;Action Clockwise-partition-0
(:action Clockwise_3
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 4) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 2))))
(when (= (partition) 5) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 7))))
)

)

;Action Clockwise-partition-1
(:action Clockwise_4
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 7) (and (wall-junction) (not (window-junction)
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(decrease (reward) 1.00) (assign (partition) 4))))
(when (= (partition) 2) (and (wall-junction) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 5))))
)

)

;Action Anticlockwise-partition-0
(:action Anticlockwise_5
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 7) (and (wall-junction) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 5))))
(when (= (partition) 2) (and (wall-junction) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 4))))
)

)

;Action Anticlockwise-partition-1
(:action Anticlockwise_6
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 4) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 7))))
(when (= (partition) 5) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 2))))
)

)

)
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5. Examples of Portable Rod-and-Block Rules

(a) Precondition of
GoLeft1

(b) Negative effect
of GoLeft1

(c) Positive effect of
GoLeft1

(d) Precondition of
GoLeft2

(e) Negative effect
of GoLeft2

(f) Positive effect of
GoLeft2

(g) Precondition of
GoLeft3

(h) Negative effect
of GoLeft3

(i) Positive effect of
GoLeft3

(j) Precondition of
GoRight1

(k) Negative effect
of GoRight1

(l) Positive effect of
GoRight1

(m) Precondition of
RotateUp
Clockwise1

(n) Negative effect
of RotateUp
Clockwise1

(o) Positive effect of
RotateUp
Clockwise1

Figure 1: A subset of symbolic rules learned for the task in Figure 8.
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6. Examples of Portable Treasure Game Rules

(a) Precondition of
UpLadder

(b) Negative effect
of UpLadder

(c) Positive effect of
UpLadder

(d) Precondition of
GoLeft1

(e) Negative effect
of GoLeft1

(f) Positive effect of
GoLeft1

(g) Precondition of
DownLeft1

(h) Negative effect
of DownLeft1

(i) Positive effect of
DownLeft1

(j) Precondition of
Interact1

(k) Negative effect
of Interact1

(l) Positive effect of
Interact1

(m) Precondition of
Interact3

(n) Negative effect
of Interact3

(o) Positive effect of
Interact3

Figure 2: A subset of symbolic rules learned in Level 1
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7. Treasure Game Level Layouts

(a) Level 1 (b) Level 2 (c) Level 3

(d) Level 4 (e) Level 5 (f) Level 6

(g) Level 7 (h) Level 8 (i) Level 9

(j) Level 10


