Play-style Identification and Player Modelling for Generating Tailored Advice in
Video Games

Branden Ingram, Clint van Alten, Benjamin Rosman, Richard Klein

University of the Witwatersrand, Johannesburg
Branden.Ingram @wits.ac.za, Clint. VanAlten @wits.ac.za, Benjamin.Rosman1 @wits.ac.za, Richard.Klein @wits.ac.za

Abstract

Learning new skills often leads to disengagement when indi-
viduals face obstacles arising from limited experience, poor
instruction, or mismatched preferences. This is common in
video games, where players frequently abandon challeng-
ing sections. While expert guidance can mitigate these is-
sues, providing personalised advice at scale remains difficult.
Automated systems typically offer generic feedback, lacking
adaptability to individual playstyles.

In this paper, we present an end-to-end system that gener-
ates personalised gameplay advice by learning from both pre-
existing datasets and individual player behaviour. The system
is evaluated in two domains: a simple GridWorld environ-
ment and the more complex MiniDungeons benchmark. Ex-
perimental results with simulated agents show that adherence
to the generated advice leads to measurable improvements
in performance. Our findings advance scalable, personalised
guidance in games, with broader implications for learning and
skill development.

Introduction

Learning new skills is often challenging and can lead to
disengagement, particularly when individuals encounter ob-
stacles due to lack of experience, poor instruction, or mis-
aligned personal preferences. In the context of video games,
players frequently abandon games or segments they find too
difficult. One effective remedy is expert guidance, which
helps learners overcome difficulties—a principle seen in ed-
ucation, sports, and gaming. However, providing such ad-
vice at scale is impractical. The key challenge lies in person-
alisation: effective guidance must align with an individual’s
unique playstyle, which encompasses preferences, motiva-
tions, behaviours, and skill levels. A defensive player, for
instance, would benefit most from strategies tailored to a de-
fensive approach as these are more aligned with their natural
preferences.

Traditional automated advice systems, such as rule-based
or decision tree-based models, have limited adaptability
and generalise poorly in complex environments like video
games (Ye and Johnson 1995). Alternatively, machine learn-
ing (Char, Shah, and Magnus 2018), natural language pro-
cessing (Papamichail and French 2003) have been utilised

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for the generation of advice for recommendation systems.
These models analyse a user’s data and provide personalised
feedback and advice based on the specific context and goals
of the user. Specifically in terms of games, many also in-
corporate tutorial systems or walk-throughs that provide ad-
vice and guidance to players as they progress through the
game (Andersen et al. 2012). However, these systems tend
to exhibit a limited scope and lack of personalisation due
to their one-size-fits-all nature. Thus, generating tailored ad-
vice that is helpful, relevant, and actionable remains a chal-
lenging problem that requires overcoming several obstacles,
including the need for personalisation, domain expertise,
and human-like reasoning.

Video games serve as ideal testbeds for this research, as
they mirror real-world learning scenarios and support expe-
riential learning. Ultimately, building a system capable of
providing individualised, automated guidance has the poten-
tial to enhance not only gaming experiences but also broader
educational and skill development contexts. Therefore, our
primary contribution is an end-to-end, multi-component sys-
tem that learns from both a pre-existing dataset and an indi-
vidual’s gameplay to generate personalised advice, as illus-
trated in Figure 1. The effectiveness of this pipeline is eval-
uated across two domains: a simple GridWorld environment
and a more complex environment, MiniDungeons. Through
experiments with simulated agents, we demonstrate that ad-
herence to the generated advice leads to improved agent per-
formance.

Related Work

The problem of advice generation is a computational prob-
lem that involves generating personalised recommendations
or advice for a user based on their preferences, past be-
haviour, and other relevant factors. The goal of advice gen-
eration is to provide helpful and relevant guidance to users
in various contexts, such as recommending products, sug-
gesting courses of action, or providing support for decision-
making. Researchers from different fields such as psychol-
ogy (Harvey, Harries, and Fischer 2000), counselling (Ve-
hvilainen 2001), philosophy (Herrmann 2022), and commu-
nication (Garvin and Margolis 2015) have studied this issue.
In particular, Garvin and Margolis (2015) investigated the
dynamics of giving and receiving advice, providing practi-
cal tips on how to communicate effectively and construc-

Key Online Usage -=-=ssssssseeees »
Offline Training —»

Model Comparison Advice Compilation

Scheduling

{Current Player Model -+

_ - [Corresponding Optimal Play-style Model |~

Play-style Identifier (PI)

Rank

LSTM
Encoder

LSTM
Decoder

Ordering
Clustered
Trajectories

Latent
Representation

Clustering

—

—| Clustered Trajectories

Imitation
Learning Centric

Player Modeller (PM)

Future Trajectory
Prediction

HH

Play-Style

Latent
Representation

Agents

i | Initially Bootstrap using |}

--{ Identified Playstyle |

Current User Trajectory

Identified playstyle model

Figure 1: Complete Pipeline of Play-style-centric Advice Generation

tively. Our investigation aims to employ an automated mode
of advice generation to differentiate between a user and their
corresponding expert, as opposed to prioritising the method
of communication.

Automatic advice generation refers to the use of artifi-
cial intelligence (AI) and machine learning (ML) techniques
to provide personalised advice or recommendations to indi-
viduals (Zangerle and Bauer 2022). It involves the use of
algorithms that analyse data about the person seeking ad-
vice, such as their preferences, goals, and past behaviour, to
generate tailored advice. We look to utilise a suite of dif-
ferent ML approaches to generate advice. The general issue
of generating effective advice is analogous to the challenge
of interpretability associated with deep learning. Although
significant advancements have been made in deploying deep
learning algorithms that achieve expert-level performance,
in the domains of classification such as He et al. (2016),
Mensink et al. (2021) and Krizhevsky, Sutskever, and Hin-
ton (2012) as well as in learning such as Mnih et al. (2015)
and Silver et al. (2017), concerns have been raised regard-
ing their lack of interpretability. However, if we are to use
such techniques to generate useful applicable advice then
we require a better understanding of how and why these al-
gorithms produce the results they do.

Gunning (2017) also featured Hu et al. (2017) and An-
dreas et al. (2016) represent another approach to the prob-
lem of explainability making use of the idea of decision
trees. Hu et al. (2017) utilised the concept of Neural Mod-
ule Networks (NMN) which was proposed by Andreas et al.
(2016). This NMN architecture makes it possible to answer
natural language questions about images using collections
of jointly-trained neural “modules”, dynamically composed
into deep networks based on linguistic structure. This is a
similar problem to that of Malinowski, Rohrbach, and Fritz
(2015). However, with NMN they showed that it achieves
state-of-the-art performance on existing datasets for visual
question answering. An alternative approach to explainabil-
ity is rationale generation, as introduced by Ehsan et al.
(2018a). This method involves producing natural language

explanations for autonomous system behaviour as if the ac-
tions had been performed by a human. Ehsan et al. (2018a)
employed a neural machine translation framework to con-
vert internal state-action representations into human-like ra-
tionales. The approach required a training corpus of state-
action pairs annotated with natural language explanations.
Using an LSTM encoder-decoder architecture, the model
learned to translate this structured input into coherent ra-
tionales. Ehsan et al. (2018a) demonstrated that this tech-
nique not only achieved higher accuracy than baseline meth-
ods but also produced explanations that were rated as more
satisfying by human evaluators. This work was extended by
Ehsan et al. (2018b), who tested the robustness of the ratio-
nale generation process by withholding portions of the input
state information. Additionally, they conducted a more de-
tailed qualitative study using a five-factor evaluation metric
with human participants. Ehsan et al. (2018b) showed that
the generated rationales consistently outperformed random
baselines and closely approximated the quality of human-
authored explanations.

All these approaches have focused on generating some
understanding or rationale behind the actions produced by
the learned model. However, in terms of our goal of cre-
ating an advice giver, having the rationale is only half the
problem. The other half is to be able to convert that ratio-
nale into a form which individual users can utilise to bet-
ter their performance. In order to accomplish this additional
task, we draw on knowledge from the work done in intel-
ligent tutoring systems (ITSs). ITSs are computer-based in-
structional systems with models of instructional content that
specify what to teach, and teaching strategies that specify
how to teach (Wenger 2014). ITSs have moved out of the
lab and into classrooms and workplaces where some have
been shown to be highly effective (Shute 1991; Graesser,
Conley, and Olney 2012). While intelligent tutors are be-
coming more common and proving to be increasingly effec-
tive they are difficult and expensive to build. However, with
the progress in cognitive science and the development in the
theory of cognition, (Anderson 2013) researchers have been

able to design better ITSs such as the geometry tutor devel-
oped by Anderson, Boyle, and Reiser (1985). The system
worked by generating rules by reducing geometry questions
into sub-problems. These rules were used to simulate the se-
quence of the inferences (correct and incorrect) that students
report making in trying to solve a geometry problem. More
recently, the adoption of reusable components and learning
objects (Ritter, Blessing, and Wheeler 2003), as well as the
utilisation of community authoring (Aleahmad, Aleven, and
Kraut 2008), has become prevalent in facilitating the devel-
opment of intelligent tutoring systems. Both ITSs and other
rationale generation approaches can benefit from a deeper
understanding of the proficiency level of individual students
or agents. Similarly, our solution for user advising is en-
hanced by developing a deeper understanding of the users
and environment through play-style identification.

Alternatively, we can also draw from the work done in
the fields of learning where researchers have focused on
improving the rate at which agents learn. There is a grow-
ing number of techniques that are currently being incorpo-
rated to improve RL by leveraging knowledge from out-
side sources. These techniques include; Transfer Learning
(Taylor and Stone 2009), Experience Replay, Apprentice
Learning (Clouse 1997; Ho and Ermon 2016), Learning
from Demonstration (Argall et al. 2009) and Inverse Rein-
forcement Learning (Abbeel and Ng 2004). In particular,
teacher-student learning (also known as knowledge distil-
lation) is a widely used machine learning paradigm, where
a large, typically over-parameterized teacher model trans-
fers its knowledge to a smaller, more efficient student model
(Gou et al. 2021). The goal is to preserve the teacher’s
high performance while enabling faster, lighter, or more
deployable student models. In a vision setting Xie et al.
(2020) demonstrates “Noisy Student” training, where a large
model is trained with data augmentation and pseudo-labels
from a teacher. Additionally, knowledge distillation has been
utilised by Schmitt et al. (2018) for bootstrapping student
RL agents using expert teacher guidance. We argue that an
understanding of the stylistic traits of a user will aid this dis-
tillation process. In particular, we employ a variant of this
called Behaviour Cloning (Torabi, Warnell, and Stone 2018)
to learn behavioural-centric policies.

Background

The following sections introduce the three core learning
problems underpinning our automated tailored advice gen-
eration system: Play-style Identification, Play-style-centric
Model Learning, and Player Modelling.

Play-style Identification

Play-style identification is an important concept in vari-
ous fields, including sports, video games, music, and even
business. Identifying a player’s play-style can help coaches,
teammates, or managers to understand their strengths and
weaknesses, and tailor their training or strategies accord-
ingly (Charles et al. 2005). This can lead to improved per-
formance and better results. In particular, for video game
developers tailoring user experience has become an im-

portant goal required to create more engaging and person-
alised experiences for players. By understanding how differ-
ent players like to play, game designers can create content
and features that cater to their preferences, making the game
more enjoyable. One approach to play-style identification is
to solve the following problem: Given a set of trajectories
(D) can we learn to separate them into k distinct partitions
(P, € D) with respect to unknown play-style character-
istics. Can these partitions then be used to identify inter-
pretable characteristics describing each play-style as well as
their relationships?

Play-style-centric Model Learning

In recent years, there has been growing interest in the devel-
opment of play-style-centric policy generation approaches,
where the aim is not merely to optimise for a single, global
objective, but rather to generate policies that reflect diverse
play styles or behavioural preferences exhibited by differ-
ent players (Mouret and Clune 2015; Wang et al. 2024).
Broadly, there are two primary methods used to achieve
play-style-centric policy generation: reward shaping and
data-driven partitioning.

Reward shaping approaches typically define multiple re-
ward functions (R(s, a)) that encode different desirable be-
haviours or play styles (Laud 2004). By adjusting the reward
signal as in Equation 1, one can bias the learning process to-
ward policies that embody certain characteristics for exam-
ple, aggressive, defensive, exploratory, or risk-averse styles
can be incentivised through rewarding actions a in state s
given function ¢ (Holmgard et al. 2014). However, defining
suitable reward functions for complex behaviours is often
challenging and may require extensive domain knowledge
or iterative tuning.

R(s,a) =r(s,a) + c(s,a) (D

Alternatively, data-driven methods seek to identify and
learn from distinct behavioural patterns present in existing
gameplay data. One such approach frames the problem as
follows: given a set of recorded trajectories (D), can we par-
tition this data into k distinct subsets (Py), each representing
a coherent play style? From each partition, a corresponding
policy (7)) can be trained to exhibit the behaviour associ-
ated with that style. Furthermore, this process can be ex-
tended recursively, where each partition Py may be further
refined to capture more granular behavioural nuances, en-
abling the learning of increasingly optimal and style-specific
policies (7). This data-centric perspective removes the need
for manually crafted reward functions and allows the system
to discover emergent play styles directly from observed be-
haviour.

Player Modelling

A common implementation of player modelling is that of
modelling a player’s choices (actions) given different sce-
narios (states) (Bakkes, Spronck, and van Lankveld 2012).
In its basic form, this consists of a model which indicates
the likelihood of any available player action given any state.
Traditionally action models were implemented for board

game research to improve game tree searches by predict-
ing opponent moves. In this case, the player model was ex-
pressed as an evaluation function (Cannel and Markovitch
1993). Similar approaches have been applied to more com-
plex games, however, the increasing sizes of state and action
spaces make training accurate models difficult. This has re-
sulted in solutions involving large-scale computing (Vinyals
et al. 2019) or utilising abstracted action spaces called “op-
tions” (Sutton, Precup, and Singh 1999). Our approach dif-
fers from these by using supervised learning instead of rein-
forcement learning to predict low-level accurate action sim-
ilar to Muiioz, Gutierrez, and Sanchis (2013). When gener-
ating advice in a real-time scenario, it is important to have
minimal delay in prediction accuracy, meaning that sample
efficiency is critical. Sample efficiency refers to the ability of
a sampling method to produce a representative sample using
the minimum number of observations possible (Yarats et al.
2021). One potential method to enhance sample efficiency is
to make use of pre-training, which involves training a model
on a large dataset to learn general features and patterns that
can later be fine-tuned on a smaller dataset for a specific task
(Zoph et al. 2020). In a manner analogous to this, our model
utilizes an initial offline learning strategy, supplemented by
a subsequent online learning phase, to enhance its under-
standing of individual behaviour and improve its predictive
accuracy.

Methodology

We aim to generate beneficial tailored advice for play-
ers through the identification of high-level play-styles and
player modelling in video game domains. This approach in-
volves acquiring a model of both the present state and the
optimal expert version of an individual, specifically tailored
to their play-style. It is through this method that we can draw
comparisons and motivate the user to align their behaviour
with their expert self. We suggest that by utilising this pro-
cess, users can leverage the provided advice to enhance their
performance and achieve higher levels of proficiency, spe-
cific to their play-style. To this end we propose the pipeline
depicted in Figure 1 which is made up of four interconnected
systems as outlined below:

The Play-style Identifier (PI)

This component identifies all the different play-styles
through unsupervised clustering (Orange Component in Fig-
ure 1). To this end, we utilise a fully unsupervised cluster-
ing framework for the identification and analysis of play-
styles as presented by Ingram et al. (2023b). This approach
consists of three principal components. First, a temporal au-
toencoder with non-stacked LSTM layers, similar to the ar-
chitecture of Xie, Girshick, and Farhadi (2016), is employed
to project trajectories of variable lengths into a fixed-size
latent space Z. Each state in a trajectory is processed se-
quentially by LSTM cells, which capture important tem-
poral dependencies and ultimately produce a latent repre-
sentation Z; for each trajectory X; € D via the encoder

function. The decoder reconstructs the input trajectory X;
from Z;, which is trained through back-propagation through

time (Hochreiter and Schmidhuber 1997). Second, cluster-
ing is performed on the set of pairs (X;, Z;), where Z;
serves as the latent embedding of X;. Clustering is con-
ducted on the latent space Z, producing cluster assignments
yi, which serve as predicted play-style labels for both Z;
and the corresponding original trajectories X;. By trans-
forming trajectories into a latent representation, the model
overcomes challenges related to varying trajectory lengths
and temporal structure, enabling the application of conven-
tional clustering algorithms such as k-means and Gaussian
Mixture Models. Finally, the resulting clustering defines a
set of trajectory partitions P = Py, ..., Py, with associated
centroids C = (71, . .., Cy. Each partition Py, groups trajec-
tories sharing similar latent representations, where k = ..
Cluster analysis is then performed to extract interpretable
behavioural characteristics, decision boundaries, and repre-
sentative behaviours corresponding to each discovered play-
style.

The Game Modeller (GM)

This component works to learn a policy representative of the
best way to play for each of the identified play-styles (Red
Component in Figure 1). Building on these identified parti-
tions Py, we train representative policies for each style (In-
gram et al. 2023a). Here, each partition Py, is first ordered
according to a predefined ranking metric. In this case trajec-
tory length was used a proxy to performance. A threshold
parameter p is then applied to select a subset Pk,p C P
containing only the top-performing trajectories, defined as
those within the top p-percentile of the ranking. This selec-
tion ensures that the training data used for policy learning
reflects demonstrations of a particular skill-range and tar-
geted style. Finally, for each style k, a play-style-centric pol-
icy 7" is trained via supervised learning to minimise the
loss between its predicted actions and the expert actions
demonstrated within Py, ,,. This process yields optimal, be-
haviourally aligned policies for each discovered play-style.

The Player Modeller (PM)

This component models the play-style of an individual user
to be able to offer tailored advice (Green Component in Fig-
ure 1). Here our model operates in two distinct modes: of-
fline and online as described by Ingram et al. (2022b). In
the offline mode, the model is pre-trained on a dataset of
trajectories D. Each trajectory X € D is passed through a
gating mechanism that routes it to a specific Predictor Node
Mj,, selected based on a cluster index k;. The cluster in-
dex k; is obtained via the pre-trained Play-Style Identifica-
tion (PI) model, which partitions D into play-style-specific
subsets Pk; C D, with k; € 1,..., k, where k is the num-
ber of identified play-style clusters. The number of Predic-
tor Nodes in the PM model matches the number of clusters
k discovered by the PI model. Each Predictor Node My, is
responsible for learning the mapping from current state X [t]
to the action a which transitioned the world to the next state
X[t 4 1], where ¢ denotes the current timestep.

In the online mode, the PM model is adapted for real-
time personalisation to a specific user. This is achieved by
continuously fine-tuning the model on partial trajectories

P = X]|1,t] generated by the user during interaction with
the virtual environment. The online training occurs within
the same environment used for offline pre-training. The par-
tial trajectory P is passed through the PI model (pz) to obtain
the current cluster index k;, which is then used by the gating
mechanism to direct P to the corresponding Predictor Node
M, . The Predictor Node then predicts the user’s next action
based on P. This fine-tuning occurs continuously and in real
time, allowing the model to refine its predictions dynami-
cally as additional data is collected during user interaction.

The Advisor (AD)

This final component compares a player’s model with their
corresponding optimal play-style model to formulate useful
advice (Blue Component in Figure 1). Our methodology is
designed such that it is capable of being used during real-
time while a user is playing, wherein it offers guidance to
the user during their interaction with a video game. The in-
teraction between a player and a game environment can be
described as a cycle, consisting of four stages:

e Input: The player inputs commands or actions into the
game, such as moving a character or selecting an item.

* Processing: The game processes the player’s input and
updates the game state accordingly, such as moving the
character to a new location or updating the inventory.

e Output: The game outputs the updated game state to the
player, such as displaying the new location of the charac-
ter or the updated inventory.

» Feedback: The player receives feedback from the game,
such as a reward for completing a task or a penalty for
failing to complete a task. This feedback can influence
the player’s future input and behaviour in the game.

During the feedback phase, our model extends con-
ventional feedback by incorporating personalised advice.
Within this context, we address the following question: Can
leveraging identified play-style information (py) to train ac-
curate models of the user (p,,) and their expert counterpart
(gmy,,) effectively reduce the performance gap between the
two?

Advice Generation This overall process of advice gener-
ation in a online setting is outlined in Algorithm 1. We as-
sociate each user (/) with a parameter w which serves as a
measurement of the likelihood of the user accepting advice
(Line 1). By using this thresholding parameter, the model
is able to simulate the practical scenario of users rejecting
advice, thereby enhancing the realism of the system.

At the outset of a user’s interaction with the system, we
initialise the three models that were previously introduced,
namely the Play-style Identifier (pi), Game Modeller (gm),
and Player Model (pm), respectively (Line 2). In addition,
a memory buffer is created to keep track of instances when
the user accepts advice. The buffer stores the current par-
tial trajectory P, representing the current sequence of states
the user has visited, and the corresponding “correct action”
provided by the expert. In continuous domains function ap-
proximation can be used to generalise experiences, allowing

Algorithm 1: Advice-giving Process

1: procedure ADVICE-GIVING(U, w)

2: Initialise pi, pm and gm models

3: Initialise Memory

4: P+ X[1:t] v Thisis the trajectory observed we
observe from U

5: pk < pi(P) > using Play-style Identifier obtain

play-style pk from P
6: Tk € gm(pk) > using Game Modeller obtain
optimal play-style-centric 7;, from pk
7: pm < pm.train(P) > Fine-tune player model
with new user data
e < T (P)
9: if then P € Memory
current partial trajectory

*®

> Predict optimal action
> If previously advised on

10 a, < Memory|[P] > Use advised action
11: else

12: a, < pm(P) > Predict player action
13: end if

14: if ac # a, then > Equation 2
15: Inform the user of the disparity

16: relo,1) > Samples uniform distribution

17: if » < w then > Check to see if user takes
advice

18: Memory[P] + a. > Add expert action into
memory for current P

19: end if

20: end if

21: end procedure

the model to learn from a smaller set of experiences (Lilli-
crap et al. 2015). The subsequent step involves determining
whether advice is required, which entails predicting the next
action of the player and their corresponding expert, taking
into account their play-style. This prediction is made based
on the user’s current partial trajectory P.

The process of determining the action of the player in-
volves several steps. Initially, the memory buffer is queried
(Line 9) to verify whether the user has received advice for
the current partial trajectory (P) in the past. If the mem-
ory buffer contains P, the advised action that was previously
stored in the memory is selected as the user’s upcoming ac-
tion a,, (Line 10). In this way, we assume that if a user had
previously decided to remember the given advice then the
user will act on it if possible. On the other hand, if P is not
present in the memory buffer, the player model pm predicts
the user’s action a,, (Line 12). Furthermore, we fine-tune the
pm by training the model on the observed partial trajectories
of the user (Line 7). The key goal of the pm is to achieve a
precise representation of the user’s actions by focusing on
the latest incoming user-specific information during system
usage. This objective is accomplished by continuously learn-
ing from the observed partial trajectories P as the user con-
tinues to interact with the system. As we receive additional
data from the user, the model can specialise further on that
individual, leading to more reliable predictions.

In addition to acquiring the user’s action (a,), we also de-

termine the optimal action a. based on the partial trajectory
P. This involves the identification of the user’s expert play-
style policy (gmyr), which is continuously obtained from
the set of policies learned by the GM (Game Modeller). This
identification process consists of several steps, as shown in
Figure 2. During the user’s interaction with the game, the
system records information on their gameplay in the form of
a partial trajectory (P). The trajectory is then encoded (Zp)
using the trained PI model (Play-style Identifier), using the
Encoder(P) . Next, the play-style identifier (pk) refers to
the index of the play-style cluster centroid that is closest to
the latent encoding (Zp). Ultimately, the expert play-style-
centric model (gmyy;) corresponding to the cluster identifier
pk is selected (Line 5). Finally, the optimal action (a.) for
the specific user is determined using the policy () of the
expert play-style, given the partial trajectory P (Line 6).
These user-specific models (pm and gmy,,) are then com-
pared (Line 14) on a per action basis to identify differences
using Equation 2. This function computes the actions out-
putted by the two models at every step P[1 : 4] given the
partial trajectory of length ¢ and then computes the overall
action disagreement between them. Larger values indicating
greater disparity between the models being compared.

disagreement(pm, gmy, P[1 : t],t) =

L (0, pm(P[1:14]) = gmur(P[1: 1)),
2 {1, pn(P[L: 1)) # gmgi(P[1 -), 2

Figure 3 illustrates a sequence of comparisons between
the user model (depicted on the left) and the correspond-
ing expert play-style-centric model (on the right). In the first
cases actions, the user’s actions match those of the expert,
and hence, no advice is given. However, in the third case, a
discrepancy is observed between the user’s actions and the
expert’s, indicating that advice should be sent to the user.
Upon receiving advice we consider the scenario where the
user can decide whether to remember the advice or not. If
the user chooses to accept the advice, based on the parame-
ter w, the current partial trajectory is stored in the memory
for future reference.

=1

Domain

To quantitatively evaluate the proposed advice generation
model (Figure 1), a dataset of trajectories with known play-
styles was required. Although the model operates in an un-
supervised manner, such labelled data were necessary to
validate its effectiveness. Firstly we evaluated on a simple
Gridworld domain which served as a controlled test-bed for
generating quantifiable, style-labelled trajectories using re-
ward shaping. In GridWorld, five distinct grid-based envi-
ronments were designed in Unity and integrated with the
“ml-agents” toolkit and OpenAl gym interfaces. Four dis-
tinct play-styles were modelled via specific reward func-
tions as developed by Ingram et al. (2022a). The result was a
comprehensive collection of noisy yet behaviourally distinct
trajectories, providing a foundation for play-style identifi-
cation evaluation. Additionally, a domain called MiniDun-

geons was employed to demonstrate the model’s effective-
ness in more complex scenarios. MiniDungeons is a stan-
dard 2D dungeon exploration benchmark, which provides
six handcrafted player proxies (Holmgard et al. 2014). These
proxies were used to generate trajectories reflecting distinct
behavioural styles, including safe or reckless running, vari-
ous treasure-collection strategies, and monster-focused play.
Data from multiple levels were combined to create robust
training and testing sets.

Hyperparameters

To ensure reproducibility, we report the key architectural
choices, training parameters, and evaluation metrics used
across all experiments. These settings were consistent across
the GridWorld and MiniDungeons domains unless stated
otherwise. We use a single-layer, unidirectional LSTM ar-
chitecture for both the encoder and decoder with hidden
layer size of 20, and the latent vector of size 8. ReLU is
used as the activation function, and the mean squared er-
ror (MSE) is employed as the loss function. The models are
trained for 10,000 episodes using the Adam optimizer with
a learning rate of 0.001. The input dimensionality varies by
domain; 4 for GridWorld and 15 for MiniDungeons. We se-
lected the number of clusters & to align with the underlying
proxy policies for each domain: 4 in GridWorld and 6 in
MiniDungeons. Both k-means and Gaussian Mixture Mod-
els (GMM) are initialized with 100 restarts and a maximum
of 10,000 iterations. Each play-style-centric model consists
of three fully connected layers with five nodes per layer. The
input and output sizes correspond to the dimensionality of a
single timestep: 4 for GridWorld and 15 for MiniDungeons.
These models are trained for 2,000 episodes using 4 different
random seeds per domain to ensure robustness. The dataset
includes 4,000 trajectories for each of the five GridWorld
environments, 780 for MiniDungeons. These are the same
protocols used by Ingram et al. (2023b) and Ingram et al.
(2023a).

Experiments

This section describes the experimental protocol developed
to assess the effectiveness of the entire system in improving
user performance using Algorithm 1. The experimental pro-
cedure involved constructing a dataset of individual users by
randomly selecting five trajectories from overall dataset (D)
from each of the investigate domains, this is referred to as a
user-set (U). For diversity, four selection schemes (outlined
in Table 1) were used to select the trajectories, each repre-
senting a different user archetype. The term “skill” in this
context denotes the level of proficiency of a user, indepen-
dent of their playing style. This is assessed by the time taken
to reach the goal which can be determined by the length of a
trajectory. The term “style” represents the user’s play-style
irrespective of their performance. Therefore, our four user
archetypes are represented by the different combinations of
these two features.

The aforementioned process (Algorithm 1) was repeated
for a total of 20 users, for each selection scheme and for
each value of o within the range of [0, 0.25,0.5,0.75,1]. A

B: Gather Partial
Trajectory

A: Interact

P —> (111 —> - —>

C: Encode

Play-style

D: Cluster E: Select

Figure 2: Five-step process of identifying an expert play-style-centric version of the current user. Firstly, the user interacts with
the video game (A). Secondly, the system collects the user’s current trajectory (B). Thirdly, this partial trajectory is encoded
online (C). Fourthly, the encoding is clustered (D). Finally, the corresponding play-style-centric policy is selected using the

cluster identifier (E).

—> LEFT LEFT <€— \j
)
— o ‘_-‘
& You should go
nghnhere
—> UP x RIGHT €— i
(-'

Figure 3: Example comparison between player model and
corresponding expert play-style-centric model

I*'SD

Sa
b

ion Scheme Name (Archetype) | Description (Trajectories are randomly selected from entire dataset D)
Tull-random Trajectories do not share play-styles or skill level
random-skill Trajectorics have different play-styles and relatively similar skill levels
random-style Trajectories share the same play-style but with varying sKill levels

set-skill-and-style Trajectories share the same play-style and relatively similar skill Tevels

Table 1: Different user-set trajectory selection schemes with
their associated description

value of “0” indicates a user who never accepts advice, while
a value of “1” denotes a user who always accepts advice.
By testing over multiple users we ensured a wide variety of
play-styles and skills being represented in each archetype.
Additionally, an infinite memory buffer was used, which
means that once a user accepted advice, it would never be
forgotten. The action correlation score between each user
and their corresponding expert was calculated and recorded
as the performance metric for our model. This metric is cho-
sen as the objective of our model is to minimise the disparity
between a user and their identified expert.

Results

The experimental results regarding the impact of the tai-
lored advice generation pipeline on various advice accep-
tance thresholds and user archetypes are presented in Fig-
ure 4. As expected, it is observed that when advice is never
utilised, the advice generation model fails to assist the user
in improving their performance. However, in every other
case where even marginal levels of advice utilisation occur,
the model performance across all archetypes improves. Fur-

thermore, as the degree of utilisation rises, there is a cor-
responding increase in the proportion of performance im-
provement.

Notably, it is observed that the “set-skill-and-style”
archetype outperforms all others except in the “never take
advice” scenario. Nevertheless, improvements were seen
across all archetypes, indicating that the system provides tai-
lored advice. The “set-skill-and-style” archetype performs
best because the model is best able to exploit the consistent
play-style characteristics found in this user-set. Similarly,
the model performs the second best in the “random-skill”
archetype as this archetype also has a consistent play-style.
Both the Game Modeller and Player Modeller are trained
in play-style-centric fashions rather than skill-centric, which
explains these results. Lastly, it is worth noting that having
a consistent skill level is more conducive to improvement
compared to randomness.

We employed the identical experimental configuration
within the MiniDungeons domain, and the outcomes are de-
picted in Figure 5. In this context, it is evident that, similar
to our previous observations, when the advice is consistently
disregarded, our model does not contribute significantly to
improving the performance of the simulated user. Further-
more, as we observed in the GridWorlds domain, allowing
the model’s advice to be followed tends to lead to perfor-
mance enhancements in our user model. However, this phe-
nomenon is less pronounced in the MiniDungeons domain,
particularly for the “full-random” and “random-style” user
archetypes. Additionally, we observe slower performance
improvements, which can be attributed to the increased com-
plexity of the MiniDungeon trajectories, requiring users to
accumulate more experiences before entering states they
have encountered previously. Notably, the most effective
user archetypes remain ‘“set-skill-and-style” and “random-
skill”, both of which correspond to users with consistent
play styles. This indicates that our play-style identification
model can better comprehend our users, enabling the gener-
ation of more tailored advice, ultimately leading to a more
substantial impact on their ability to emulate their respective
experts.

0.75

Accuracy
s
o

\

0 7;\Nweﬂm 25% advice acceptance 50% advice acceptance
1 51 Episodes 51

5

/ KEY
= full-random

random-skill

o
2]

... —— random-style

Accuracy

- set-skill-and-style

0.2 75% advice acceptance Always take advice

1 51

Episodes 5

Figure 4: Comparison of the impact of a tailored advice gen-
eration pipeline on various advice acceptance thresholds and
user archetypes for GridWorlds domain.

Performance Results for PI and GM Models

Since the overall performance of the pipeline depends on
the effectiveness of its individual components, this section
presents the results for two key components of the full sys-
tem: the Play-style Identifier and the Game Modeller.

Play-style Identifier

To evaluate the model’s performance in play-style identifi-
cation, we compared it against two baselines: (1) a random
baseline representing the probability of correctly assigning a
play-style label through uniform random selection, and (2) a
non-learning baseline employing extensive data augmenta-
tion and standard clustering. The latter involved padding all
trajectories to a uniform length using a zero state, followed
by pairwise dissimilarity computation using a custom Root
Mean Squared Error (RMSE) metric.

For quantitative evaluation, the predicted labels (y') were
compared against ground truth labels (y) across multiple
environments (F; to Es and MiniDungeons). Clustering
accuracies for both k-means and Gaussian Mixture Model
(GMM) clustering, obtained through offline clustering, are
reported in Table 2. The results demonstrate the model’s
ability to accurately cluster complete trajectories (X € D)
across varying environments, with some reduction in per-
formance observed in MiniDungeons due to its higher com-
plexity and multi-level nature. In all domains, the model sig-
nificantly outperformed the random baseline and achieved
superior accuracy relative to the non-learning baseline.

Accuracy
o
o

= (>t
0.25 Never take advice "25% advice acceptance 50% advice acceptance

1 51 51 5

Episodes

[2= E

KEY

> = full-random
Q

g random-skill
§0-5 " e random-style

- set-skill-and-style

Always take advice

0.2 75% advice acceptance

1 51

Episodes 5

Figure 5: Comparison of the impact of a tailored advice gen-
eration pipeline on various advice acceptance thresholds and
user archetypes for MiniDungeons domain.

Environment Random | RSME Offline | Offline | Online | Online
Baseline | Baseline | GMM | k-means | GMM | k-means
£y 0.25 0.298 0.653 | 0.598 0.499 | 0.534
By 0.25 0.310 0.707 | 0.714 0.602 | 0.706
E; 0.25 0.321 0.778 | 0.705 0.749 | 0.670
Ey 0.25 0.267 0.709 | 0.706 0.576 | 0.639
Es 0.25 0.278 0.778 | 0.652 0.686 | 0.678
Average across GridWorlds | 0.25 0.295 0.725 | 0.675 0.622 | 0.645
MiniDungeons 0.17 0.191 0.589 | 0.489 0.446 | 0.419

Table 2: Complete and partial trajectory clustering accuracy

Game Modeller

Given that our approach relies on separating trajectories
by play-style, we analysed the impact of clustering accu-
racy on overall model performance. As shown in Figure
6, we systematically varied clustering accuracy by intro-
ducing controlled label noise into the ground truth clusters
available in the GridWorld domain. Specifically, we manu-
ally corrupted an increasing proportion of the cluster labels
and trained play-style-centric models on these progressively
noisier datasets. In this context, a corruption level of “0” in-
dicates perfect clustering, while “1” corresponds to random
clustering. The results indicate that as clustering accuracy
decreases, the performance of the play-style-centric mod-
els also degrades. This effect is not observed in the base-
line case where no clustering is used, as this configuration
does not leverage play-style separation. Furthermore, per-
formance variance increases as corruption levels rise, sug-
gesting that the models lose their ability to specialise in con-
sistent behaviours when trained on poorly clustered data.
Table 3 presents the relationship between clustering ac-
curacy and the average rewards achieved by the play-style-
centric models across all GridWorld environments. Because
the ground truth reward functions are known, this analysis

Corruption Threshold vs Prediction Accuracy

0.7

o o o
= wn o

Frediction Accuracy

o
w

0.2

=== (Clustering No Clustering ==== Random Baseline

1 0.75 0.5 0.25 0
Corruption Threshold

Figure 6: Comparison of the effect of differing the corrup-
tion threshold percentage on the models’ accuracy. Here “1”
indicates random clustering and “0” perfect clustering

Perfect clustering Clustering using our model

Reward Function | GM; | GM, GM; GM,y GM, | GM, GM; GMy
Ry 99.89 0 0 0 74.07 | 12.03 13.02 18.24
Ry 0 149.85 0 0 742 | 11232 | 11.99 | 19.22
Rs 0 0 149.86 0 742 | 1025 | 11543 | 17.38
Ry 0 0 0 199.81 730 | 11.09 | 1642 | 148.52

Clustering with 50% accuracy Random clustering

Reward Function | GM;, | GM, | GM; | GM,y GM, | GM, | GM; | GMy
Ry 46.87 | 27.90 | 2497 | 3556 21.97 | 3923 | 39.85 | 50.42
Ry 1532 | 7273 | 29.18 | 3327 2234 | 3647 | 38.09 | 55.71
Rs 15.65 | 24.62 | 76.57 | 33.59 23.50 | 36.90 | 40.80 | 49.20
Ry 13.27 | 26.17 25.87 | 103.88 2249 | 38.27 40.60 49.66

Table 3: The effect of clustering accuracy on the average
generated rewards for each play-style-centric model across
all GridWorlds

demonstrates that perfect clustering enables the models to
accurately reproduce the target behaviours associated with
each play-style. While our clustering approach achieves per-
formance close to this optimal case, increasing clustering er-
rors result in a progressive decline in alignment between the
underlying reward functions and observed rewards.

Future Work

This work opens several avenues for future research aimed
at improving automated, tailored advice generation in video
games. The modular architecture of the system allows for
targeted enhancements across its components. For the Play-
style Identifier, future work could investigate image-based
trajectory modelling using convolutional or transformer-
based architectures, as well as multi-modal data integra-
tion. For the Game Modeller, inverse reinforcement learning
presents a promising alternative to behavioural cloning, of-
fering improved generalisation, albeit with higher data and
computational demands. Enhancements to the Player Mod-
eller could include richer representations of play-style char-
acteristics to improve behavioural predictions. In the Advi-
sor component, key research questions remain regarding op-
timal timing, frequency, and personalisation of advice de-

livery. Incorporating reinforcement learning to decide when
and how to provide advice, leveraging large language mod-
els to generate natural and motivating feedback, and inte-
grating adaptive game design elements could significantly
enhance system effectiveness. Furthermore, extending ad-
vice generation to consider player attributes such as expe-
rience level or age, and enabling collaborative refinement
of advice, offers additional potential. These directions not
only promise to improve gaming experiences but also have
broader implications for personalised learning and skill de-
velopment across domains.

Conclusion

This work presents a system capable of automatically gen-
erating beneficial, tailored advice by leveraging identi-
fied play-style information. Using the motivating exam-
ple of a defensive player, the approach first identifies the
player’s style and subsequently generates recommenda-
tions designed to enhance performance within that style.
The primary contribution is an end-to-end framework for
the automatic generation of personalised advice for video
game players. To this end, we introduced a comprehen-
sive advice generation model (Figure 1), composed of
four interconnected components—Play-style Identifier (PI),
Game Modeller (GM), Player Modeller (PM), and Advisor
(AD)—trained in both online and offline contexts. While in-
tegrated within a unified system, each component addresses
a distinct subproblem within the broader task of person-
alised advice generation. Our results demonstrate that clus-
tering can be effectively used to identify style-based char-
acteristics, which in turn can be leveraged to train more
accurate user models as well as expert, play-style-centric
models. Furthermore, we show that the Advisor component
improves rate in which users become more proficient, we
liken this to learning rate, when its advice is followed. These
findings were validated across two domains: GridWorld and
MiniDungeons. Collectively, the results confirm both the ef-
ficacy of the individual components and the overall effec-
tiveness of the proposed pipeline.

In conclusion, automated tailored advice generation has
the potential to improve the way people learn and improve
their skills in a variety of domains. By identifying and utilis-
ing a person’s preferred learning or play-style, this method-
ology can improve the efficiency and effectiveness of learn-
ing. Additionally, learning in one’s own style can lead to a
more positive and engaging learning experience, which is
likely to lead to more sustained improvements.

References

Abbeel, P; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.

Aleahmad, T.; Aleven, V.; and Kraut, R. 2008. Open com-
munity authoring of targeted worked example problems. In
Intelligent Tutoring Systems: 9th International Conference,
ITS 2008, Montreal, Canada, June 23-27, 2008 Proceedings
9,216-227. Springer.

Andersen, E.; O’rourke, E.; Liu, Y.-E.; Snider, R.; Lowder-
milk, J.; Truong, D.; Cooper, S.; and Popovic, Z. 2012. The
impact of tutorials on games of varying complexity. In Pro-
ceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 59—68.

Anderson, J. R. 2013. The architecture of cognition. Psy-
chology Press.

Anderson, J. R.; Boyle, C. F,; and Reiser, B. J. 1985. Intelli-
gent tutoring systems. Science, 228(4698): 456-462.

Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016.
Neural module networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 39—
48.

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5): 469—483.

Bakkes, S. C.; Spronck, P. H.; and van Lankveld, G. 2012.
Player behavioural modelling for video games. Entertain-
ment Computing, 3(3): 71-79.

Cannel, D.; and Markovitch, S. 1993. Learning models of
opponent’s strategy game playing. In Proceedings of the
1993 AAAI Fall Symposium on Games: Learning and Plan-
ning, 140-147.

Char, D. S.; Shah, N. H.; and Magnus, D. 2018. Imple-
menting machine learning in health care—addressing ethical
challenges. The New England journal of medicine, 378(11):
981.

Charles, D.; Mcneill, M.; McAlister, M.; Black, M.; Moore,
A.; Stringer, K.; Kiicklich, J.; and Kerr, A. 2005. Player-
centred game design: Player modelling and adaptive digital
games.

Clouse, J. A. 1997. On integrating apprentice learning and
reinforcement learning.

Ehsan, U.; Harrison, B.; Chan, L.; and Riedl, M. O. 2018a.
Rationalization: A neural machine translation approach to
generating natural language explanations. In Proceedings of
the 2018 AAAI/ACM Conference on Al, Ethics, and Society,
81-87. ACM.

Ehsan, U.; Tambwekar, P.; Chan, L.; Harrison, B.; and Ried]l,
M. O. 2018b. Learning to Generate Natural Language Ra-
tionales for Game Playing Agents. In Joint Proceedings of
the AIIDE 2018 Workshops, volume 2282, 1.

Garvin, D. A.; and Margolis, J. D. 2015. The art of giving
and receiving advice. Harvard business review, 93(1): 14.
Gou, J.; Yu, B.; Maybank, S. J.; and Tao, D. 2021. Knowl-
edge distillation: A survey. International Journal of Com-
puter Vision, 129(6): 1789-1819.

Graesser, A. C.; Conley, M. W.; and Olney, A. 2012. Intel-
ligent tutoring systems. APA educational psychology hand-
book, Vol 3: Application to learning and teaching., 451-473.
Gunning, D. 2017. Explainable artificial intelligence (xai).
Defense Advanced Research Projects Agency (DARPA), nd
Web, 2.

Harvey, N.; Harries, C.; and Fischer, I. 2000. Using advice
and assessing its quality. Organizational behavior and hu-
man decision processes, 81(2): 252-273.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770-778.

Herrmann, D. A. 2022. Prediction with expert advice ap-
plied to the problem of prediction with expert advice. Syn-
these, 200: 315.

Ho, J.; and Ermon, S. 2016. Generative adversarial imita-
tion learning. In Advances in neural information processing
systems, 4565-4573.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735-1780.

Holmgard, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014. Evolving personas for player decision mod-
eling. In 2014 IEEE Conference on Computational Intelli-
gence and Games, 1-8.

Hu, R.; Andreas, J.; Rohrbach, M.; Darrell, T.; and Saenko,
K. 2017. Learning to reason: End-to-end module networks
for visual question answering. In Proceedings of the IEEE
International Conference on Computer Vision, 804—813.

Ingram, B.; Rosman, B.; Klein, R.; and van Alten, C. 2022a.
Play-style Identification through Deep Unsupervised Clus-
tering of Trajectories. In 2022 IEEE Conference on Games
(CoG). IEEE.

Ingram, B.; Rosman, B.; van Alten, C.; and Klein, R. 2022b.
Improved Action Prediction through Multiple Model Pro-
cessing of Player Trajectories. In 2022 IEEE Conference on
Games (CoG), 548-551. IEEE.

Ingram, B.; Rosman, B.; van Alten, C.; and Klein, R. 2023a.
Creating Diverse Play-Style-Centric Agents through Be-
havioural Cloning. In Proceedings of the Eighteenth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2023, Salt Lake City, UT, USA. AAAI
Press.

Ingram, B.; van Alten, C.; Klein, R.; and Rosman, B. 2023b.
Generating Interpretable Play-style Descriptions through
Deep Unsupervised Clustering of Trajectories. IEEE Trans-
actions on Games.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097-1105.

Laud, A. D. 2004. Theory and application of reward shaping
in reinforcement learning. University of Illinois at Urbana-
Champaign.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Malinowski, M.; Rohrbach, M.; and Fritz, M. 2015. Ask
your neurons: A neural-based approach to answering ques-
tions about images. In Proceedings of the IEEE interna-
tional conference on computer vision, 1-9.

Mensink, T.; Uijlings, J.; Kuznetsova, A.; Gygli, M.; and
Ferrari, V. 2021. Factors of influence for transfer learning
across diverse appearance domains and task types. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
44(12): 9298-9314.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529.

Mouret, J.-B.; and Clune, J. 2015. Illuminating search
spaces by mapping elites. arXiv preprint arXiv:1504.04909.

Muioz, J.; Gutierrez, G.; and Sanchis, A. 2013. Towards
imitation of human driving style in car racing games. In
Believable bots, 289-313. Springer.

Papamichail, K. N.; and French, S. 2003. Explaining and
justifying the advice of a decision support system: a natural
language generation approach. Expert Systems with Appli-
cations, 24(1): 35-48.

Ritter, S.; Blessing, S. B.; and Wheeler, L. 2003. Authoring
tools for component-based learning environments. Author-
ing Tools for Advanced Technology Learning Environments:
Toward Cost-Effective Adaptive, Interactive and Intelligent
Educational Software, 467-489.

Schmitt, S.; Hudson, J. J.; Zidek, A.; Osindero, S.; Doersch,
C.; Czarnecki, W. M.; Leibo, J. Z.; Kuttler, H.; Zisserman,
A.; Simonyan, K.; et al. 2018. Kickstarting deep reinforce-
ment learning. arXiv preprint arXiv:1803.03835.

Shute, V. J. 1991. Rose garden promises of intelligent tutor-
ing systems: Blossom or thorn.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676): 354.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence, 112(1-
2): 181-211.

Taylor, M. E.; and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research, 10(Jul): 1633-1685.

Torabi, F.; Warnell, G.; and Stone, P. 2018. Behavioral
cloning from observation. arXiv preprint arXiv:1805.01954.

Vehvilainen, S. 2001. Evaluative advice in educational
counseling: The use of disagreement in the” stepwise entry”
to advice. Research on Language and Social Interaction,
34(3): 371-398.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-

Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350-354.

Wang, X.; Zhang, S.; Zhang, W.; Dong, W.; Chen, J.;
Wen, Y.; and Zhang, W. 2024. Zsc-eval: An evaluation
toolkit and benchmark for multi-agent zero-shot coordina-

tion. Advances in Neural Information Processing Systems,
37: 47344-473717.

Wenger, E. 2014. Artificial intelligence and tutoring sys-
tems: computational and cognitive approaches to the com-
munication of knowledge. Morgan Kaufmann.

Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, 478—487. PMLR.

Xie, Q.; Luong, M.-T.; Hovy, E.; and Le, Q. V. 2020. Self-
training with noisy student improves imagenet classification.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 10687—10698.

Yarats, D.; Zhang, A.; Kostrikov, I.; Amos, B.; Pineau, J.;
and Fergus, R. 2021. Improving sample efficiency in model-
free reinforcement learning from images. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
10674-10681.

Ye, L. R.; and Johnson, P. E. 1995. The impact of explana-
tion facilities on user acceptance of expert systems advice.
Mis Quarterly, 157-172.

Zangerle, E.; and Bauer, C. 2022. Evaluating recommender
systems: survey and framework. ACM computing surveys,
55(8): 1-38.

Zoph, B.; Ghiasi, G.; Lin, T.-Y.; Cui, Y.; Liu, H.; Cubuk,
E. D; and Le, Q. 2020. Rethinking pre-training and self-
training. Advances in neural information processing sys-
tems, 33: 3833-3845.

