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Abstract

Recent advances in fields such as machine learning have enabled the development of systems that are
able to achieve super-human performance on a number of domains, specifically in complex games such
as Go and StarCraft. Based on these successes, it is reasonable to ask if these learned behaviours
could be utilised to improve the performance of humans on the same tasks. However, the types of
models used in these systems are typically not easily interpretable, and can not be directly used to
improve the performance of a human. Additionally, humans tend to develop stylistic traits based on
preference which aid in solving problems or competing at high levels. This thesis looks to address these
difficulties by developing an end-to-end pipeline that can provide beneficial advice tailored to a player’s
style in a video game setting. Towards this end, we demonstrate the ability to firstly cluster variable-
length multi-dimensional gameplay trajectories with respect to play-style in an unsupervised fashion.
Secondly, we demonstrate the ability to learn to model an individual player’s actions during gameplay.
Thirdly we demonstrate the ability to learn policies representative of all the play-styles identified with
an environment. Finally, we demonstrate how the utilisation of these components can generate advice
which is tailored to the individual’s style. This system would be particularly useful for improving tutorial
systems that quickly become redundant lacking any personalisation. Additionally, this pipeline serves
as a way for developers to garner insights on their player base which can be utilised for more informed
decision-making on future feature releases and updates. For players, they gain a useful tool which can
be utilised to learn how to play better as well identify as the characteristics of their gameplay as well
as opponents. Furthermore, we contend that our approach has the potential to be employed in a broad
range of learning domains.
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Chapter 1

Introduction

Learning new skills can often be a difficult, tedious and unintuitive process which results in people
feeling disengaged and ultimately can lead to giving up. If we consider the case of someone playing a
video game, a player might find a certain game or section of a game too difficult. This may be due to
a number of reasons from lack of experience, inadequate tutorial or instructions, complex controls or
even personal preferences. These factors could all lead to the player feeling disengaged and unsatisfied.
One of the best ways for us as humans to combat this problem and better learn a skill is by receiving
guidance from an expert. This is seen everywhere, from the school system to learning sports, or even
as mentioned when playing video games. However, if we had a mechanism which could advise our
players, not only could developers create more engaging video games, but from the player’s perspective
they would be able to improve ultimately leading to a sense of accomplishment. However, the challenge
with advising is that there is no universal solution that works for everyone. Each person is unique having
their own style of solving tasks, and what works for one person may not work for another [Bartle 1996].
Therefore formulating good advice requires developing an understanding of the individual such that we
can tailor it to their specific needs and preferences. Referring back to our example of someone playing
a video game if we as the advisor were to be able to identify their preferred style of play we could in
turn offer advice appropriate to that case. In particular, if the player preferred to play defensively we
could suggest strategies which help them become the optimal defensive player. However, while tailored
advice can be valuable, providing it manually can be impractical due to time constraints and scalability
issues. As a result, there is a growing trend towards using technology and automation to provide more
efficient and effective advice.

Traditionally automatic advice generation has been handled through rule-based systems [Shortliffe et
al. 1977] or decision tree-based systems [Bouza et al. 2008]. Both these techniques can be effective
for generating automatic advice, but they have limitations. These systems have to be designed requir-
ing domain knowledge and tend to be too general and inflexible, especially in complex environments.
With regards to video games, automatic advice generation systems have traditionally been constrained to
non-adaptive tutorial systems that employ a uniform approach across all users. This system quickly be-
comes redundant because they are often designed to be one-size-fits-all, and do not adapt to the player’s
preferences and increasing skill level [Robertson and Howells 2008]. We encapsulate these ideas of
preferences, motivations, behaviour and skill level as a player’s play-style. Therefore, to truly optimise
the advice given to an individual, we need a system that is able to adapt to the changing play-style of a
player.

The development of personalised automated advice requires a deep understanding of the user and their
environment, which involves the complex task of data collection and analysis to determine their play-
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style. More recently, machine learning techniques, such as neural networks and deep learning, have
been used to tackle complex problems in video games [Mnih et al. 2015; OpenAI 2007; Jaderberg et al.
2019]. These techniques are well suited for analysing large amounts of data to find patterns because of
their ability to automatically learn and adapt from input data, allowing them to identify complex rela-
tionships and patterns. For this reason, we look to apply such techniques to the problem of automatic
tailored advice generation in video games. We look to approach this problem from the perspective of
video games as they serve as good proxies for real-world learning environments as they often simu-
late complex scenarios, allowing players to engage in experiential learning and develop skills such as
problem-solving [Robertson and Howells 2008]. Hence, creating a system that can offer customised
guidance with positive outcomes could have effects in various fields, including education and learning
in general.

The complexity of automatically generating customised advice in video games is evident, and we believe
that it requires the implementation of various interconnected machine-learning techniques to overcome
it. Thus, this is the problem that we aim to address in our thesis, through the formulation of four
significant questions. Each of these is discussed below.

1.1 What are the different ways I can play a game?

There are often multiple ways to approach a game, and the choice of strategy can have a significant
impact on the outcome. For example, in chess, there are many different openings, tactics, and endgame
strategies that can be used to gain an advantage over the opponent. Therefore, identifying all possible
play-styles in a game provides a more comprehensive understanding of the game mechanics, strategies,
and tactics that can be used to play the game. Specifically, the benefits include:

• Enhanced game design: By identifying all possible play-styles, game developers can improve
game design by creating more challenging and diverse game modes, rules, and challenges.

• Improved gameplay experiences: Understanding all possible play-styles can help players to de-
velop their skills, learn new approaches, and challenge themselves, which can lead to a more
immersive and enjoyable gaming experience.

• Prevention of cheating and exploitation: By having a comprehensive understanding of the different
play-styles, game developers can better identify unusual or unfair behaviours that may negatively
impact the game’s integrity.

To answer this question, we may utilise techniques involving play-style identification used in video game
analytics to gain an understanding and predict how individual players interact with a game. These tech-
niques of play-style identification most commonly involved analysing player behaviour and preferences
in order to cluster players into different categories based on their gameplay behaviour [Liu et al. 2013].
Using the previous example, a player may be clustered as aggressive if they tend to attack enemies head-
on and take risks, while a defensive player may be more cautious and prefer to avoid direct confronta-
tion. This clustering process, however, is not trivial as it requires the clustering of multi-dimensional,
varying-length time-series data. Most approaches forgo processing this raw data and use only meta-data
abstractions such as hours played, achievements unlocked or number of lives lost [Drachen et al. 2009].
We contend that by employing this approach, access to critical temporal information is lost, which is
necessary for comprehending how play-styles evolve over time.
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1.2 What are the optimal ways to play in each style?

The process of identifying an individual’s play-style within a video game is a necessary tool for gener-
ating tailored advice for that player. However, it is important to note that simply identifying a play-style
alone is not sufficient to provide effective guidance. In particular, a critical aspect of generating effective
advice is also knowing the optimal version of the player as it provides a target to reach for. Therefore
creating a set of play-style-centric agents that play optimally according to a certain style would have
several potential benefits, including:

• Consistency: By creating play-style-centric agents to play according to a certain style, you can
ensure that they will always play in a consistent manner, which can be useful in scenarios where
consistency is important, such as in training simulations or competitive gaming. Especially in the
context of providing advice, inconsistency can lead to confusion or irritation of the user.

• Diversity: Creating a set of play-style-centric agents that play according to different styles can
provide players with a more diverse and varied gaming experience, as they will be playing against
opponents with different strengths and weaknesses.

• Scalability: Play-style-centric agents can be easily replicated and scaled up, which means that
creating a set of play-style-centric agents that play according to a certain style can be a cost-
effective way of providing a larger number of opponents for players to compete against.

• Learning: Play-style-centric agents that play according to a certain style can be useful for players
who want to learn more about a particular strategy or play-style, as they can observe the agents in
action and analyse their decision-making processes.

There are two common categories for determining solutions for complex tasks: supervised learning
[Pearce and Zhu 2022] and reinforcement learning (RL) [Mnih et al. 2013]. These approaches typi-
cally focus solely on maximizing a score metric and do not consider the need to emulate a particular
behaviour or play-style. While encoding play-styles into the scoring metric is a possible solution, it
is often challenging and unintuitive [Arzate Cruz and Ramirez Uresti 2018]. Instead, we propose using
data-centric approaches that learn from expert demonstrations. For example, by imitating the behaviours
of aggressive and defensive-styled players, we can inform novices based on our prior understanding of
their corresponding experts [Schaal 1999]. In practice, we look to imitate the styles identified through
our play-style identification process. However, obtaining large amounts of data in video games necessary
for deep learning techniques is not always feasible [Vinyals et al. 2019], and a data-efficient approach is
required.

1.3 How do you as an individual play?

Understanding how an individual plays is crucial because it is essential to develop a model that can
predict how the player will behave in a given situation to provide personalised advice. As a result,
answering this question is a critical step towards tailoring the advice according to the individual’s playing
style. Identifying a person’s play-style during live gameplay can, therefore, offer several benefits for both
game developers and players. These benefits include:

• Real-time Adaptation: Online identification of a player’s play-style from partial trajectories allows
game developers to adapt the gaming experience in real-time. Game developers can use this
information to adjust the game mechanics and features on the fly, based on the player’s actions,
preferences, and skill level, providing a more personalised and immersive gaming experience.
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• Improved Player Engagement: Real-time identification of a player’s play-style from partial trajec-
tories can lead to improved player engagement. By tailoring the gaming experience to the player’s
play-style, game developers can create a more challenging, yet enjoyable experience, keeping
players engaged and motivated to continue playing.

• Dynamic Matchmaking: Online identification of a player’s play-style from partial trajectories
can also be used to create dynamic matchmaking. By matching players with similar play-styles,
game developers can create more balanced and competitive matches, leading to a more enjoyable
gaming experience for all players.

The problem of learning an understanding of an individual’s behaviour is commonly tackled in the
field of player modelling [Drachen et al. 2009]. Player modelling is the process of creating a detailed
representation of an individual player’s characteristics and behaviour based on their gameplay data. The
major difficulty with using this type of model in an online fashion is that we require high accuracy with
very little data. This is due to the inherent ambiguity present at the initial stages of temporal sequences,
during which the distinct play-styles have not yet become discernible. This is especially important when
generating advice as accurate predictions are needed to build trust and credibility between the advisor
and the person seeking advice. If the advisor is able to accurately anticipate the person’s behaviour and
provide helpful guidance, the person is more likely to see them as a valuable resource and seek their
advice in the future. To combat this we look to employ pre-training techniques which are commonly
used to enhance the performance of a model, especially when the model is complex, or the target dataset
is small or different [Hendrycks et al. 2019].

1.4 What should be advised?

The ultimate objective of this thesis is to address the culmination of all the preceding elements, namely,
how we can integrate these elements to develop personalised advice that users can leverage to enhance
their performance. The benefits here are:

• Enhanced player engagement: Personalised advice can keep players engaged by providing feed-
back that is tailored to their specific needs, preferences, and skill level.

• Improved player performance: Tailored advice can help players improve their gameplay by high-
lighting areas for improvement and providing guidance on how to enhance their skills.

• Increased player retention: Providing personalised advice can keep players interested and moti-
vated to continue playing, leading to increased retention rates.

Efficient and engaging advice-giving has been a long-standing challenge in various domains, such as
teaching [Feiman-Nemser 1983], robotics [Kober et al. 2013], and video games [Shaffer et al. 2005].
Providing automatic tailored advice to individual users poses an even more challenging problem, partic-
ularly in video games. This requires generating advice that is not only helpful, relevant, and actionable
for individual players but also overcomes obstacles such as personalisation and human-like reasoning
[Brisson et al. 2012]. A promising approach to obtaining tailored advice and improving learning rates
is to compare models of individual players with that of an expert, such as a teacher or mentor. Likewise,
we aim to utilise both the player’s model and an expert’s model that aligns with their play-style. By
analysing the disparities between the two models, our system can pinpoint areas where the novice player
could improve and offer customised advice to assist them in improving their gameplay.

This work presents a novel approach for addressing the challenge of generating tailored advice for a
user, as well as the absence of personalised tutorial systems in gaming. Our approach achieves several
objectives in the context of video games. Firstly, it is capable of identifying all possible ways of playing
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a game, which lays the foundation for further analysis. Secondly, it can identify an individual’s play-
style, which is essential for generating tailored advice. Thirdly, it can learn the optimal ways of playing a
game with respect to a particular play-style. Lastly, it can compare these models to compile the relevant
information into tailored advice, which can be provided to the user. In summary, this work provides
a comprehensive framework for generating personalised advice in video games, which can enhance
the player’s overall experience. This results in improved performance for a user with respect to their
identified style.

1.5 Contributions

Therefore, our main contribution comes in the form of an end-to-end multi-component system which
learns from both a pre-existing dataset and an individual’s gameplay to compose tailored advice. This
high-level design was presented at the doctoral consortium track at the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE 2021) [Ingram 2021]. Specifically, this overall
model is made of the following contributions:

• Play-style Identification: In Chapter 5 we propose a novel method for identifying play-style in
video games by clustering multi-dimensional variable-length trajectories, which represent differ-
ent styles of gameplay behaviour. The model is evaluated on a benchmark dataset and a natural
domain and can identify play-style from complete and partial (online) trajectories without requir-
ing additional engineering or training time. Furthermore, we present novel techniques that employ
state-based cluster analysis to uncover the traits and behaviours associated with individual play-
styles, as well as their interrelationships. Portions of these ideas were presented at the IEEE
Conference on Games 2022 (CoG 2022) [Ingram et al. 2022a] with further extensions published
in the IEEE Transactions on Games (ToG) [Ingram et al. 2023b].

• Game Modelling: In Chapter 6, we introduce a novel application of Behavioural Cloning that
involves the creation of play-style-centric policies. These policies are designed to exhibit specific
behaviour, as identified in Chapter 5. Additionally, we demonstrate that our model can generate
policies within each behavioural set with varying degrees of proficiency. This contribution was
published in the Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE 2023) [Ingram et al. 2023a].

• Player Modelling: In Chapter 7, we introduce a unique multi-modular approach that enhances
the precision of action prediction by utilising a recognised play-style. The proposed model in-
corporates a pre-training process that utilises an average pre-trained model, which corresponds to
the identified play-style of the user. This feature is a distinctive advantage of our overall multi-
component model. This contribution was presented at the IEEE Conference on Games 2022 (CoG
2022) [Ingram et al. 2022b].

• Advice Generation: In Chapter 8, we showcase the operationality of the complete system in an
online setting to produce tailored advice. This serves as an investigation into how these individual
elements would be employed upon integration into a game. While not exhaustive, we demonstrate
the proficiency of our methodology in reducing the divergence between a player’s policy and their
expert counterpart.

1.6 Overview

The rest of the thesis is structured as follows, in Chapter 2 we survey the fundamental architectures
and knowledge required for the understanding of our model. In Chapter 3 we present a comprehensive
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overview of the existing literature and research related to our topic, including both prior work specifically
focused on automatic advice generation as well as related work in neighbouring areas. Chapter 4 of this
thesis contains a formal presentation of our overall model, including its functionality, as well as a formal
introduction to the constituent components. This is followed by the four technical chapters (5, 6, 7 and
8) as discussed above. Finally, Chapter 9 summarises the key findings and contributions of the research
and provides insights into their implications and potential future directions for research.
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Chapter 2

Background

Broadly speaking, the task of creating tailored advice for gameplay necessitates drawing upon expertise
from three core areas: temporal data analysis, clustering, and policy learning. For this research temporal
information refers to time-series data which is represented by the sequence of actions an agent might
perform, i.e. a trajectory. This chapter introduces the fundamental concepts and formalisms required for
the understanding of the overall research.

Firstly, we introduce the fundamental concept of a trajectory in Section 2.1. This trajectory data serves as
the basis for extracting valuable information to identify playstyles, as discussed in Section 2.2. Section
2.3 introduces the idea of neural networks which is utilised extensively by all components for the overall
framework. Additionally, Section 2.4 provides an overview of various recurrent neural network archi-
tectures, while Section 2.5 introduces the concept of an autoencoder. These architectures are necessary
for the processing of temporal data. Section 2.6 then describes the different approaches to unsupervised
clustering, where data is separated based upon some underlying features into a fixed number of groups.
Lastly, Sections 2.7, 2.8 and 2.9 outline in detail the learning methods required to generate our simulated
data and learn policies required for creating play-style-centric agents.

2.1 Trajectory

In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most
commonly, a time series is a sequence of data points taken at successive equally spaced points in time.
Thus it is a sequence of discrete-time data. We define a trajectory X in Equation 2.1 such that:

X = (x1, x2, . . . , xt, . . . , xm), (2.1)

where m is the number of time steps. Here each data point xt is an element in trajectory X which
represents the context or state of an environment at that particular point in time. In the upcoming section
(Section 4.5), we will provide a detailed account of the unique attributes of the context in each of the
assessed domains, and also describe the procedure of collating multiple trajectories to create our diverse
datasets denoted by D.

Furthermore, we define a partial trajectory P as a sub-sequence of states from a trajectory X starting
with the first element (x1) and including all elements up until the final element (xt) where t is some
time-step as defined in Equation 2.2. For the purpose of this thesis, we use the following notation
(P = X[1 : t]) for referencing a partial trajectory from X such that:

P = (x1, x2, . . . , xt). (2.2)
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In actuality, trajectories consist of a series of states across multiple dimensions. Nevertheless, Figure 2.1
portrays a set of trajectories in two dimensions arbitrarily chosen for visualisation purposes.

Figure 2.1: Visualisation of both a full and partial trajectory.

2.2 Play-style

A play-style refers to the characteristic way in which a player approaches a game or activity, with
specific strategies and behaviours that are consistent and recognisable [Sirlin 2006]. A play-style can
vary depending on the individual, the game or activity being played, and the context in which it is being
played. The concept of play-styles has evolved over time and has been discussed by many different
authors and researchers in the context of behavioural patterns and game strategy [Tzu 2020], [Tekinbas
and Zimmerman 2003].

Formally describing a play-style involves identifying the key elements of the player’s approach, such
as their preferred tactics, level of aggression or caution, decision-making process, and overall attitude
towards the game. This might also involve analysing the player’s strengths and weaknesses, as well as
any patterns or tendencies they exhibit in their play.

For example Bartle’s [2004] taxonomy of player types was developed to describe different player mo-
tivations and play-styles in the context of online multiplayer games, specifically MUDs1 (multi-user
dungeons). The four player types identified by Bartle [2004] are:

• Achievers: Players who are motivated by achieving goals and progressing through the game’s
content. They are often highly competitive and seek to accumulate status, power, and rewards.

1https://medium.com/@williamson.f93/multi-user-dungeons-muds-what-are-they-and-how-to-play-af3ec0f29f4a

9



• Explorers: Players who are motivated by discovering and learning about the game’s mechanics
and content. They enjoy uncovering hidden areas, secrets, and easter eggs and are often motivated
by the thrill of discovery.

• Socialisers: Players who are motivated by social interaction and building relationships with other
players. They enjoy chatting, forming groups, and participating in in-game social events.

• Killers: Players who are motivated by conflict and competition with other players. They enjoy
engaging in combat and PvP (player vs. player) activities, and are often motivated by the thrill of
victory and the satisfaction of defeating opponents.

Each of these player types represents a distinct play-style, with its own set of motivations, goals, and
behaviours. Players may exhibit characteristics of multiple player types, but tend to have a dominant type
that reflects their primary motivation for playing the game. More recently, Grapevine [2020] associated
play-styles with a player’s choice of character in the video game Super Smash Bros. Ultimate2 as seen
in Figure 2.2.

Figure 2.2: Play-style characterisation for playable characters in the game Super Smash Bros. Ultimate as defined
by Grapevine [2020]

Here Grapevine [2020] categorised the play-styles in Super Smash Bros. Ultimate into several types:

• Zone breakers are characters with versatile abilities that allow them to pressure opponents while
maintaining a safe distance.

2https://www.smashbros.com/
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• Mix-up characters have a broad range of moves, but lack the safety of rushdown characters,
allowing them to switch between bait and punish/zoning play-styles and aggressive ones.

• Footsies characters rely on their strong ground game and explosive power.

• Hit and Run characters have speed and a toolkit that lets them rush in, deal damage, and retreat
before the opponent can counterattack.

• Half-Grapplers have move-sets that emphasise what they can get off of a grab, and Trappers have
a heavy projectile game that limits the opponent’s available space.

• Turtles are defensive characters with long-range tools designed to poke opponents from afar.

• Dynamic characters have unique abilities that define their play-style, such as Shulk’s reliance on
the active Monado or Pokemon Trainer’s use of different Pokemon for various needs.

Ultimately, a formal description of a play-style would seek to capture the unique qualities that define
a player’s approach and provide insight into their motivations, strengths, and weaknesses as a player.
We look to learn to identify such qualities in an unsupervised fashion for the ultimate purpose of advice
generation.

2.3 Neural Networks

Artificial neural networks (NN) is a mathematical model that is designed to recognize patterns in data,
by simulating the way the human brain works [McClelland et al. 1986]. It consists of a large number of
interconnected processing nodes, called neurons, that are organized into layers. Each layer receives input
data and performs mathematical operations to transform the data into a more meaningful representation.
The output of one layer is then passed on as input to the next layer, and this process continues until the
final output is produced. Figure 2.3 depicts a traditional fully connected NN with an input vector of 3
values, two hidden layers of four nodes each and a single output node.

Figure 2.3: Example of simple NN

Neural networks are a fundamental concept in machine learning and artificial intelligence, and they
form the basis for many advanced techniques including recurrent neural networks (RNNs) described in
Section 2.4.
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In a neural network, we are trying to learn a function that maps inputs to outputs. Mathematically, we
can represent this function as f(X), where X is the input and f(X) is the output. To learn this mapping
a NN undergoes an interative training procedure. We illustrate this procedure by considering a simple
fully connected feedforward neural network with one input layer, one hidden layer, and one output layer.
The network is trained on a dataset with n input examples, each of which has d features.

The mathematical representation of the network is as follows [Svozil et al. 1997]:

• Initialization: The weights of the connections between the neurons are initialized randomly to
small values, typically between -1 and 1.

W1 = random(d, h)

b1 = zeros(h)

W2 = random(h, 1)

b2 = zeros(1)

(2.3)

where W1 is the weight matrix connecting the input layer to the hidden layer, b1 is the bias vector
for the hidden layer, W2 is the weight matrix connecting the hidden layer to the output layer, and
b2 is the bias for the output layer. Here d is the number of input features, h is the number of hidden
units, and there is 1 output node.

• Forward propagation: The input data is fed into the input layer of the neural network, and the
data is propagated forward through the network. Each neuron in each layer performs a calculation
based on the input it receives and its associated weight. The output of each neuron is then passed
on as input to the next layer, until the final output is produced.

z1 = X ·W1 + b1 neuron value at hidden layer

a1 = sigmoid(z1) activation value at hidden layer

z2 = a1 ·W2 + b2 nueron value at output layer

ypred = sigmoid(z2) activation value at hidden layer

(2.4)

where X is the input matrix of shape (n, d), sigmoid is the activation function used for the hidden
and output layers, and ypred is the predicted output matrix of shape (n, 1).

• Calculate loss: The difference between the predicted output and the actual output is calculated
using a loss function, such as mean squared error (MSE) [Wallach and Goffinet 1989] or cross-
entropy [Zhang and Sabuncu 2018].

loss = MSE(ytrue, ypred) (2.5)

where ytrue is the true output matrix of shape (n, 1).

• Backpropagation: The error signal is propagated backwards through the network, and the weights
of the connections are updated using an optimisation algorithm such as gradient descent [Ruder
2016]. This involves calculating the gradient of the loss function with respect to each weight in
the network, and then adjusting the weights in the opposite direction of the gradient in order to
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minimise the loss.
δ2 = loss(ypred, ytrue) · sigmoid derivative(z2)

δ1 = δ2 ·W T
2 · sigmoid derivative(z1)

dW2 = aT1 · δ2

db2 =

n∑
i=1

δ2i

dW1 = XT · δ1

db1 =
n∑

i=1

δ1i

W2 = W2 − α · dW2

b2 = b2 − α · db2
W1 = W1 − α · dW1

b1 = b1 − α · db1

(2.6)

where δ2 is the error signal for the output layer, δ1 is the error signal for the hidden layer, dW2

is the gradient of the loss function with respect to the weights connecting the hidden layer to the
output layer, db2 is the gradient of the loss function with respect to the bias for the output layer,
dW1 is the gradient of the loss function with respect to the weights connecting the input layer to
the hidden layer, and db1 is the gradient of the loss function with respect to the bias for the hidden
layer. The learning rate (α) is a hyperparameter that controls the step size of the weight updates.

• Repeat: Steps 2-4 are repeated for each input in the training set, until the network has been trained
on all of the data. This is known as an epoch.

The performance of the network is evaluated on a separate set of data, called the testing set, in order
to ensure that the network has not overfit the training data. Overall, the ability of neural networks to
process large amounts of data, identify patterns, and learn from feedback makes them an important tool
for automatic advice generation.

2.4 Recurrent Neural Networks (RNN)

A limitation of standard neural networks is that they require fixed-length input and are not able to inter-
pret any temporal relationships. A recurrent neural network (RNN) [Rumelhart et al. 1986] is a type of
neural network that is particularly well-suited for processing sequential data, such as time series, speech
signals [Graves et al. 2013], and text [Tealab 2018]. The defining characteristic of an RNN is that it
allows previous outputs to be used as inputs when generating the current output, giving the network a
form of memory, which enables it to save the states or details of prior inputs. While traditional deep
neural networks assume that inputs and outputs are independent of each other, the output of recurrent
neural networks depends on the prior elements within the sequence. An RNN consists of a series of
hidden units, where each hidden unit takes in the current input and the previous hidden state as inputs
and produces an output, which is used as the input for the next hidden unit. Therefore, the hidden state
is the output of a hidden unit, and it captures information about previous inputs that is stored in the
memory of the RNN. This allows the network to maintain information about the previous states in the
sequence, which can be useful in making predictions about the next state in the sequence.

To train an RNN, the network is unrolled over the length of the input sequence, as seen in Figure 2.4
which uses the following notation:

13



• X : is an entire input trajectory

• xt : is the input at time step t (xt = X[t])

• U : are the weights associated with the input state of the recurrent layer

• ht: is the state of the hidden vector (memory) at time step t

• W : are the weights associated with the output state of the recurrent layer

• Ot: is the output of the network at time step t

• V : are the weights associated with the hidden state of the recurrent layer

Unrolling refers to the process of expanding the network over time, by creating a series of connected
copies of the same RNN cell, one for each time step of the input sequence. This process allows the
network to be viewed as a NN, where each RNN cell represents a layer in the network and the weights
can be updated using the standard backpropagation algorithm. During training, the loss is computed at
each time step based on the difference between the predicted output and the true output, and the gradients
are computed using backpropagation through time (BPTT) [Werbos 1990], which is an extension of
backpropagation to recurrent neural networks. The weights are then updated using gradient descent or
a variant thereof. However, the gradients can be difficult to compute in an RNN due to the repeated use
of the same parameters in each hidden unit, which can result in gradients that either explode or vanish.
This is known as the vanishing gradient problem [Hochreiter 1998].

Figure 2.4: Standard RNN architecture; Compressed (left), Unrolled (right). Here X is an entire input trajectory,
xt is the input at time step t (xt = X[t]), ht is the hidden state vector and Ot is the output vector at time step t
Finally U and W are the weight matrices between the input and hidden vectors as well as between the hidden and
output vectors respectively.

RNNs, like other neural networks, employ the mechanisms of forward and backward propagation to
learn from data and make predictions. These mechanisms can be described as follows:

Forward propagation:

• At each time step t, the RNN takes in an input vector xt = X[t] and the previous hidden state
ht−1 to produce a new hidden state ht and an output Ot.

• The input vector xt is multiplied by a weight matrix U that represents the connections between
the input layer and the hidden layer. This product is added to the product of the previous hidden
state ht−1 and a weight matrix V that represents the connections between the hidden layer at time
t− 1 and the hidden layer at time t. The resulting sum is passed through an activation function to
produce the new hidden state ht.
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• The hidden state ht is then multiplied by a weight matrix W that represents the connections
between the hidden layer and the output layer. This product is passed through another activation
function to produce the output Ot.

Backward propagation:

• To train the RNN, we need to compute the gradients of the loss with respect to the weights U , W ,
and V .

• Starting from the final time step m, we compute the error gradient of the loss with respect to
the output Om. This gradient is then backpropagated to the previous hidden state hm−1 and the
weights V using the chain rule of differentiation.

• The error gradient is then propagated backwards through time, by computing the error gradient at
each time step t in terms of the error gradient at the next time step t + 1, and backpropagating it
to the previous hidden state ht−1 and the weights U and W using the chain rule.

• Finally, the gradients are used to update the weights using an optimisation algorithm such as
stochastic gradient descent (SGD).

There are several variants of RNNs that have been developed to address this issue, including long short-
term memory (LSTM) networks and gated recurrent units (GRUs). These variants use gates to control
the flow of information through the network, making it easier to preserve information from earlier time
steps and prevent the vanishing gradient problem [Hochreiter 1998].

2.4.1 Long Short-Term Memory (LSTM)

A Long Short-Term Memory (LSTM) network is a type of recurrent neural network (RNN) that is widely
used for processing sequential data [Hochreiter and Schmidhuber 1997]. LSTMs were introduced to
address these issues and are designed to be able to store and process information over longer sequences.
They achieve this by using a series of gates that control the flow of information into and out of the hidden
state. The gates are designed to allow information to be forgotten over time if it is no longer relevant
and to prevent the gradients from vanishing or exploding [Hochreiter 1998].

An LSTM network consists of a series of LSTM cells, where each cell takes in an input, the hidden state
from the previous time step, and the cell state from the previous time step, and outputs a hidden state
and a cell state. The hidden state and the cell state are both used to make predictions in an LSTM. The
hidden state is updated at each time step based on the input at that time step and the previous hidden
state, while the cell state is updated based on the input at that time step and the previous cell state. The
hidden state can be thought of as a summary of the information that has been seen so far in the input
sequence, while the cell state can be thought of as the memory of the LSTM that retains information
over long periods of time. The hidden state can be used to make predictions about the next output at
each time step, while the cell state is used to maintain long-term dependencies in the input sequence.

The gates within each cell are responsible for controlling the flow of information into and out of the cell
state. There are three types of gates in an LSTM cell: the input gate, the forget gate, and the output
gate. The input gate determines which values from the current input will be stored in the cell state. The
forget gate determines which values from the previous cell state will be forgotten, and the output gate
determines which values from the cell state will be passed to the hidden state. The gates are implemented
as sigmoid or hyperbolic tangent neural networks, where the values of the gates are between 0 and 1.
The standard LSTM architecture is depicted in Figure 2.5, and uses the following notation:

• X : is an entire input trajectory
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• xt : is the input at time step t (xt = X[t])

• ht: is the hidden state vector also known as the output vector of the LSTM unit at time step t

• ct : is the cell state vector at times step t

• Ft: forget gate’s activation vector at times step t

• It: input/update gate’s activation vector at times step t

• Ot: output gate’s activation vector at times step t

Figure 2.5: Standard LSTM architecture. Here X is an entire input trajectory, xt is the input at time step t
(xt = X[t]), ht is the hidden state vector and ct is the cell state vector. F, I,O are the vectors associated with the
forget, update and output gates respectively.

Using the aforementioned notation we summarise the forward and back-propagation processes as fol-
lows [Hochreiter and Schmidhuber 1997]:

Forward propagation:

• At each time step t, the LSTM takes in an input vector xt, the previous hidden state ht−1, and the
previous cell state ct−1, and produces a new hidden state ht and a new cell state ct.

• The input vector xt is combined with the previous hidden state ht−1 to form an input gate activa-
tion vector It, and with the previous cell state ct−1 to form a forget gate activation vector Ft and
an input modulation vector C̃t.

• The input gate activation vector It controls how much of the input vector xt is passed through to
the cell state ct, while the forget gate activation vector Ft controls how much of the previous cell
state ct−1 is retained in ct.

• The input modulation vector C̃t is used to update the cell state, and is obtained by applying a
hyperbolic tangent activation function to the weighted sum of the input vector xt and the previous
hidden state ht−1.

• The new cell state ct is obtained by combining the input modulation vector C̃t with the previous
cell state ct−1 using the forget gate activation vector Ft.

• Finally, the output gate activation vector Ot is obtained by applying a sigmoid activation function
to the weighted sum of the input vector xt and the previous hidden state ht−1, and the new cell
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state ct is passed through a hyperbolic tangent activation function to produce the new hidden state
ht.

Backward propagation:

• The gradients of the output loss with respect to the output gate activation vectors, the new hidden
states, and the new cell states are computed.

• These gradients are used to compute the gradients of the loss with respect to the output modulation
vector, the input gate activation vector, the forget gate activation vector, and the input vector.

• The gradients of the loss with respect to the cell state are computed by combining the gradients
from the output modulation vector and the forget gate activation vector, and these gradients are
backpropagated through the hyperbolic tangent activation function to compute the gradients with
respect to the weighted sum of the input vector and the previous hidden state.

• Finally, the gradients with respect to the input vector, the previous hidden state, and the previous
cell state are computed by combining the gradients from the input gate activation vector and the
forget gate activation vector, and these gradients are backpropagated through the weight matrices
to compute the weight gradients.

In a time series prediction task, the final hidden state can be used to predict the next value in the time
series, while the cell state can be used to maintain long-term dependencies in the time series.

2.4.2 Gated Recurrent Unit (GRU)

Another variation of an RNN is a GRU, which stands for Gated Recurrent Unit, which similarly to an
LSTM uses a gating mechanism to combat vanishing and exploding gradients [Dey and Salem 2017].
A GRU has two gates: a reset gate and an update gate, as seen in Figure 2.6. The reset gate determines
how much of the previous hidden state is forgotten, and the update gate determines how much of the
previous hidden state is used to update the current hidden state.

Figure 2.6: Standard GRU architecture. Here X is an entire input trajectory, xt is the input at time step t
(xt = X[t]) and ht is the hidden state vector. R,Z,O are the vectors associated with the reset, update and output
gates respectively.

The forward propagation step is outlined below using the following notation [Chung et al. 2014]:

• X : is an entire input trajectory
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• xt : is the input at time step t (xt = X[t])

• ht−1 is the previous hidden state

• ht is the current hidden state

• h′t is the candidate hidden state

• Wr: weights associated with the input for the reset gate

• Wz: weights associated with the input for the update gate

• Ur: weights associated with the previous hidden state for the reset gate

• Uz: weights associated with the previous hidden state for the update gate

• br: bias term for the reset gate

• bz: bias term for the update gate

• rt: output of the reset gate

• zt: output of the update gate

The forward propagation step requires calculating the current hidden state (ht) using Equation 2.10 as a
weighted sum of the previous hidden state (ht−1) and a candidate hidden state (h′t), where the weights
are determined by the reset and update gates. The candidate hidden state is computed using Equation
2.9 with the current input and the previous, “resetted” hidden state. Formally, the reset gate rt and
update gate zt outputs at time step t are computed using Equations 2.7 and 2.8. In a GRU, the reset gate
output rt is a vector that determines how much of the previous hidden state ht−1 should be forgotten
or remembered [Chung et al. 2014]. It takes as input the current input xt and the previous hidden state
ht−1, and outputs a value between 0 and 1 for each element in the hidden state vector. A value of 0
means that the corresponding element in the previous hidden state should be completely ignored, while
a value of 1 means that the corresponding element should be fully used. The reset gate allows the
model to selectively reset parts of the hidden state that are no longer relevant to the current input, while
retaining useful information from previous time steps. The update gate output zt is a value between 0
and 1 that determines how much of the previous hidden state ht−1 should be used to compute the current
hidden state ht [Chung et al. 2014]. When the update gate activation is close to 1, it means that the
model should rely heavily on the previous hidden state, and when it is close to 0, it means that the model
should mostly rely on the candidate hidden state h′t computed in Equation 2.9.

rt = sigmoid(Wr · xt + Ur · ht−1 + br) (2.7)

zt = sigmoid(Wz · xt + Uz · ht−1 + bz) (2.8)

h′t = tanh(W · xt + U · (rt · ht−1) + b) (2.9)

ht = (1− zt) · ht−1 + zt · h′t (2.10)

2.4.3 Bidirectional RNN

Bidirectional recurrent neural networks (BRNN) are a variation to standard RNNs which connect two
hidden layers of opposite directions to the same output [Schuster and Paliwal 1997]. By adding this
additional connection the output layer can utilise information from the past (backward) as well as the
future (forward) states simultaneously. BRNNs, as depicted in Figure 2.7, were introduced to increase
the amount of input information available to the network. By processing a sequence in both forward
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and backward directions, a BRNN can capture dependencies and patterns that may not be apparent from
a unidirectional approach. For example, in natural language processing tasks, a BRNN can use infor-
mation from both the preceding and following words to better understand the context and meaning of a
particular word. This can lead to improved accuracy and performance on various sequence modelling
tasks, including speech recognition, sequence labelling, and language translation [Sundermeyer et al.
2014].

Another benefit of BRNNs is that they can help to mitigate the vanishing gradient problem, which is a
common issue with traditional RNNs. Because a BRNN processes a sequence in both directions, it can
learn representations that are more robust to vanishing gradients, as information from both directions
can help to reinforce important features and gradients [Bahad et al. 2019].

Figure 2.7: Comparison between unidirectional and bidirectional RNN architectures

Similar training algorithms can be used for BRNNs and RNNs since the directional neurons do not in-
teract. However, additional processes are required for back-propagation through time because input and
output layer updates cannot be simultaneous. The general training procedure involves passing forward
and backward states first during the forward pass, followed by the output neurons. During the backward
pass, the output neurons are passed first, followed by the forward and backward states. After complet-
ing the forward and backward passes, the weights are updated [Schuster and Paliwal 1997]. Overall all
forms of RNNs are powerful tools for automatic advice generation because they are capable of handling
sequential data, capturing context, and adapting to changing conditions over time. These are necessary
features when looking to generate advice from trajectory information in an online fashion.

2.5 Autoencoders

An autoencoder is a type of neural network that learns to reconstruct its input (Xi ∈ D) by compress-
ing it into a lower-dimensional representation (Zi) and then expanding it back to its original size (X ′

i)
[Bourlard and Kamp 1988]. An autoencoder is an important type of neural network that is used for unsu-
pervised learning, meaning it does not require labelled data. The autoencoder architecture comprises an
encoder network that is interconnected with a decoder network, alongside a loss function that measures
the dissimilarity between the input and output data. The encoder and decoder components function as
follows:
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• The encoder takes in the input and produces a compressed representation, or “code”, of the input.
This is usually done by applying a series of linear and nonlinear transformations to the input, grad-
ually reducing its dimensions. The code produced by the encoder is then passed to the decoder.

• The decoder takes the compressed code and reconstructs the original input. This is because the
objective of an autoencoder is to learn a compressed representation of the input data in a lower-
dimensional space while preserving as much information as possible. By doing so, the decoder can
reconstruct the original input data from the compressed code with minimal loss of information.
It does this by applying a series of linear and nonlinear transformations to the code, gradually
expanding it back to the original size of the input. The output of the decoder should ideally be a
close approximation of the original input.

The processing of the encoder and decoder network is illustrated in Figure 2.8

Figure 2.8: Standard Autoencoder Architecture

During training, the autoencoder is optimized to minimize the difference between the input and its
reconstructed output. This is typically done using a loss function such as mean squared error (MSE)
seen in Equation 2.11 where θ and ϕ are the parameters associated with the weights of the encoder and
decoder respectively. Here xi and x′i represents the value at the i-th time-step from the original trajectory
X and the reconstructed trajectory X ′ respectively, with m being the length of both.

L(θ, ϕ) =
1

m

m∑
i=1

∥xi − x′i∥22 (2.11)

By minimizing this loss, the autoencoder learns to encode and decode the input in a way that is most
useful for reconstructing the original data. It is primarily used for dimensionality reduction [Wang et
al. 2016], feature extraction [Meng et al. 2017], and anomaly detection [Gong et al. 2019]. It is also
used as a pretraining step for other neural networks, as the learned encoding can be used as a feature
representation for downstream tasks [Sagheer and Kotb 2019].

2.5.1 Variational Autoencoders

A variational autoencoder (VAE) is a type of generative model that can learn to generate new samples
similar to a set of training data [Kingma and Welling 2013]. The VAE consists of an encoder network
and a decoder network, both of which are typically implemented as neural networks. However, unlike
a traditional autoencoder, the VAE is a probabilistic model, which means that it generates a distribution
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of encodings for each input data sample. Specifically, the encoder maps the input data to a probability
distribution over the latent space, and the decoder samples from this distribution to reconstruct the
original data. This allows VAEs to learn a continuous and smooth latent space that can be used to
generate new data points by sampling from the learned distribution [Bowman et al. 2015].

During training, the VAE learns to regularize the distribution of generated encodings so that it closely
approximates a prior distribution, which is usually a standard normal distribution. This is done by
minimizing the KL divergence between the encoder’s distribution and the prior distribution as seen
in Equation 2.12, which encourages the VAE to learn a smooth and continuous latent space. Here θ
and ϕ are the parameters associated with the weights of the encoder and decoder respectively and M
corresponds to the number of sampled encodings. Additionally, DKL(qθ(Zi,m | Xi)∥pϕ(Zi)) represents
the KL divergence between the posterior distribution qθ(Zi,m | Xi) of the latent variable Z given an
input Xi and the prior distribution pϕ(Zi) of Z. In this case, qθ(Zi,m | Xi) represents the distribution
of the latent variable Z given input xi, which is modelled by the encoder with parameters θ. Here,
m is an index used to represent the mth sampled encoding of Z. The equation represents the average
KL divergence loss over all M sampled encodings of Z, which is used to regularize the latent space
during training. The lower the KL divergence loss, the closer the learned distribution of Z is to the prior
distribution, and hence, the better the model is at generating new data samples from the latent space.

L(θ, ϕ) =
1

M

M∑
m=1

DKL(qθ(Zi,m | Xi)∥pϕ(Zi)) (2.12)

The VAE can then be used to generate new data samples by sampling encodings from the prior distri-
bution and passing them through the decoder network. The decoder network maps each “code” to a
corresponding output sample, which can be a new image, sound, or any other type of data. Overall,
the VAE is a powerful generative model that can learn to generate new data samples with high fidelity
to the training data, while also learning a meaningful and continuous latent space that can be used for
tasks such as data compression [Graving and Couzin 2020], visualization [Fortuin et al. 2018], and
manipulation [Hu et al. 2019].

2.5.2 Attention

Attention is a mechanism in machine learning and natural language processing that allows a model to
selectively focus on certain parts of the input or output sequence [Vaswani et al. 2017]. In the context
of sequence-to-sequence models such as neural machine translation or text summarising [Ghader and
Monz 2017], attention helps the model to align the source and target sequences by assigning a weight to
each input token based on its relevance to the current output token.

At a high level, the attention mechanism works as follows:

• The model takes in an input sequence (e.g., a sentence in one language) and produces an encoding
of that sequence, typically using a recurrent neural network (RNN) or a transformer [Wolf et al.
2020].

• At each step of the decoding process (e.g., generating a word in the target language), the model
computes a set of attention weights that reflect the importance of each input token in producing
the current output token.

• These attention weights are used to weight the input encoding, producing a context vector that
summarizes the relevant parts of the input sequence for the current step of decoding.
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• This context vector is then concatenated with the previous output token and fed into the decoder
to generate the next output token.

The attention mechanism has become a key component of state-of-the-art natural language processing
models, as it enables the model to selectively focus on the most important parts of the input sequence and
can improve both the quality and speed of generation. The different types of autoencoders are essential
architectures that provide the foundation for the play-style identification approach. This is due to their
ability to be trained in an unsupervised manner, without the requirement of labelled data, enabling data
compression and making our clustering method viable. The components discussed in these sections
influenced the design of our play-style identification model described in Chapter 5.

2.6 Clustering

Sections 2.3, 2.4 and 2.5 focused on the different architectures relevant to the processing of temporal
information. The second component of this research is to be able to identify the different play-styles
present within a domain. To solve this problem, we implement a clustering-based approach to cluster
trajectories with respect to play-styles in an unsupervised fashion. For this reason, a background in
clustering is required.

Clustering is a machine learning technique that involves grouping a set of objects or data points into sub-
sets, or clusters, based on their similarity [Milligan and Cooper 1987]. Traditionally clusters have been
defined as groups with small distances between cluster members, dense areas of the data space, intervals
or particular statistical distributions [Williams 1971]. Clustering can be formalised as an unsupervised
learning problem where the goal is to find a partition of the data such that objects within the same cluster
are more similar to each other than to objects in different clusters.

Formally, given a set of n data points X = {x1, x2, ..., xn}, the goal of clustering is to find a partition
P = {P1,P2, · · · ,Pk}, where k is the number of clusters, and each Pi is a subset of X such that:

• The union of all the clusters equals the entire data set, i.e., P1 ∪ P2 ∪ · ∪ Pk = X .

• Each cluster is non-empty, i.e., Pi ̸= ∅∀i.

• Objects within the same cluster are more similar to each other than to objects in different clusters.

Clustering can be performed using various algorithms such as k-means [Edwards and Cavalli-Sforza
1965], hierarchical clustering [Murtagh and Contreras 2012] and density-based clustering [Kriegel et al.
2011]. These algorithms typically involve defining a distance or similarity metric between objects, and
then partitioning the data based on this metric [Grabusts 2011].

The resulting clusters can be evaluated using various metrics such as the within-cluster sum of squares
(WCSS), silhouette score, or entropy. The analysis plays a vital role in uncovering interpretable prop-
erties of the clusters. Cluster analysis is not a deterministic task, but rather an iterative process of
knowledge discovery or interactive multi-objective optimisation that involves experimentation and re-
finement, as noted by Chowdary et al. [2014] in their evaluation. Clustering is used in a wide range
of applications, including image processing [Coleman and Andrews 1979], text mining [Allahyari et
al. 2017], bioinformatics [Masood and Khan 2015], and recommendation systems [Sarwar et al. 2002].
Overall, clustering is a useful tool for play-style identification in video games, as it can allow for the
identification of common patterns and behaviours among players.
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2.6.1 K-Means

K-means clustering is a centroid-based clustering method of vector quantization, that aims to partition
a set of N data points (D = {X1, X2, · · · , XN}) into k clusters, where k is a pre-specified number
[Edwards and Cavalli-Sforza 1965].

The algorithm iteratively assigns each data point to the nearest cluster center and then updates the cluster
centers based on the mean of the data points in each cluster. Due to its ubiquity, it is often called “the
k-means algorithm” [Edwards and Cavalli-Sforza 1965]. Given an initial set of k-means also known as
centroids ({C(1)1 , ..., C(1)k }) the algorithm proceeds by alternating between two steps:

• Assignment step: Assign each data point to the cluster whose mean has the least squared Euclidean
distance; this is intuitively the “nearest” mean. Here i is used to identify a particular cluster.

P(t)
i =

{
Xp : ||Xp − Cti ||2 ≤ ||xp − Ctj ||∀1 ≤ j ≤ k

}
(2.13)

where each Xp is assigned to exactly one partition P(t). In general, Equation 2.13 compares the
distance from Xp to its current nearest mean Cti with the distance to all other means Ctj .

• Update step: Calculate the new means (centroids) of the observations in the new clusters.

Ct+1
i =

1

|P(t)
i |

[ ∑
Xj∈P

(t)
i

Xj

]
(2.14)

The k-means algorithm aims to minimise the sum of squared distances between each data point and
its assigned cluster center. This objective function is also known as the within-cluster sum of squares
(WCSS) [Edwards and Cavalli-Sforza 1965]. The algorithm has converged when the assignments no
longer change, however, it does not guarantee finding the optimum [Hartigan and Wong 1979].

The resultant cluster assignments can be used to visualise the partitioning of data by utilising a math-
ematical technique called Voronoi diagrams or Voronoi tessellations [Ying et al. 2015]. Specifically,
Voronoi diagrams are a partitioning of a given space into regions based on the distance to a specific set
of objects in that space. Each region, called a Voronoi cell or Voronoi region, consists of all the points in
space that are closer to a particular object than to any other object in the set. Formally, given a set of N
points in a d-dimensional space, denoted as D = {X1, X2, · · · , XN}, the Voronoi cell of a point Xi is
defined as the set of all points in space that are closer to Xi than to any other point inD. Mathematically,
the Voronoi cell of Xi can be expressed by Equation 2.15.

Vi = G ∈ Rd | dist(G,Xi) ≤ dist(G,Xj) for all j ̸= i (2.15)

where dist(X,G) denotes the Euclidean distance between points X and G in the d-dimensional space.
Therefore, the Voronoi diagram is the collection of all Voronoi cells associated with the set of N points
D as seen in Figure 2.9.
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Figure 2.9: 20 points and their Voronoi cells

.

2.6.2 GMM

Gaussian Mixture Models (GMM) are a probabilistic model used for clustering, which assumes that the
underlying data distribution is a mixture of multiple Gaussian distributions [He et al. 2010]. A GMM
is a generative model that models the data distribution as a weighted sum of k-Gaussian components,
where k is the number of clusters. This is formally shown in Equation 2.16 where the parameters
are Θ = (α1, . . . , αk, θ1, . . . , θk) such that Σk

i=1αi = 1 and each pi is a Gaussian density function
parameterized by θi.

P (x | Θ) =
k∑

i=1

αipi(x | θi) (2.16)

To fit the GMM model to the data, we first initialize the parameters of the k Gaussian components
(mean, covariance, and weight) randomly. Here we look to find Θ such that p(X | Θ) is a maximum
otherwise known, as the maximum likelihood (ML) [Myung 2003]. The log-likelihood function is
typically introduced to estimate Θ, defined in Equation 2.17.

L(Θ) = logP (X | Θ) = log

m∏
i=1

P (xi | Θ) =

m∑
i=1

log
[ k∑
j=1

αjpj(xi | θj)
]

(2.17)

Then we use the Expectation-Maximization (EM) algorithm to estimate the parameters iteratively [Bishop
and Nasrabadi 2006]. In the E-step, we compute the posterior probability of each data point belonging
to each of the k Gaussian components, based on the current parameters. This step involves calculating
the likelihood of the data point given each Gaussian component and normalizing the probabilities across
all the components. In the M-step, we update the parameters of each Gaussian component based on the
posterior probabilities computed in the E-step. Specifically, we update the mean and covariance of each
Gaussian component based on the weighted sum of the data points, where the weight is the posterior
probability of the data point belonging to that component. We also update the weight of each Gaussian
component based on the sum of the posterior probabilities of all data points. The EM algorithm iter-
ates between the E-step and M-step until the parameters of the Gaussian components no longer change
significantly between iterations. Once we have the fitted GMM model, we can use it for clustering by
assigning each data point to the Gaussian component with the highest posterior probability.
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GMM has several advantages over other clustering algorithms, including its ability to model non-
spherical clusters and estimate the uncertainty in cluster assignment using posterior probabilities. How-
ever, GMM is sensitive to the initialisation of the parameters and may converge to a local optimum, so
it is important to run the algorithm multiple times with different initializations to ensure a good solution
[Fraley and Raftery 1998]. Additionally, this is done to ensure that the degenerate infinite likelihood
solution is avoided, where a single point is covered by a single component with infinite height and zero
variance.

2.6.3 Self-organising maps

A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of NN that is trained
to produce a low-dimensional, discretized representation of the input space of the training samples. It
consists of a layer of neurons arranged in a grid-like topology, where each neuron is associated with a
weight vector that defines its position in the feature space. So far, the neural networks that have been dis-
cussed (Sections 2.3, 2.4) have utilised error-correction learning, such as back-propagation with gradient
descent. In contrast, self-organizing maps (SOMs) employ a different technique known as competitive
learning [Rumelhart and Zipser 1985]. The main difference between error-correction learning, such as
back-propagation, and competitive learning used in SOMs is the objective of the learning process.

In error-correction learning, the goal is to minimize the difference between the predicted output and
the true output, which is usually represented as a loss function. The algorithm updates the weights of
the neural network to minimize this loss function using methods such as gradient descent. This type
of learning is used for supervised learning tasks, where the network is trained on labelled data to make
predictions on new, unseen data [Amari 1993].

On the other hand, competitive learning, such as that used in SOMs, is an unsupervised learning method
where the goal is to find the structure in the input data. In competitive learning, the neurons compete
with each other to become the “winner” by being the closest to the input data point. The weights of the
winning neuron and its neighbours are then updated to move them closer to the input data point, and
the other neurons remain unchanged. The objective is to create a low-dimensional representation of the
high-dimensional input space by grouping similar inputs together in the same neuron [Rumelhart and
Zipser 1985].

The goal of learning in SOMs is to cause different parts of the network to respond similarly to certain
input patterns. This approach to learning is partially motivated by the human brain where different
types of sensory information are handled by different components of the cerebral cortex [Haykin 1994].
SOMs are a data-driven approach and therefore, for effective training, the network requires a large
number of example vectors. The process of training is outlined as follows with a formal description seen
in Algorithm 1:

• An example is fed to the network and the Euclidean distance to all weight vectors is computed
(line 4).

• The best matching unit (BMU) is determined. This unit is selected by comparing the example
vector to the weight vector of all other neurons. The neuron whose vector is most similar to the
input is, therefore, the BMU (line 5).

• The weights of both the BMU and the neurons in the neighbourhood of the BMU are adjusted
towards the input vector (lines 6 to 10).

• Through the training process, the magnitude in which the nodes are adjusted will decrease with
time and with grid-distance from the BMU (line 12).
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Algorithm 1 Self-Organizing Map Training
1: Initialize the SOM weight vectors W to random values in the feature space
2: Set the current iteration t to 0
3: while stopping criterion not met do
4: Randomly select an input data point X ∈ D
5: Find the neuron η∗ with the closest weight vector to X: η∗ = argmin

j

[
dist(X,wj)

]
6: Update the weight vectors of the neurons (η) in the neighbourhood of η∗:
7: for i = 1 to τ1 do
8: for j = 1 to τ2 do
9: Compute the neighbourhood function Ni,j(t)

10: Update the weight vector: wi,j(t+ 1) = wi,j(t) + αt · Ni,j(t) · (X − wi,j(t))

11: Increment the iteration: t← t+ 1
12: Update the learning rate: αt ← α0 · e−t/N

In this algorithm, τ1 and τ2 are the dimensions of the SOM grid, dist(X,wj) is the Euclidean distance
between the input data point X and the weight vector wj , αt is the learning rate at iteration t, α0 is the
initial learning rate, and N is a parameter that controls the rate of decrease of the learning rate. The
neighbourhood functionNi,j(t) is typically defined as a Gaussian function centered at the winning neu-
ron η∗, with a width that decreases over time. The stopping criterion can be based on various metrics,
such as the number of iterations, the magnitude of weight vector updates, or the change in the quanti-
zation error. The general concept behind self-organising maps is that during the training process, the
weights of the entire neighbourhood are updated in the same direction as seen in Figure 2.10. This is
because similar items tend to excite adjacent neurons. As a result, SOMs create a semantic map where
similar samples are grouped closely together, while dissimilar samples are placed further apart.

Figure 2.10: Illustration of SOM training procedure. The blue blob represents the distribution of the training data,
while a small white disc represents the current input data point drawn from that distribution. Initially, the nodes
of the SOM are randomly positioned in the data space, as shown on the left. During each iteration of the training
process, the SOM node that is closest to the current training datum is identified and highlighted in yellow. This
node is moved towards the input data point, and its neighbouring nodes on the grid are also updated to a lesser
extent. After many iterations, the grid tends to approximate the data distribution, as shown on the right.

This type of learning is used for clustering [Vesanto and Alhoniemi 2000], visualisation [Vesanto 1999],
and dimensionality reduction tasks [Huang et al. 2019], where the structure in the input data is not known
[Kohonen 1990]. The components discussed in these sections influenced the design of our play-style
identification model described in Chapter 5.
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2.7 Markov Decision Process

Although clustering can help us identify general trends such as play styles, it falls short in allowing us
to develop a model that can accurately predict behaviours at the level of individual actions. In contrast,
comprehending the notion of Markov decision processes (MDPs) is crucial for generating personalised
advice automatically. This is because MDPs provide a mathematical framework for modelling decision-
making problems in uncertain environments [Bellman 1957]. This framework is represented by the tuple
(S,A, P,R, γ) where:

• S is a finite set of states that the system can be in.

• A is a finite set of actions that the decision-maker can take.

• P is a state transition probability function that specifies the probability of moving from one state
to another state when an action is taken. It is defined as:

– P (s′|s, a) = Pr[st+1 = s′|st = s,At = a] where s, s′ ∈ S and a ∈ A.

• R is a reward function that assigns a scalar reward to each state-action pair. It is defined as:

– R(s, a) = E[Rt+1|st = s, at = a] where Rt+1 is the immediate reward received after taking
action a in state s.

• γ is a discount factor that determines the relative importance of immediate rewards versus future
rewards. It is a scalar value between 0 and 1, and is used to discount future rewards. The discount
factor is typically used to ensure convergence of the value function, which is a key component of
many algorithms used to solve MDPs.

The goal of an MDP is to find an optimal policy π∗ : S → A that maximises the expected cumulative
reward over time as defined in Equation 2.18:

π∗(s) = argmax
a

Q∗(s, a) (2.18)

where Q∗(s, a) is the optimal action-value function, which is defined as the maximum expected cumu-
lative reward that can be obtained by taking action a in state s, and then following the optimal policy
from the resulting state. It is given by the Bellman optimality defined in Equation 2.19:

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′ | s, a)max
a′

Q∗(s′, a′) (2.19)

Here max
a′

Q∗(s′, a′) is the maximum expected cumulative reward that can be obtained by taking any

action a′ in the resulting state s′, and then following the optimal policy from that state. The solution to
the Bellman optimality equation gives the optimal Q∗ function, which can be used to obtain the optimal
policy π∗. Alternatively, we can define a state-value function in Equation 2.20, denoted as V π(s), which
represents the expected cumulative reward starting from state s under a policy π.

V π(s) = Eπ

[ ∞∑
t=0

γtRt+1 | s0 = s

]
(2.20)

In Equation 2.20 Rt+1 is the immediate reward received at time t + 1, γ is the discount factor, and Eπ

denotes the expectation under the policy π. Similarly to Equation 2.18 we can find an optimal policy π∗

defined in Equation 2.21 using an optimal V ∗(s).
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π∗(s) = argmaxa

{∑
s′

P (s′|s, a)(R(s′|s, a) + γV ∗(s′))

}
(2.21)

Formally, the process of solving an MDP involves searching for the optimal policy π∗, the optimal
action-value function Q∗, or the optimal state-value function V ∗(s). This can be achieved using vari-
ous algorithms, including policy iteration [Lagoudakis and Parr 2003], Q-learning [Watkins and Dayan
1992], and value iteration [Bellman 1957]. Value iteration, Q-learning, and policy iteration are all
algorithms which fall under reinforcement learning to learn optimal decision-making policies in an en-
vironment.

2.8 Reinforcement Learning

Reinforcement learning is an approach in machine learning that enables an agent to learn through inter-
actions with an environment [Sutton and Barto 2018]. At the core of reinforcement learning lies MDPs,
which provide a mathematical framework for defining problems. The uncertainties in MDPs arise from
the fact that the probabilities or rewards are unknown. RL algorithms serve as a general method for
handling such Markovian problems. RL algorithms work towards achieving a complex objective or
optimising a metric by iteratively improving over many steps. In a gaming environment, the objective
could be to maximise the number of points scored, for example. The key challenge that RL addresses
is the correlation between immediate actions and the delayed rewards that they produce. Much like
humans, RL algorithms often need to wait for some time to see the consequences of their decisions.
To incentivise desirable behaviours, RL algorithms provide rewards while penalising undesirable ones.
This approach ensures that the agent learns through trial and error, receiving feedback for its actions in
the form of positive or negative rewards. By doing so, the algorithm can learn a policy that maximises
the expected cumulative reward over the long term. RL is used in many applications, including robotics,
game-playing, and autonomous control systems.

In reinforcement learning, an agent interacts with its environment over a series of discrete time steps
as seen in Figure 2.11. At each time step t, the agent receives the current state of the environment,
denoted by st, along with a reward rt associated with the previous action. The agent then selects an
action at ∈ A from the set of available actions, which is subsequently sent to the environment. The
environment responds by transitioning to a new state st+1 and generating a reward rt+1 associated with
the transition (st, at, st+1). The goal of the agent is to maximise the cumulative reward over a sequence
of time steps.

Figure 2.11: Illustration of the cycle of interaction between an RL agent and the environment 3
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Although RL has shown impressive success in various applications, such as game-playing, robotics,
and recommendation systems [Kaelbling et al. 1996] it often requires a large number of interactions
with the environment to learn an effective policy [Botvinick et al. 2019]. This can be time-consuming
and expensive, particularly for real-world applications. Additionally, RL algorithms can struggle to
generalise to new environments or tasks, particularly when the training data is limited or the new tasks
are significantly different from the training tasks [Cobbe et al. 2019]. We utilise reinforcement learning
in the generation of our Gridworld datasets described in Section 4.5.

2.8.1 Q-learning

Q-learning is a model-free reinforcement learning algorithm which is able to learn an optimal policy
which can be utilised to indicate what is the best action to perform in different situations [Watkins and
Dayan 1992]. It uses the Bellman equation previously defined in Equation 2.19 to iteratively estimate
the optimal action-value function Q∗(s, a) of an agent in an environment. The “Q-value” represents the
expected cumulative reward an agent will receive by taking a specific action a in a particular state s and
following an optimal policy thereafter. The optimal policy is the policy that maximises the expected
cumulative reward.

The Q-learning algorithm updates the Q-values for each state-action pair (s, a) based on the observed re-
ward and the estimated optimal Q-values for the next state-action pairs. The Q-learning update equation
can be written as:

Q(s, a) = Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.22)

where:

• Q(s, a) is the Q-value of the state-action pair (s, a)

• α is the learning rate, which determines to what extent newly acquired information overrides old
information. A factor of 0 makes the agent learn nothing (exclusively exploiting prior knowledge),
while a factor of 1 makes the agent consider only the most recent information (ignoring prior
knowledge to explore possibilities)

• r is the reward received for taking action a in state s

• γ is the discount factor, which controls the weight given to future rewards. A factor of 0 will
make the agent short-sighted by only considering current rewards, while a factor approaching 1
will make it strive for a long-term high reward.

• s′ is the next state reached by taking action a in state s

• a′ is the optimal action in state s

Formally, the entire learning process, as described in Algorithm 2, involves iteratively updating the Q-
values until they converge to Q∗(s, a), which represents the optimal table of Q-values. This iterative
update is performed over a number of episodes. The optimal policy is thus to always perform the action
which corresponds to the highest Q-value in a particular state.

3https://medium.com/analytics-vidhya/reinforcement-learning-machines-learning-by-interacting-with-the-world-
64e5862dbf19

29



Algorithm 2 Q-learning Algorithm
Initialise Q-value table Q(s, a) for all states s and actions a
for each episode do

Initialise starting state s
while s is not terminal do

Choose action a using an exploration/exploitation policy based on Q(s, a)
Take action a and observe reward r and new state s′

Update Q-value of current state-action pair using the formula:

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
Update current state to new state s′

Exploration and exploitation are two important concepts in reinforcement learning which impacts action
selection as seen in Algorithm 2. Exploration refers to the process of selecting actions that are not nec-
essarily optimal in order to gain more information about the environment. By exploring, an agent can
learn about the rewards associated with different actions and improve its policy over time. Exploitation,
on the other hand, involves selecting actions that are believed to be optimal based on the current policy.
By exploiting, an agent can maximise its expected reward in the short term. In Q-learning, a balance be-
tween exploration and exploitation is achieved by using an epsilon-greedy strategy. This means that with
probability epsilon, the agent selects a random action (exploration), while with probability 1-epsilon, it
selects the action with the highest Q-value (exploitation). The value of epsilon is gradually reduced over
time, allowing the agent to shift from exploration to exploitation as it becomes more confident in its
estimates of the Q-values [Coggan 2004].

One of the major advantages of this approach, to solving for optimal policies, is that it does not require
a model of the environment. Q-learning is able to handle problems with stochastic transitions and
rewards in part because of the use of discounted rewards. The discount factor allows the agent to assign
more importance to immediate rewards and less importance to uncertain future rewards. Additionally,
the agent is able to learn from the stochasticity of the environment through the process of Temporal
Difference Learning, where it updates its estimates of the value of each action based on the difference
between the observed reward and the expected reward, and adjusts its estimates accordingly. Q-learning
is, therefore, able to obtain optimal policies for any problem which can be represented as a finite MDP
[Melo et al. 2008].

2.8.2 Deep Q Networks

Recent breakthroughs in computer vision and speech recognition have relied on efficiently training deep
neural networks on very large training sets. The most successful approaches are trained directly from the
raw inputs, using lightweight updates based on stochastic gradient descent. By feeding sufficient data
into deep neural networks, it is often possible to learn better representations than handcrafted features
[Krizhevsky et al. 2012]. Deep Q Networks (DQNs) are a type of deep reinforcement learning algorithm
used for solving complex decision-making tasks [Mnih et al. 2013]. DQNs use a combination of neural
networks and Q-learning to learn an optimal policy for an agent in an environment. This variation of
Q-learning replaces the traditional state-action table with a neural network to handle large-scale tasks,
which may involve a vast number of possible state-action pairs. By using a parameterized function, the
agent can generalize its Q-value estimates to unseen state-action pairs, based on the learned patterns
from the training data. This allows the agent to handle large state spaces with high-dimensional inputs,
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such as images or raw sensor data. The function approximation approach involves training a neural net-
work to predict the Q-values of state-action pairs, based on the agent’s experience. The neural network
takes the state as input and outputs the predicted Q-values for all possible actions. During training, the
agent interacts with the environment and updates the parameters of the neural network using stochas-
tic gradient descent to minimize the difference between the predicted Q-values and the actual Q-values
obtained from the Bellman equation (Equation 2.19).

Along with the same standard Q-learning components described in Section 2.8.1, DQNs also utilise
a technique known as experience replay [Lin 1993]. Here the agent’s experiences at each time-step,
ϵt = (st, at, rt, st+1) are stored in a data-set D = ϵ1, ..., ϵN , which is pooled over many episodes into
a replay memory. Algorithm 3 represents the process of training a Deep Q Network. During the inner
loop of the algorithm, a Q-learning style update is applied to samples of experience, which are drawn
randomly from the pool of stored samples. After performing experience replay, the agent selects and
executes an action according to an epsilon-greedy policy.

Algorithm 3 Deep Q-learning with Experience Replay
1: Initialise replay memoryM to some fixed capacity
2: Initialise action-value function Q with random weights θ
3: Initialise target action-value function Q̂ with weights θ− = θ
4: for episode = 1 to ρ do
5: Initialise state s1
6: for time step t = 1 to m do
7: With probability ϵ select a random action at, otherwise select at = argmaxaQ(st, a; θ)
8: Execute action at in the environment and observe reward rt and next state st+1

9: Store transition (st, at, rt, st+1) inM
10: Sample a minibatch of transitions (sj , aj , rj , sj+1) fromM
11: Set yj = rj + γmaxa′ Q̂(sj+1, a

′; θ−)
12: Perform a gradient descent step on (yj −Q(sj , aj ; θ))

2 with respect to the network parame-
ters θ

13: Every ϱ steps, update the target network: θ− ← θ

In this algorithm, ρ is the number of episodes to train, m is the maximum number of time steps per
episode, ϵ is the exploration probability, γ is the discount factor, and ϱ is the number of steps between
target network updates. Q(st, at; θ) and Q̂(st, at; θ

−) are the action-value functions with weights θ and
θ−, respectively, and yj is the target value for the jth transition.

2.9 Imitation Learning

Imitation learning is a type of machine learning where an agent learns to perform a task by imitating the
behaviour of an expert [Schaal 1996]. The basic idea behind imitation learning is to learn a policy which
maps between sensory input and actions that is similar to the mapping used by the expert.

The process of imitation learning typically involves three main steps:

• Data collection: A dataset is collected that contains examples of the expert performing the task.
This dataset is used to train the imitation learning algorithm.

• Learning a policy: The imitation learning algorithm uses the dataset to learn a policy that maps
sensory input to actions. This policy is designed to mimic the behaviour of the expert as closely
as possible.
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• Deployment: The learned policy is deployed in a new environment, where the agent attempts to
perform the task based on its sensory input.

Imitation learning can be applied in a variety of settings, including robotics [Schaal 1999], video games
[Tencé et al. 2010], and natural language processing [Duvallet et al. 2013]. One of the main advantages
of imitation learning is that it can allow agents to quickly learn complex behaviours without requiring
extensive trial and error exploration. However, imitation learning also has some limitations. For exam-
ple, it can be difficult to ensure that the learned policy is robust to variations in the environment or task.
Additionally, imitation learning may not be well-suited to tasks that require creative or novel solutions,
as the agent is simply imitating the behaviour of the expert rather than generating new solutions on its
own. Imitation learning is particularly useful in scenarios where it is difficult or time-consuming to man-
ually design optimal policies or rules [Schaal 1996]. Instead, by learning from expert demonstrations,
imitation learning can automatically generate effective policies that are tailored to specific play-styles.
We utilise this feature as it allows for the efficient learning of expert policies.

2.9.1 Behavioural Cloning

Behaviour Cloning (BC) has been utilised for different video game environments using datasets of
demonstrations and is a form of imitation learning [Gorman and Humphrys 2007], [Harmer et al. 2018],
[Jacob et al. 2022]. Here an agent learns to exhibit a demonstrated behaviour by mimicking actions
a ∈ A the set of all actions. The idea is to use an expert to demonstrate desired behaviour instead
of using a domain expert to design fined-grained rewards. Formally, the network is allowed to learn
and adjust its policy to align with the actions demonstrated by an expert. These actions correspond
to the actions that an expert demonstrator would take when presented with an observed state x ∈ X ,
where X represents the entire trajectory. For our models, a trajectory is defined as a sequence of states
(x0, x1, . . . , xm) where m is the length of the trajectory as in Equation 2.1. Learning, therefore, requires
a dataset (D = {X0, X1, . . . , XN} where N is the number of trajectories) of demonstrated behaviour
representative of a policy (π). A loss function is utilised for behavioural cloning; these include cross-
entropy or mean squared error to measure the distance between the predicted and demonstrated actions.
The model can then be trained by optimising the following equation:

min
θ

1

m

m∑
i=1

L(f(xi; θ), ai) (2.23)

Here θ represents the parameters of the model, xi and ai are the input and target action of the i-th
training example, f(xi; θ) is the predicted output of the model given input xi and parameters θ, L is a
loss function that measures the difference between the predicted output and the true output, and N is the
number of training examples. The objective is to find the set of parameters θ that minimise the average
loss over the training set. This reduces the problem of learning sequential action sequences to a highly
efficient supervised learning task [Bakker et al. 1996]. After training, the optimal parameters (θ∗) of the
model can be used to obtain the optimal policy (π∗) as seen in the following equation:

π∗(x) = f(x; θ∗)) (2.24)

We opted to utilise behavioural cloning in our framework due to its wide usage and ability to replicate
observed behaviours, which is a key feature of our model as discussed in Chapter 7.
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Chapter 3

Related Work

Chapter 2 detailed the architectures and concepts required for the understanding of the underlying com-
ponents of our solution. In this chapter, we explore several related fields to provide a comprehensive
understanding of automatic tailored advice generation and the proposed solutions. In particular, under-
standing work in the fields of advice generation, play-style identification, player modelling, and imitation
learning can be crucial for designing effective automatic tailored advice generation systems with a focus
on video games.

Section 3.1 on advice generation provides a starting point for understanding the current state of the art
in the field. This includes a review of different approaches to generating advice, such as rule-based
systems, collaborative filtering, content-based filtering, and machine learning algorithms.

Section 3.2 on play-style identification is relevant for the understanding of how to personalize advice
based on the unique playing style of individual users. This section explores different techniques for
identifying play styles, such as clustering algorithms or analysis of game logs, and discusses how play-
style identification can be integrated into advice generation systems.

Section 3.3 on player modelling provides insights into how to generate personalised advice based on
individual player behaviour. This involves reviewing different player modelling techniques, such as
Markov models, Bayesian networks, and decision trees.

Section 3.4 on imitation learning provides a relevant understanding of how to mimic the behaviour of
expert players, useful for identifying opportunities for improvement. This includes different approaches
to imitation learning, such as inverse reinforcement learning, apprenticeship learning, and deep rein-
forcement learning.

3.1 Giving Advice

The problem of advice generation is a computational problem that involves generating personalised rec-
ommendations or advice for a user based on their preferences, past behaviour, and other relevant factors.
The goal of advice generation is to provide helpful and relevant guidance to users in various contexts,
such as recommending products, suggesting courses of action, or providing support for decision-making.
Researchers from different fields such as psychology [Harvey et al. 2000], counselling [Vehvilainen
2001], philosophy [Herrmann 2022], and communication [Garvin and Margolis 2015] have studied this
issue. In particular, Garvin and Margolis [2015] investigated the dynamics of giving and receiving ad-
vice, providing practical tips on how to communicate effectively and constructively. Our investigation
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aims to employ an automated mode of advice generation to differentiate between a user and their corre-
sponding expert, as opposed to prioritising the method of communication.

Automatic advice generation refers to the use of artificial intelligence (AI) and machine learning (ML)
techniques to provide personalised advice or recommendations to individuals. It involves the use of
algorithms that analyse data about the person seeking advice, such as their preferences, goals, and past
behaviour, to generate tailored advice. We look to utilise a suite of different ML approaches to generate
advice. The general issue of generating effective advice is analogous to the challenge of interpretability
associated with deep learning. Although significant advancements have been made in deploying deep
learning algorithms that achieve expert-level performance, in the domains of classification such as He
et al. [2016], Mensink et al. [2021] and Krizhevsky et al. [2012] as well as in learning such as Mnih
et al. [2015] and Silver et al. [2017], concerns have been raised regarding their lack of interpretability.
However, if we are to use such techniques to generate useful applicable advice then we require a better
understanding of how and why these algorithms produce the results they do. In regards to the question
of “how”, there has been research which has been dedicated to answering this question in the realm of
deep image classification [Fong and Vedaldi 2017; Ribeiro et al. 2016; Simonyan et al. 2013; Zhang
et al. 2018]. However, when it comes to deep reinforcement learning networks, there is significantly
less literature that delves into explaining the “how” aspect. Despite attempts to explain the behaviour of
deep RL agents through the observation of policies, such approaches are becoming less reliable as envi-
ronmental complexities intensify. Consequently, more sophisticated methods are necessary to generate
satisfactory explanations.

One of the approaches which have been used are Jacobian Saliency Maps which were implemented in
Wang et al. [2015] to identify which regions of the world returned the strongest signal in Atari2600
games. Saliency has also been applied to natural language, where Arras et al. [2017] trained a word-
embedding-based convolutional neural network to be able to identify the importance individual words
have on classifying text documents. However, the Jacobian style of saliency generation has been criti-
cised for its generally poor quality [Kindermans et al. 2017]. This problem was addressed by Greydanus
et al. [2017] who implemented a perturbation-based technique which performed well in reducing the
noise of the map generated. Greydanus et al. [2017] utilised this visualisation as a way to better un-
derstand the Atari agents. A benefit of these less noisy maps is that non-experts can easily identify
and understand why the agent is acting a particular way. This approach falls short, however, as it does
not provide the observer with any contextual information pertaining to why different regions are impor-
tant. Greydanus et al. [2017] identified that their approach should be applied in conjunction with other
techniques of explanation extraction in order to satisfy human users.

This idea of a suite of machine learning techniques that produce both expert performing models but
also more explainable models is echoed by Gunning [2017]. Three channels for explainability were
identified in their roadmap to Explainable Artificial Intelligence (XAI):

• Deep Explanation – where deep learning techniques are modified to learn explainable features.

• Interpretable Models – which involves techniques to learn more structured, interpretable, casual
models.

• Model Induction – which is the technique of inferring an explainable model from any model.

This roadmap outlined the current state of XAI and described the various approaches and aspects a
number of institutions will be tackling in the years to come. Gunning [2017] also featured Ramanishka et
al. [2017] which addressed the problem of contextual information in saliency maps. They implemented
a system called Caption-Guided Visual Saliency which could produce attention values for still images or
videos. Their model estimates both a temporal and a spatial mapping between input and output using a
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base LSTM encoder-decoder model by recovering the implicit attention from the model. The benefit of
their model was twofold; firstly it generated more accurate heat maps while maintaining good captioning
and secondly it could be used to understand a wide variety of encoder-decoder architectures. The basis of
Ramanishka et al. [2017]’s LSTM encoder-decoder model was built on that of Venugopalan et al. [2014]
who implemented an end-to-end deep LSTM model for the video-to-text generation that simultaneously
learnt a latent “meaning” state. Malinowski et al. [2015] also utilised the idea of LSTMs in order to
generate a system that was capable of answering natural language questions based on images. The results
generated from the application of saliency maps could be applied to help identify the characteristics of
play-styles that we try to identify in our strategy generator as discussed in Section 4.1. In a parallel
fashion, where Ramanishka et al. [2017] and Venugopalan et al. [2014] employed LSTM-based encoder-
decoder models for video-to-text generation and latent meaning discovery, our model similarly leverages
this architecture to learn patterns and characteristics of gameplay trajectories, ultimately offering tailored
guidance to players.

Gunning [2017] also featured Hu et al. [2017] and Andreas et al. [2016] which represent another ap-
proach to the problem of explainability making use of the idea of decision trees. Hu et al. [2017] utilised
the concept of Neural Module Networks (NMN) which was proposed by Andreas et al. [2016]. This
NMN architecture makes it possible to answer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically composed into deep networks based on linguistic
structure. This is a similar problem to that of Malinowski et al. [2015]. However, with NMN they
showed that it achieves state-of-the-art performance on existing datasets for visual question answering.
Hu et al. [2017] noted that although Andreas et al. [2016] learnt a dynamic structure for their NMN it
only incorporated a limited form of layout prediction by learning to rerank a list of three to ten can-
didates, again generated by rearranging modules predicted by a dependency parse. This is a serious
limitation because off-the-shelf language parsers are not designed for language and vision tasks and
must, therefore, be modified using handcrafted rules that often fail to predict valid layouts [Johnson et
al. 2017]. The approach of Hu et al. [2017] learns to optimize over the full space of network layouts
rather than acting as a re-ranker and requires no parser at evaluation time. Their model uses a set of neu-
ral modules to break down complex reasoning problems posed in textual questions into a few sub-tasks
connected together, and learns to predict a suitable layout expression for each question using a layout
policy implemented with a sequence-to-sequence RNN.

An alternate approach to explainability was the idea of rationale generation proposed by Ehsan et al.
[2018a] in which they created a system which would generate rationales of autonomous system be-
haviour as if humans had performed the behaviour. Ehsan et al. [2018a] used neural machine translation
to translate internal state-action representations of an autonomous agent into natural language. Their
technique required a training corpus that consisted of state-action pairs manually annotated with natural
language explanations. They fed their training corpus through an LSTM encoder-decoder model which
learned to translate the (state, action, annotation) information into a natural language rationale. Ehsan
et al. [2018a] showed that creating rationalizations using neural machine translation techniques pro-
duces rationalizations with accuracies above baselines. Additionally, they showed that rationalizations
produced using this technique were more satisfying to humans than the other tested alternative means
of explanation. The testing and analysis of Ehsan et al. [2018a] were expanded upon in Ehsan et al.
[2018b]. Here Ehsan et al. [2018b] looked to determine the robustness of the rationale generator by hid-
ing some of the state that was fed into the model. Additionally, they expanded their qualitative analysis
where they used human participants to judge the rationale. This time they instructed the participants to
rate the rationale using a 5-factor metric. The rationales generated by their technique were judged better
than those of random baselines and close to matching the upper bound of human rationales.
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All these approaches have focused on generating some understanding or rationale behind the actions
produced by the learned model. However, in terms of our goal of creating an advice giver, having the
rationale is only half the problem. The other half is to be able to convert that rationale into a form which
individual users can utilise to better their performance. In order to accomplish this additional task,
we draw on knowledge from the work done in intelligent tutoring systems (ITSs). ITSs are computer-
based instructional systems with models of instructional content that specify what to teach, and teaching
strategies that specify how to teach [Wenger 2014]. ITSs have moved out of the lab and into classrooms
and workplaces where some have been shown to be highly effective [Shute 1991; Graesser et al. 2012].
While intelligent tutors are becoming more common and proving to be increasingly effective they are
difficult and expensive to build. However, with the progress in cognitive science and the development
in the theory of cognition [Anderson 2013], researchers have been able to design better ITSs such as
the geometry tutor developed by Anderson et al. [1985]. The system worked by generating rules by
reducing geometry questions into sub-problems. These rules were used to simulate the sequence of the
inferences (correct and incorrect) that students report making in trying to solve a geometry problem.
More recently, the adoption of reusable components and learning objects [Ritter et al. 2003], as well as
the utilisation of community authoring [Aleahmad et al. 2008], has become prevalent in facilitating the
development of intelligent tutoring systems.

Both ITSs and other rationale generation approaches can benefit from a deeper understanding of the
proficiency level of individual students or agents. Similarly, our solution for user advising is enhanced
by developing a deeper understanding of the users and environment through play-style identification
(Section 3.2).

Alternatively, we can also draw from the work done in the fields of learning where researchers have
focused on improving the rate at which agents learn. There is a growing number of techniques that
are currently being incorporated to improve RL by leveraging knowledge from outside sources. These
techniques include:

• Transfer Learning: is when an agent has useful knowledge from a source task to aid its learning
in a target task. [Taylor and Stone 2009].

• Experience Replay: has a student train on the recorded experiences of a teacher [Lin 1992].

• Apprentice Learning: has a student ask a teacher for advice whenever its confidence in a state is
low [Clouse 1997; Ho and Ermon 2016].

• Learning from Demonstration (LfD): is a paradigm in which a student agent watches another
agent (or a human) and learns the teacher’s policy [Argall et al. 2009].

• Inverse Reinforcement Learning (IRL): is a paradigm in which a student agent observes a
teacher and tries to infer the teacher’s reward function [Abbeel and Ng 2004].

A comprehensive review of these approaches in the context of generating expert human-like models is
presented in Section 3.4 of this paper. Our model seeks to address this same challenge of learning an
advisor tailored to individual users by incorporating a form of imitation learning into its framework.

3.2 Play-style Identification

There are various approaches to play-style identification in different fields such as sports, gaming, and
music. One such approach involves the use of statistical methods to identify patterns and trends in
data related to gameplay or performance. For example, in sports, statistics such as shots taken, passes
completed, and distance covered can be analysed to identify a player’s style of play [Riezebos et al.
2021]. In relation to video games Porter et al. [2010], Martin [2012], Kartsanis and Murzyn [2016],
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Birk et al. [2017] and Lindberg and Laine [2016] all looked to use statistical analysis on survey and
interview data to ascertain trends in human players. These identified trends have been used to determine
relationships between, age, personality and even cognitive ability [Tekofsky et al. 2013]. However,
statistical approaches are often focused on quantifiable data points, which may not capture the full
context of gameplay or performance [Hughes and Bartlett 2002]. Alternatively, expert observers, such as
coaches, game analysts or psychologists, have analysed player’s gameplay to identify patterns that define
their playing style [Przybylski et al. 2010; Phillips et al. 2010]. In Particular, Conroy et al. [2012] used
human observers to identify traits from gameplay to help distinguish between AI and human players.
Similarly, Yuda et al. [2021] conducted a survey to investigate whether human observers can identify
“human-like” traits in the behaviour of game characters. However, all these approaches require careful
consideration in both the experimental setup and data analysis. This is due in part to expert observation
typically relying on a small sample of data, which may not be representative of a player’s overall playing
style or performance [Sampaio and Janeira 2003]. In some cases, players have to be able to identify their
own playing style through self-assessment. This approach involves reflecting on one’s own gameplay
and analysing their strengths, weaknesses, and tendencies [Vealey et al. 2019].

However, questions involving biases and subjectivity remain points of concern. In an attempt at a more
robust classification Ter Maat [2005] employed a rule-based system to identify play-style to inform an
adaptive AI player for Connect Four. Khoshkangini et al. [2018] also describes a rule-based system to
extract play style dynamically and customize the game on-the-fly for individual players during gameplay
sessions. The framework was evaluated using an educational game called Solving the Incognitum1.
Although, the rule-based approaches may be considered more scientifically rigorous than some other
methods, they still rely on subjective criteria and may not capture the full range of player behaviours
and strategies. This is because they involve explicit criteria for identifying and classifying play styles.
Additionally, they may be limited by the specific game or context in which they are applied, and may
not be generalizable to other games or situations. Our model aims to sidestep the pitfalls of human bias
and the necessity for rule-based systems by integrating principles of machine learning, creating a more
unbiased and adaptable approach.

More recently machine learning algorithms have been used to identify patterns and trends in large
datasets related to gameplay or performance. Commonly in video games, play-style identification has
been approached through player modelling, which is the study of computational models of players in
games. This includes the detection, modelling and prediction of human player traits which are mani-
fested through cognitive, affective and behavioural patterns [Yannakakis et al. 2013]. The techniques
utilised in player modelling usually fall into one of two groups: model-based or model-free.

3.2.1 Model-Based Approaches

In model-based approaches, a player model is built on a theoretical framework whereby the preexisting
understanding of the domain is leveraged [Yannakakis et al. 2013]. Model-based approaches have been
inspired by cognitive frameworks [Anderson et al. 1985] as well as general theoretical frameworks of
behavioural analysis such as usability theory [Isbister and Schaffer 2008]. Additional examples are
models which utilise theories of “fun” [Malone 1980; Koster 2013]. These top-down approaches have
also been used to dynamically affect the player experience in terms of difficulty adjustment [Andrade et
al. 2005; Olesen et al. 2008; Spronck et al. 2004], or even narrative experience [Lindley 2005]. Although
model-based techniques like these are useful, our work seeks to avoid the use of any prior knowledge

1https://www.youtube.com/watch?v=PgfuXAdm31o
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of the domain and in essence, learn the heuristic classifier in a model-free setting. Doing so has two
benefits, with the first being we are not required to impart any domain-based bias, and the second is the
ability to learn a more accurate model than a handcrafted one. Nonetheless, the downside is that we
require a greater amount of user gameplay data.

3.2.2 Model-Free Approaches

Model-free approaches refer to the construction of a mapping (model) between (player) input and a
player state representation. In this case, there is no pre-existing understanding of the model; rather, it is
learned through an iterative process [Yannakakis et al. 2013]. To achieve this, observations are collected
and analysed to generate a model without strong initial assumptions of its structure. In model-free ap-
proaches, we see attempts to model and predict player actions and intentions [Thue et al. 2007; Thurau
et al. 2004]. Thue et al. [2007] implemented a system that learns a label for the player representing
their style. However, this required the manual annotation of the different “encounters” with their cor-
responding style. Our proposed approach looks to learn these play-styles in a completely unsupervised
setting.

Data mining efforts to identify different behavioural playing patterns within a game have also been
implemented using bottom-up approaches [Drachen et al. 2009; Weber and Mateas 2009]. Drachen et
al. [2009] trained emergent self-organising maps on high-level game behaviour data to classify players
into four categories representative of their style. Here no pre-existing information was required for
the analysis of the data, which also meant that the clusters that were identified were not influenced
by external factors. However, this process required identifying the characteristics that resided within
the data of each separated cluster. It is this statistical analysis of the separated data that revealed the
semantics behind each cluster and allowed for the identification of player archetypes. We perform a
similar step, however, the results of this process are dependent on the features present in the original
dataset. Additionally, Liu et al. [2013] used machine learning algorithms to identify a StarCraft II
player from features extracted from game replays. The study found that AdaBoost on a decision tree and
Random Forest decision trees perform best for this task. These techniques have been effective, however,
these studies have utilised meta-data summaries over raw user data experiences. We aim to achieve the
same goal by analysing raw sequence-based trajectory data, but without the need for extensive feature
engineering.

3.2.3 Trajectory Clustering

An approach to the analysis of trajectory data is comparing and grouping based on whole or partial
trajectory attributes using a similarity measurement. However, it has been demonstrated that clustering
using sub-sequences lacked meaning as the generated cluster centres are not dependent on the input
[Keogh and Lin 2005]. Additionally, when clustering trajectories, the choice of similarity measure is
important as it should consider both the spatial and temporal features [Kisilevich et al. 2009]. Common
distance measures include Hausdorff distance, Dynamic Time Warping (DTW) [Berndt and Clifford
1994], Euclidean distance and Longest Common Sub-Sequence (LCSS) [Vlachos et al. 2002]. The
choice of metric is dependent on the structure of the data. DTW and LCSS in particular can measure
similarities between varying length trajectories.

Techniques such as k-Means and hierarchical clustering have been utilised to perform the clustering step
[Nanni 2002]. However, these techniques tend to be ineffective when input dimensions are high [Stein-
bach et al. 2004]. Additionally, model-based methods which use statistical approaches (COBWEB
[Fisher 1987]), Neural Network approaches (ART [Carpenter and Grossberg 1987]), or self-organising
maps (SOM [Kohonen 1990]) have been utilised. SOM clustering of time-series features is unsuitable
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for trajectories of unequal length, as the dimensions of the weight vectors are fixed [Liao 2005]. Fur-
thermore, data compression techniques utilising Latent Dirichlet Allocation (LDA) have been applied
to play-style clustering [Gow et al. 2012]. Lange et al. [2021] uses data collected from the computer
keyboard and mouse telemetry to analyze players’ play-styles and mechanics in detail. The study inves-
tigated key control sequences used by players during the game, sequences that distinguish professionals,
hardcore amateurs, and casual players, and individual characteristics of players in different groups. The
study used Principal Component Analysis and supervised ensembles of Decision Trees with Recursive
Feature Elimination (RFE) as a feature selection technique to address these problems. However, by con-
sidering timesteps as individual data points, LDA and PCA approaches ignore the structural significance
of temporal data. This problem is further exacerbated when you consider the long time horizon inherent
in most video games.

Valls-Vargas et al. [2015] proposed a player modelling framework that used episodic information and
sequential machine learning techniques to capture changes in play style over time. Different trace seg-
mentation strategies were tested for play style prediction, and the framework was evaluated on gameplay
data from an interactive learning environment. Valls-Vargas et al. [2015] concluded that sequential tech-
niques that incorporated predictions from previous segments outperformed non-sequential techniques.
While Valls-Vargas et al. [2015] effectively incorporated temporal information and concluded that overly
fine or coarse segmentation of traces led to decreased performance, we argue that in video games with
long-term dependencies, a more comprehensive solution capable of accurately accounting for long-term
dependencies would be preferable.

In addition to these, deep learning techniques have been applied to unsupervised clustering [Xie et al.
2016]. Xie et al. [2016] used an autoencoder which allowed for the important data compression aspect
which was required to make the previously mentioned clustering techniques more feasible. This makes
the clustering task easier since clustering can be performed on the encoded data. Xie et al. [2016] pre-
train a network to minimise the reconstruction loss and then separately minimise the clustering loss.
This separate clustering step used the KL-Divergence [Frogner et al. 2015] between a target distribution
and an estimated distribution generated from the encoded data. More recently, LSTM-autoencoders have
been implemented which are capable of handling time-series data effectively [Madiraju et al. 2018]. This
is a similar approach to Xie et al. [2016] with the added LSTM layers to handle time-series data as well
as joint minimisation of the reconstruction and clustering aspects. Concurrent autoencoder approaches
have been utilised for play-style discovery [Talwadker et al. 2022] whereby the latent space was used
along with ground truth labels in a supervised fashion. It is not common within video game domains
for there to exist labelled trajectories with respect to play-style. Therefore, the utilisation of supervised
approaches limits how easily a model can be applied and as a result, we opt to employ an unsupervised
approach. We utilise a similar but unsupervised approach to handling our video game-based trajectories
which have the added characteristic of being variable in length as well as being multi-dimensional.

There are several limitations associated with latent space clustering techniques. For example, the quality
of the latent space representation is heavily dependent on the choice of encoding method used to map
the original data to the lower-dimensional space. A sub-optimal encoding can lead to poor clustering
results. Tzoreff et al. [2018] looked to alleviate such problems by proposing an approach to optimize
an auto-encoder using a discriminative pairwise loss function during the pre-training phase. This ap-
proach demonstrated improved accuracy of clustering and achieves rapid convergence, even with small
networks. Alternatively, Kamnitsas et al. [2018] proposed a novel cost function for semisupervised
learning of neural networks that encourages compact clustering of the latent space for better separation.
Their method combines the benefits of graph-based regularization with efficient inductive inference and
can be applied to existing networks without modifications. An additional issue regarding latent space
clustering relates to the difficulty in interpreting the results as the clusters obtained may not always be
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intuitive or easy to interpret, especially if the data is high-dimensional. Shen et al. [2020] explored how
GANs encode different face attributes in the latent space and found that the latent code of well-trained
models learns a disentangled representation. They decouple some entangled semantics with subspace
projection, achieving more precise control of facial attributes. Liu et al. [2019] proposed methods for
mapping and comparing meaningful semantic dimensions within latent spaces, and presented an inte-
grated visual analysis system for this purpose. The system enabled users to discover, define, and verify
relationships among data points encoded within latent space dimensions.

Most play-style identification approaches are designed to learn patterns and identify general play-styles
across a group of players, without considering the unique playing style of an individual player. However,
to provide personalised recommendations and tailored advice, we also need to develop a model that can
accurately capture the playing style of a specific person. Such a model would enable us to provide
targeted and relevant advice to individual players, which can improve their overall gaming experience
and engagement. For this reason Section 3.3 explores work related to learning to predict an individual’s
future actions.

3.3 Future State Prediction

3.3.1 Time-Series Forecasting

The standard neural network methods for performing time series prediction include MLP, RBF or Cas-
cade Correlation Models, which use a sliding window of N-tuple inputs to predict a single output target
value [Gershenfeld and Weigend 1993]. Since these methods are dependent on the size of the rolling
window, important long-range dependencies can be forgotten over the course of the full training set.
Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997] solutions are a special form of
Recurrent Neural Network’s (RNN) [Hua et al. 2019] which makes use of a component called a “mem-
ory block” [Hochreiter and Schmidhuber 1997] which allows it to learn long term dependencies. LSTM
prediction models have been utilised in StarCraft2 for learning action selection [Vinyals et al. 2019].
We, however, employ an LSTM prediction model to video game-based trajectory data to predict player
actions.

3.3.2 Modelling player actions

A common implementation of player modelling is that of modelling a player’s choices (actions) given
different scenarios (states) [Bakkes et al. 2012]. In its basic form, this consists of a model which in-
dicates the likelihood of any available player action given any state. Traditionally action models were
implemented for board game research to improve game tree searches by predicting opponent moves.
In this case, the player model was expressed as an evaluation function [Cannel and Markovitch 1993].
Similar approaches have been applied to more complex games, however, the increasing sizes of state
and action spaces make training accurate models difficult. This has resulted in solutions involving large-
scale computing [Vinyals et al. 2019] or utilising abstracted action spaces called “options” [Sutton et al.
1999]. Our approach differs from these by using supervised learning instead of reinforcement learning
to predict actions similar to Muñoz et al. [2013]. When generating advice in a real-time scenario, it
is important to have minimal delay in prediction accuracy, meaning that sample efficiency is critical.
Sample efficiency refers to the ability of a sampling method to produce a representative sample using
the minimum number of observations possible [Yarats et al. 2021]. One potential method to enhance
sample efficiency is to make use of pre-training, which involves training a model on a large dataset to
learn general features and patterns that can later be fine-tuned on a smaller dataset for a specific task
[Zoph et al. 2020]. In a manner analogous to this, our model utilizes an initial offline learning strategy,
supplemented by a subsequent online learning phase, to enhance its understanding of individual be-
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haviour and improve its predictive accuracy. Albrecht and Stone [2018] present an overview of current
problems in the realm of player modelling. In particular, it mentions “Modelling changing behaviours”
which is a notable component of our model as we look to utilise the temporal nature of gameplay to
better identify a user’s play-style. Player modelling is closely related to the field of opponent modelling
which concentrates on understanding and predicting the behaviour of opponents or adversaries in a game
or competitive setting.

3.3.3 Opponent Modelling

The history of opponent modelling research traces back to Von Neumann and Morgenstern [2007] who
had previously introduced game theory. Initially designed for zero-sum games, game theory concepts
have since been applied to diverse scenarios, giving rise to various fields, including opponent modelling.
Over time, the term “opponent modelling” has evolved to encompass situations that aren’t strictly ad-
versarial, often involving elements of cooperation for mutual benefit [Baarslag et al. 2016]. Nashed
and Zilberstein [2022] presents a comprehensive overview of existing opponent modelling techniques
for adversarial domains, many of which must address stochastic, continuous, or concurrent actions, and
sparse, partially observable payoff structures. These methodologies share resemblances with our ap-
proach, albeit our emphasis lies in modelling user actions within single-player domains, as opposed to
concentrating on opponents.

3.4 Game Modelling

The research on learning to generate policies which exhibit human-like behaviour can be roughly cat-
egorised into two groups based on whether they are data-based or reward-based. The reward-based
approaches rely on optimising a fitness or reward based function which a Genetic Learning (GA) or
Reinforcement Learning (RL) algorithm can use for optimisation. The most straightforward data-based
approach is Imitation Learning (IL), which uses supervised learning to predict and perform actions with
the highest predicted probability.

3.4.1 Reward-based

A common reward based technique is called reward shaping. Here the agent is provided with additional
shaping rewards that come from a deterministic function F : S ×A× S → R. These additional reward
terms are used to aid in convergence towards a desired behaviour where S is the finite set of states, and
A is the finite set of all actions [Marom and Rosman 2018]. This idea of reward shaping has been used
to train a set of human-like bots with differing styles [Arzate Cruz and Ramirez Uresti 2018]. Here
the standard reward function R was augmented to resemble R′ = R + F where F encouraged the
play-style-specific behaviours they desired. This resulted in agents with 3 varying styles in the game
of Street Fighter 5. Khalifa et al. [2016] demonstrated a similar approach to encouraging bots to act
in a certain style by augmenting the standard Monte Carlo Tree Search algorithm. Here an additional
term was added to the Upper Confidence Bound equation which governs which nodes are explored, in
order to select more human-like actions. The limitation of these approaches is the design process of the
reward functions not guaranteeing the desired results. Sephton [2016] explored an alternate design-based
approach using several techniques of modifying Monte Carlo Tree Search (MCTS) to create different
styles of play. These could then be used to change the experience of human opponents playing against
them. They also investigate methods of improving the artificial agent’s strength, including parallelizing
MCTS and using Association Rule Mining to predict opponent choices, thus improving their ability to
play well against them.
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Similarly to reward shaping, fitness based methods have shown promise in generating populations of
diverse behaviours in a variety of domains [Stanley et al. 2005; Mitchell 2009; Hastings et al. 2009;
Beukman et al. 2022]. Here various forms of behaviours emerged from designed fitness metrics. In a
recent study Perez-Liebana et al. [2021] utilised a quality diversity algorithm, known as MAP-Elites, to
produce a collection of agents that display a variety of playing styles. Nevertheless, as with reward-based
techniques, a meticulous approach to the design of the behavioural descriptor is crucial. Additionally,
the mapping of game-based features to specific behaviours is still ambiguous, rendering this design
procedure non-intuitive.

3.4.2 Data-based

Imitation Learning (IL) is a commonly employed data-driven methodology for training a network to im-
itate a desired behaviour, be it from another algorithm or a human expert [Hussein et al. 2017]. During
the imitation learning process, the algorithm observes the expert’s actions and tries to learn a mapping
between the inputs (such as the state of the environment) and the corresponding outputs (such as the
expert’s actions). This mapping can then be used to make decisions in similar situations. Imitation
learning is often used in robotics [Lopes et al. 2007] and autonomous driving [Abbeel and Ng 2004],
where it is difficult to program explicit rules and behaviours for the agents. By learning from expert
demonstrations, the agents can acquire complex behaviours and skills that would be difficult to engineer
manually. Silver et al. [2016] demonstrate the effectiveness of this approach by training an agent to play
the game of Go at superhuman performance levels. This is achieved by utilising Imitation Learning as
a pre-training step before utilising traditional RL. Q-learning from demonstrations is another bootstrap-
ping approach which used demonstrations in Atari to bootstrap reinforcement learning against a known
reward function rather than learning the reward function from the demonstrations [Hester et al. 2018]. A
drawback to using IL is that the agent’s performance is limited to that of the demonstrator and in practice
due to it being an approximation may even perform worse [Ross et al. 2011]. Additionally, depending
on the scope and variety of the observations the entirety of the state space may be unexplored. If an
agent finds itself in a region of uncertainty due to either error or the dynamic nature of the environment,
it is unlikely for it to recover. This approach, therefore, requires a large number of expert examples to
be effective. Obtaining these expert samples, however, can be difficult in terms of both time and cost,
especially when working with human data. An Online Learning approach called DAGGER looked to
mitigate the problem of overfitting by iteratively updating policies by requesting additional feedback
from an expert [Ross et al. 2011]. This may be impractical for complex tasks with long training runs as
the expert needs to be available throughout. Harmer et al. [2018] also acknowledged the difficulties of
obtaining large amounts of expert data and instead applied imitation learning as a form of regulariser for
a temporal difference RL agent. This allowed for improved performance and generalisability demon-
strated in an in-house 3D game. Recently, impressive results in creating human-like agents have been
demonstrated in the popular video game Counter-Strike GO2 [Pearce and Zhu 2022]. Here, Pearce and
Zhu [2022] utilised a supervised learning variant of IL called Behavioural Cloning (BC). Given our ob-
jective of training behaviours that showcase distinct styles, we intend to employ Imitation Learning (IL)
in tandem with the play-style identification approach. This combination will enable us to effectively
capture and replicate the nuanced behaviours associated with different play styles, enriching the training
process and enhancing the fidelity of learned behaviours.

It has been shown that the combination of IL and RL alleviates some of the issues outlined. Examples of
these are Approximate Policy Iteration with Demonstration (APID) and Inverse Reinforcement Learning

2https://blog.counter-strike.net/
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(IRL). For APID, linear constraints are defined using the expert trajectories utilised by the optimisation
process of a Policy Iteration algorithm [Kim et al. 2013]. The benefit of IRL approaches is the ability
to learn a policy which can outperform the expert that it learnt from. Early IRL approaches assumed
optimal demonstrations and a reward function that is linear in a known set of features. Here the key
issue was that many differing reward functions could legitimately have led to a given optimal policy for
some MDP. This led to Abbeel and Ng [2004] developing a method where both the recovered policy
and expert obtain the same reward on the original MDP. This, however, did not allow for the policy to
surpass the expert in performance. Since we look to learn policies which mimic observed behaviours,
we do not require our policies to exceed the experts. Bayesian IRL embraced the idea of the existence
of multiple valid reward functions by inferring a posterior distribution over rewards rather than com-
mitting to a single one [Ramachandran and Amir 2007]. By contrast, Maximum Entropy IRL returns
a reward function that matches the expected feature counts, favouring rewards that lead to a higher-
entropy stochastic policy [Ziebart et al. 2008]. These two techniques both allow for the learnt policy to
outperform the expert-demonstrated policy. Ranchod et al. [2015] utilised both Bayesian and Maximum
Entropy IRL to segment a set of unstructured demonstrations into a set of reusable “skills”. Specifically,
in video games, there has been limited success in employing IRL. Uchibe [2018] looked to firstly train a
classifier which could identify expert versus non-expert state transitions. This classifier was then used as
a reward function to train a deep RL algorithm. However, their model rarely outperformed a BC baseline
method. More recently an approach which looked to jointly learn the policy and reward function in an
adversarial manner showed some promise in the Atari domain. However, they concluded that they still
performed substantially worse than expert-level games warranting more work [Tucker et al. 2018].

3.5 Summary

Overall, this chapter serves as an exploration into how the related fields of advice generation, play-
style identification, player modelling and imitation learning contribute to the development of effective
automatic tailored advice generation systems. It also highlights the limitations of existing approaches
and identifies opportunities for future research in this area. By doing so, this chapter provides a com-
prehensive overview of the state of the art in automatic tailored advice generation needed to guide our
development of a novel solution to this complex problem.
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Chapter 4

Research Methodology

Portions of this chapter have already been published [Ingram 2021]. Branden Ingram. Generating
tailored advice in video games through play-style identification and player modelling. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 17, pages
228–231, 2021.

Automated tailored advice generation in video games refers to the use of algorithms to provide cus-
tomised advice to individual players based on their performance and gameplay patterns. The problem
with this approach is that it requires a large amount of data about the player’s behaviour and preferences,
as well as sophisticated machine learning algorithms to analyse that data and generate effective advice.

Additionally, the advice provided must be carefully crafted to avoid frustrating the player or detracting
from the overall gaming experience. This can be challenging because players have different skill levels,
play-styles, and goals, and what works well for one player may not work well for another. A system like
this can result in increased player engagement and enhanced learning.

We aim to generate beneficial tailored advice for players through the identification of high-level play-
styles and player modelling in video game domains. This approach involves acquiring a model of both
the present state and the optimal expert version of an individual, specifically tailored to their play-style.
It is through this method that we can draw comparisons and motivate the user to align their behaviour
with their expert self. We suggest that by utilising this process, users can leverage the provided advice to
enhance their performance and achieve higher levels of proficiency, specific to their play-style. To this
end we propose a pipeline made up of four interconnected systems as outlined below:

• The Play-style Identifier (PI): Identifies, analyses and interprets all the different play-styles
through unsupervised clustering (Chapter 5).

• The Game Modeller (GM): Learns a policy representative of the best way to play for each of the
identified play-styles (Chapter 6).

• The Player Modeller (PM): Models the play-style of an individual user to be able to offer tailored
advice (Chapter 7).

• The Advisor (AD): Compares a player’s model with their corresponding optimal play-style model
to formulate useful advice (Chapter 8).

The concepts discussed in Chapter 2, as well as the knowledge gained from Chapter 3, were utilised to
influence the design and aided with the implementation of these systems. The overall workflow of these
individual components and how they interact with each other can be seen in Figure 4.1.

44



Figure 4.1: The complete Play-style-centric Advice Generation pipeline

Our methodology for generating customized advice revolves around the concept of comparing a model
of the user’s gameplay style with a corresponding expert-level version of that same style. However, this
requires a mechanism for understanding and interpreting the behaviour exhibited in the user’s gameplay.
To accomplish this, we employ the use of the PI (orange block in Figure 4.1), which learns to identify
various play-styles by compressing game trajectories and clustering them together. Subsequently, the
GM (red block in Figure 4.1) utilises these groupings of play-styles to learn a set of play-style-centric
policies that demonstrate a high level of proficiency corresponding to the characteristics of a particular
play-style. Both the PI and GM are trained in an offline fashion using an existing dataset of gameplay
trajectories. Through these offline processes, we can identify play-styles from trajectories as well as
represent the optimal way to play for each play-style. Nonetheless, merely having this information
is inadequate to offer personalised guidance, as it necessitates comprehending the behaviour of the
individual receiving the advice. To formulate an understanding of a specific user, our PM (green block
in Figure 4.1) uses an online training model which learns from live gameplay trajectories to predict
future states and actions. This process is bootstrapped using both the PI and GM to initially improve
prediction accuracy when limited user samples are available. Finally, both the expert model from the GM
and the player model from the PM are utilised by AD (blue block in Figure 4.1) for advice compilation.
Within this framework, the AD employs comparative analysis of the two models to determine areas of
discrepancy and subsequently generates personalised recommendations aimed at motivating the user to
adjust their behaviour in accordance with their respective expert.

The PI, GM, PM and AD components are all described in greater detail in Sections 4.1, 4.2, 4.3 and 4.4
respectively.

4.1 Play-style Identifier (PI)

The PI module as depicted in Figure 4.2 looks to answer the question: “What are the different ways I
can play a game?”. This works by taking in input data in the form of simulated experiences or replay
data, if available, for the domain being used. Specifically, this data consists of multidimensional varying-
length time-series sequences known as gameplay trajectories. These trajectories encode the states visited
by a player within an environment as well as the actions performed, during the process of playing a game.
The function of the PI is, therefore, to be able to identify the set of different play-styles using this dataset
of trajectories. This is achieved by using an autoencoder architecture to learn how to encode trajectories
into a form which can be easily processed by clustering algorithms. In particular, we compress our
trajectories into uniform length vectors which encode the behaviour of the original trajectory. The
clustering process on these encodings, therefore, results in the separation of trajectories with respect to
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play-style. Through the analysis of these identified clusters, we can determine characteristics associated
with each play-style and their interrelations with one another, resulting in a more comprehensive and
interpretable understanding. Thus, the PI is accountable for compressing complex trajectories into a
form which can be clustered such that we can then identify the particular characteristics corresponding
to all trajectories in a given dataset. The importance of this system lies not only in its capacity to identify
individual user styles but also in its crucial role in acquiring policies that align with various play-styles.
This component is discussed in greater detail in Chapter 5.

Figure 4.2: Overview of the Strategy Generator

4.2 Game Modeller (GM)

Knowing different ways to play a game does not guarantee improvement. Therefore, the GM mod-
ule as depicted in Figure 4.3 looks to answer the question: “What are the optimal ways to play in
each style?”. This process operates by producing a collection of agents that exhibit optimal perfor-
mance within a defined domain, in accordance with a recognised behavioural pattern that resembles a
particular play-style identified by the PI. These agents use a form of Imitation Learning on a subset of
expert demonstrations separated through the usage of the PI. These expert demonstrations are obtained
by selecting the top-performing trajectories based on a ranking metric. By training agents in an offline
fashion on only expert demonstrations for each play-style, the GM can generate a set of optimal play-
style-centric agents. Utilising this set of play-style-centric agents, our system can then be used to select
the expert version of a user which corresponds to their play-style identified by the PI. The generation
of these experts allows the AD to determine a behavioural direction towards which our users can head.
Additionally, by selecting the averagely performing demonstrations, the GM can learn policies corre-
sponding to the set of averagely performing play-style-centric agents. These weaker policies are used
by the PM as a form of bootstrapping to improve performance. This component is discussed in greater
detail in Chapter 6.
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Figure 4.3: Overview of the Game Modeller

4.3 Player Modeller (PM)

While it is generally helpful to know the best ways to play in all identified play-styles, this alone is not
enough to provide personalised advice without a specialised understanding of the individual in question.
Therefore, the PM module as depicted in Figure 4.4 is utilised to answer the question: “How does an
individual user play?”. To this end, we continuously train a supervised learning model in an online
fashion on user trajectories to predict the future state and actions of an individual. To bootstrap this
process, we use an averagely-performing play-style-centric model (learnt by the GM) that aligns with the
play-style currently attributed to the user (identified by the PI). As the system gathers more information
about the user’s play-style through additional gameplay, we can update the model accordingly to improve
the model’s accuracy. This bootstrapping process is essential in mitigating the time gap between when
the user starts playing and when our system produces meaningful tailored advice. This component is
discussed in greater detail in Chapter 7.

Figure 4.4: Overview of the Player Modeller
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4.4 Advisor (AD)

The goal of the Advisor (AD) is to provide tailored advice by utilising the models learned by the Player
Modeller (PM) and the Game Modeller (GM) to answer the question of “what should be advised?”. The
GM represents the optimal version of an individual, while the PM represents the current behaviour of the
user. The AD functions in three steps: model comparison, advice compilation, and advice scheduling,
as illustrated in Figure 4.5. During the model comparison step, the low-level actions generated by
the corresponding expert model (GM) are compared to the current player’s model (PM) to identify
differences between the two. If any differences are found, a message is generated that indicates the
user’s action and what the expert would have done, encouraging the user to act more in line with their
corresponding expert. This message is then scheduled to be sent to the user based on a scheduling policy.
The overall aim of the Advisor System is to reduce the differences between the two models, gradually
guiding the user towards aligning with their particular expert style. Further details about this component
are available in Chapter 8.

Figure 4.5: Overview of the Advisor

4.5 Domains

For the evaluation of the previously described advice generation model (Figure 4.1), we required a
dataset of trajectories where the play-style of each was known. Although our model is unsupervised this
condition needed to be satisfied to prove quantitatively the effectiveness of our approach. Obtaining a
natural dataset of human trajectories of the appropriate size is not a trivial task within video games. This
is due to the closed-source nature of commercial video games as well as the data legal issues around
sharing user data. Additionally, having said dataset labelled specifically with respect to play-style is
even rarer. For these reasons, we simulate data within a hand-designed environment. In particular, we
required an environment which allowed for multiple, independent and easily observable strategies for
solving a problem. For this purpose, we create our GridWorld environment described in Section 4.5.1
which is utilised to generate a dataset of trajectories using reward shaping. This environment serves
as a testbed where quantifiable performances can be measured in terms of our play-style identification
process. In addition, we use two additional environments to showcase the effectiveness of our pipeline in
more complex settings spanning multiple levels, namely MiniDungeons (as described in Section 4.5.2)
and a real-world environment with human-generated data, referred to as Mario (as detailed in Section
4.5.3).

4.5.1 GridWorld

To evaluate an algorithm for play-style identification, it is important to have multiple trajectories from
a set of different play-styles. Trajectory-based datasets labelled according to style do not exist and
therefore we generate data to account for this. We distinguish two play-styles as being different goals
that could be reached by an agent. These we model as different reward functions in the reinforcement
learning paradigm. This idea of reward shaping has been used to train a set of human-like agents with
differing styles [Arzate Cruz and Ramirez Uresti 2018]. We utilise this approach to generate a set of
trajectories with differing performance levels for multiple styles.

Our Preference-Based Trajectory Generation (PBTG) approach (Algorithm 4) was used to generate 5
individual datasets Tn from 5 different environments (E1, . . . , E5) with 4 varying play-styles (reward
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Figure 4.6: Randomly generated grid world environments E1, ..., E5

functions) present. Each environment is a 10×10 grid world, as depicted in Figure 4.6. The environ-
ments each have a start state (S, in blue) and a goal state (G, in green). Walls (black tiles) cannot be
traversed and trap states (red tiles) result in failure. The variety in play-styles is introduced through
the addition of two bonus states (B1, in gold and B2, in cyan). These are the optional objectives that
a player with certain preferences might wish to complete. The set of actions is the movement in any
of the four primary cardinal directions. These environments were designed and implemented using
Unity1, a free-to-use 3D video game creation engine. These environments incorporated “ml-agents”2,
an open-source project that enables games and simulations to serve as environments for training intelli-
gent agents. Lastly, these environments with the “ml-agents” toolkit were wrapped as an Open-AI gym3

environment using a pre-existing gym-wrapper4. The benefit of this approach is the ability to utilise the
flexibility of Unity for design and the power of standard-baseline5 implementations of reinforcement
learning algorithms compatible with OpenAI gym.

Using this approach we generated data with 4 play-styles, as described in Table 4.1. These are the
observable behaviours our model aims to recover through its play-style identification process. The set of
reward functions R used to emulate these behaviours is also defined in Table 4.1. Here we defined large
positive rewards for the objectives we wished the agent to accomplish. The respective bonus rewards
were only given the first time an agent reached either B1 or B2. Specifically, the actions of R1 entail the
desire of the agent to travel in a direct path towards the goal. On the other hand, R2 aims to reach the goal
through the intermediary point of B1, while R3 seeks to travel via B2. Finally, R4 intends to navigate
to the goal by passing through both B1 and B2. Following the procedure outlined in Algorithm 4 on
the following page we trained a Q-learning agent for each of the combinations of R and E for 20000
episodes with discount factor γ = 0.99 and linear ϵ-decay over the number of training episodes to
ensure our agent converges to the global optimum. The state is given by the tuple (x, y, b1, b2) where x
and y are the Cartesian grid coordinates and b1 and b2 indicate whether an agent has visited B1 or B2,
respectively. Our dataset consists of 8000 randomly selected trajectories per R and E. Therefore our
trajectory is a sequence of time steps in the form of (x, y, b1, b2).

1https://unity.com/
2https://github.com/Unity-Technologies/ml-agents
3https://github.com/openai/gym
4https://github.com/gzrjzcx/ML-agents/blob/master/gym-unity/README.md
5https://stable-baselines3.readthedocs.io/en/master/
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Table 4.1: Observable play-styles and reward structure

R Behaviour G reward B1 reward B2 reward
1 Moves directly to G 100 0 0
2 Visits B1 before G 100 50 0
3 Visits B2 before G 100 0 50
4 Visits B1 and B2 before G 100 50 50

Algorithm 4 Preference-Based Trajectory Generation (PBTG)
1: procedure PBTG(Environment E)
2: Define a set of reward functions R
3: Initialise our set of trajectories D = {}
4: for all reward functions r ∈ R do
5: Use Q-learning to learn optimal policy π∗

r

6: for n number of required Trajectories do
7: πn

r ← perturb(π∗
r )

8: Generate X(n, r) from πn
r and append to D

Appendix A.1 provides heatmap visualizations for all GridWorld environments, as well as separate
heatmaps for trajectories categorized by reward function. This feature allows for a visual depiction
of the encoded behaviour for each of the four play-styles. Table 4.2 below depicts the diversity statistics
across the trajectories generated using Algorithm 4. Here the diversity is calculated by firstly padding
trajectories such that they are the same length. Once both trajectories are the same size, we calculate the
difference between them by taking the Root Mean Square Error (RMSE), which measures how different
they are.

Table 4.2: Diversity analysis of GridWorld environments including average difference calculated using RMSE on
padded trajectories

E1 E2 E3 E4 E5

Number of times agent reached the goal 6399 4783 8000 5997 5775
Number of times agent failed 1600 3216 0 2002 2224
Average trajectory length 23.05 25.05 24.88 14.87 22.06
Variance in trajectory length 197.98 127.56 194.85 58.25 187.49
Min trajectory length 7 3 11 1 2
Max trajectory length 119 106 115 50 136
Average trajectory diversity 2.17 2.68 2.35 2.31 2.51
Variance in trajectory diversity 0.41 0.56 0.49 0.51 0.38
Min trajectory diversity 0 0 0 0 0
Max trajectory diversity 3.84 4.58 3.91 4.14 4.38

In summary, we generated a dataset of varied noisy trajectories across multiple different levels whose
behaviour corresponded with one of the four behaviours described in Table 4.1. If we consider, for ex-
ample, E4 we observe in Figure 4.7 the general behaviour for each play-style represented as a sequence
of notable state transitions. However, it’s important to clarify that these depicted state transitions are
not an exhaustive representation of every possible transition in the system, but rather a concise sum-

50



mary highlighting the critical checkpoints that characterise the behaviour of each play-style. It is these
behaviours which we looked to recover in this test-bed domain.

Figure 4.7: General behaviour (sequence of notable state transitions) of each of the four play-styles corresponding
to E4

4.5.2 MiniDungeons

MiniDungeons is a two-dimensional top-down dungeon exploration game, and is a common benchmark
research domain for modelling and understanding human play-styles [Holmgard et al. 2014]. We use a
dataset of player trajectories generated using six player proxies which are handcrafted policies [Arendse
et al. 2022]. Table 4.3 describes these different play-styles corresponding to the six player proxies
as well as their corresponding behaviour with example trajectories depicted in Figure 4.8. The state
at each timestep is defined as a 15 dimensional vector which encodes event information up until that
current timestep and aims to track higher-level player tactics. We combine trajectories generated across
multiple different levels to form our training and testing sets. The specific levels used for each of these
sets, as originally designated by Holmgard et al. [2014], are listed as follows:

• train (md-test-v0, md-hard-v0, md-random 1-v0, md-random 2-v0, md-gene 1-v0, md-gene 2-
v0, md-strand 1-v0)

• test (md-strand 2-v0, md-holmgard 0-v0, md-holmgard 3-v0, mmd-holmgard 5-v0, md-holmgard 7-
v0, md-holmgard 8-v0,md-holmgard 1-v0, md-holmgard 2-v0, md-holmgard 4-v0, md-holmgard 6-
v0, md-holmgard 9-v0, md-holmgard 10-v0)

These levels are all visualised in Appendix A.2.

Table 4.3: MiniDungeons player proxy behaviours

Play-style Behaviour
Safe Runner Complete the dungeon as quickly as possible while avoiding monsters
Wreckless Runner Complete the dungeon as quickly as possible without avoiding monsters
Brave Treasure Hunter Collect treasure even if guarded by enemies
Pure Treasure Hunter Collect only unguarded treasure
Safety-First Only collect treasure and potions
Monster Killer Fight as many monsters as possible without dying
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Figure 4.8: Example visualisation for each of the 6 player proxies in the MiniDungeons domain [Holmgard et al.
2014]

An example of three trajectories can be seen in Figure 4.9, where each 15-dimensional time-step is
separated by the “|” character.

Figure 4.9: Example of 3 trajectories extracted from the MiniDungeons dataset

4.5.3 Mario

This dataset consists of 74 playthroughs across 11 different levels of Super Mario Bros. An example
level from this set is visualised in Figure 4.10. These playthroughs were each captured by logging the
actions of a unique human participant [Guzdial and Riedl 2016]. We then refactored this data into a
trajectory, where each time step represents the current state of the playthrough at that point. We defined
a state as a tuple given by (j, k, r, c, d, e) where j is the number of jumps, k is the number of enemies
killed, r number of times the player has started running, c the number of coins collected, d the number
of times the player died and e the unique encoding for each action.
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Figure 4.10: Example visualisation of a level in the Mario domain

The complete set of levels used for capturing trajectories can be found in Appendix A.3. An example
of trajectories can be seen in Figure 4.11, where each 6-dimensional time-step is separated by the “|”
character.

Figure 4.11: Example of a single Mario domain trajectory

4.6 Summary

Within this chapter, we have provided a structured framework of our comprehensive model, encom-
passing its functionality, along with a formal introduction to its constituent components. Furthermore,
we have presented the domains in which we aim to showcase the efficacy of our model. The ensuing
chapters describe each of the aforementioned components in detail.
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Chapter 5

Play-style Identification

Portions of this chapter have been published in Ingram et al. [2022a], with further extensions published
in Ingram et al. [2023b]).

Branden Ingram, Benjamin Rosman, Richard Klein, and Clint van Alten. Play-style identification
through deep unsupervised clustering of trajectories. In 2022 IEEE Conference on Games (CoG). IEEE,
2022.

Branden Ingram, Benjamin Rosman, Richard Klein, and Clint van Alten. Generating Interpretable Play-
style Descriptions through Deep Unsupervised Clustering of Trajectories. In 2023 IEEE Transactions
on Games (ToG). IEEE, 2023.

5.1 Introduction

Play-style identification is an important concept in various fields, including sports, video games, mu-
sic, and even business. Identifying a player’s play-style can help coaches, teammates, or managers to
understand their strengths and weaknesses, and tailor their training or strategies accordingly [Charles
et al. 2005]. This can lead to improved performance and better results. In particular, for video game
developers tailoring user experience has become an important goal required to create more engaging and
personalised experiences for players. By understanding how different players like to play, game design-
ers can create content and features that cater to their preferences, making the game more enjoyable.

Identifying play-styles can be challenging for several reasons. Firstly, play-styles can be highly subjec-
tive and can vary significantly between different players, making it difficult to create a single, universally
applicable model. Additionally, play-styles can be influenced by a wide range of factors, including indi-
vidual preferences, skill levels, experience, and personality traits. Furthermore, play-styles can be diffi-
cult to identify accurately, particularly when only partial or incomplete information is available. Players
may exhibit different play-styles in different situations, making it challenging to create a comprehensive
and reliable model.

Numerous studies have examined modelling an individual’s problem-solving style, which is not exclu-
sive to games. For instance, in the realm of education, researchers have attempted to identify learning
styles [Dunn 1984]. Similarly, in gaming, investigations have aimed to identify player archetypes, per-
sonality traits, and motivators [Bartle 1996; Yee 2005; Drachen et al. 2009]. Although work has been
done to recognise play-style, little effort has been devoted to employing these techniques to analyse
complex trajectory-based data. Without considering the temporal aspect of a player’s gameplay, we risk
overlooking the sequence of events that led to a particular state and instead solely focus on the final
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state. This approach may obscure valuable insights that could otherwise be obtained by using detailed
features. Furthermore, as video games are time-series domains, where decision-making varies through-
out gameplay, it is appropriate to model play-styles using temporal models.

Moreover, identifying play-style from large datasets and interpreting generalised behaviours remains
challenging. Non-trajectory-based data (summary statistics) have been utilised in video games to char-
acterise player roles [Eggert et al. 2015]. Developing such a technique for trajectory data requires
compressing both the spatial and temporal distributions. Recent studies have employed clustering tech-
niques to produce such descriptions [Xie et al. 2016; Drachen et al. 2014]. These descriptions offer
valuable insights into the features and patterns present in the underlying data; however, they have yet to
be employed in video game domains as informative tools for both players and designers.

In this chapter, we address both the problem of processing complex data and that of finding interpretive
descriptions of behaviours within a dataset. These descriptions look to describe some general charac-
teristics or patterns exhibited by a group, useful for tailoring user experiences. To that end, we demon-
strate a novel system for play-style identification through the clustering of multi-dimensional variable-
length trajectories in video games and demonstrate that these clusters represent varying styles of be-
haviours. This system and its functioning are formally defined in Section 5.2. The core of this system is
a specialised LSTM-autoencoder that utilises the benefits of Recurrent Neural Network [Hochreiter and
Schmidhuber 1997] architectures to handle sequence-based data. We evaluate this model on a generated
benchmark dataset as well as in a natural domain (Mario). In Sections 5.4.1 and 5.4.2, we showcase the
capability of our model to discern the style utilising incomplete (partial) trajectories, without necessitat-
ing supplementary data engineering or training time, in both offline and online contexts. This suggests
the model is highly efficient and robust enough to be utilised for video games. In Section 5.4.3 we utilise
this model to recover the characteristics of each play-style through state-based cluster analysis. Specifi-
cally, the similar, differing and unique states across clusters are identified. Furthermore, we demonstrate
our approach to identifying the decision boundaries that separate different play-styles in Section 5.4.4.
Finally, in Sections 5.4.5 and 5.4.6, we demonstrate a process for generating mean representations of
each play-style as well as for determining the appropriate number of play-styles. These analytic pro-
cesses were used to further describe the relational characteristics between the identified cluster.

5.2 Methodology

We aim to solve the following problem: Given a set of trajectories (D) can we learn to separate them
into k distinct partitions (Pk ⊆ D) with respect to unknown play-style characteristics. Can these par-
titions then be used to identify interpretable characteristics describing each play-style as well as their
relationships?

To this end, we developed a fully unsupervised clustering approach for the identification and analysis
of play-styles as depicted in Figure 5.1. Our unsupervised approach is based on three key steps. First,
we utilise an LSTM autoencoder network to project a trajectory into a lower-dimensional latent repre-
sentation. We then perform clustering on this latent space to discover clusters corresponding to related
trajectories in this space. Lastly, we perform multiple forms of cluster analysis to obtain the cluster
characteristics, decision boundaries and general behavioural representations for each cluster.

5.2.1 Trajectory Encoding

An autoencoder works to reconstruct each original input trajectory (Xi ∈ D) after first encoding it as a
lower-dimensional state (Zi ∈ Z). Formally, this is given by Equations 5.1 and 5.2.

Zi = Encoder(Xi) (5.1)
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Figure 5.1: Play-style Identifier - LSTM autoencoder and clustering model

X ′
i = Decoder(Zi) (5.2)

Our specific model is a temporal autoencoder containing non-stacked LSTM layers similar to Xie et
al. [2016]. This allows the processing of varied length trajectories by feeding the state at each time
step into its own LSTM cell. These cells (“A” in Figure 5.1), learn to remember important informa-
tion in sequence until finally outputting a fixed-sized vector representative of our latent space (Z) by
applying Equation 5.1. The latent representation is then decoded using Equation 5.2 to obtain X ′

i, the
reconstructed trajectory. The network is trained using back-propagation through time [Hochreiter and
Schmidhuber 1997].

5.2.2 Trajectory Clustering

Having projected the trajectories into the latent space, we then cluster them. This clustering step is
performed on the set of all generated pairs of (Xi, Zi), where Xi ∈ D and Zi is the output of the
encoder in Equation 5.1. Each pair (Xi, Zi) is clustered with respect to Zi to form predicted labels y′i
which are the cluster identifiers. Since Zi is a representation of Xi we can use y′i as the cluster label
for the original data. Clustering using Z enables the use of standard clustering algorithms as there is no
longer an issue of varying length or temporal features. This particular aspect of our model is depicted
in Figure 5.2. Through the clustering process, we also obtain the set of partitions (P) with associated
centroids (C) where each partition Pk stores the associated trajectories based on the predicted label
where k = y′.

Figure 5.2: Play-style Identifier - Latent space clustering of trajectories
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5.2.3 Cluster Analysis

After clustering all pairs of (Xi, Zi) to obtain a tuple (Xi, Zi, y
′
i) ∀i we conduct four forms of analysis

as outlined below:

• Offline and Online Clustering Performance Analysis: A validation process to demonstrate
clustering performance (Section 5.2.3.1)

• Play-style Characteristic Identification: The process of identifying the shared, differing, and
unique states among different playstyles and in relation to them (Section 5.2.3.2).

• Decision Boundary Identification: The process of identifying the states where one play-style
crosses over with another (Section 5.2.3.3).

• General Behaviour Identification: The process of determining a “mean” play-style example for
each play-style (Section 5.2.3.4).

These processes are crucial for creating interpretable descriptions that formalise the characteristics and
dynamics of each cluster, and provide a comprehensive and insightful view of the underlying data.

5.2.3.1 Offline and Online Clustering Performance

Although our model is completely unsupervised, we do compare the ground truth cluster labels (yi)
with the predicted labels (y′i) to validate accuracy on complete trajectories. This validation step uses
Equations 5.3, 5.5 and 5.6. Firstly Equation 5.3 finds the best match between the cluster assignments
from an unsupervised algorithm (y′i) and a ground truth assignment (yi), M ranges across all possible
one-to-one mappings and N is the number of data points [Kuhn 1955].

Map = maxM

(∑N
i=1 1{yi = M(y′i)}

N

)
(5.3)

An example output mapping for four clusters can be seen in Figure 5.3. It is necessary to find the “best
possible mapping” between the predicted and ground truth cluster assignments because the predicted
labels may not always correspond exactly to the ground truth labels. The clustering algorithm may assign
different data points to different clusters than the ground truth labels, which can result in a different
clustering structure. Thus, a direct comparison between the predicted and ground truth labels may not
accurately reflect the algorithm’s true performance.

Figure 5.3: Example mapping between predicted labels y′i and ground truth labels yi
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Secondly, Equation 5.5 defines a confidence measure (k) giving the probability vector that a given tra-
jectory X belongs to a particular cluster. This is determined using Equation 5.4 which calculates the
Euclidean distance vector d between X and C, where C is the set of centroids determined through the
clustering step. The fundamental idea is to determine the distance between the encoded data point X
and each centroid in the set C. As a centroid (Ck) approaches X in proximity, the likelihood that it is a
member of cluster k increases correspondingly.

d(X) = ||C − Encoder(X)||22 (5.4)

k(X) =
exp(d

−1
(X))∑

exp(d
−1

(X))
(5.5)

Finally, we use Equation 5.6 along with the mapping learned in Equation 5.3 and the confidence k
to determine if the prediction (Map(argmax(k))) equals the ground truth y. The method functions by
initially detecting the cluster assignment with the highest probability (argmax(k)), then associating it
with the most probable label via Equation 5.6. Subsequently, this label is compared to the actual ground
truth value y.

Correct Prediction(X, y) =

{
1 if y = Map(argmax(k))
0 if y ̸= Map(argmax(k))

(5.6)

Additionally, since identifying play-styles on partial trajectories is a key feature, we need to perform a
similar evaluation step on these partial trajectories. To this end, we calculate the total accuracy using
Algorithm 5 as the average correctly labelled predictions for every trajectory (X ∈ D). In this case, our
predicted label (y′) is determined by first calculating the weighted moving average confidence (WMAC)
[Zhuang et al. 2007] over all partial trajectories using Equation 5.7. Here ki represents the confidence
calculated using Equations 5.4 and 5.5 as k(P ) where P = X[0 : i] and the weighting w ← m(m+1)

2
where m is the length of X . The cluster with the highest confidence is then selected as our predicted
label and compared to the corresponding ground truth label y. This process is then repeated for all
X ∈ D with our final partial trajectory accuracy (PTA) being the percentage of correct predictions.

WMAC =
m∑
i=0

[
ki × i

w

]
(5.7)

Algorithm 5 Partial Trajectory Accuracy (PTA)
1: procedure PTA(D)
2: PTA = 0
3: for all X ∈ D do
4: m← ∥X∥ ▷ m is the length of X
5: w ← (m)(m+1)

2 ▷ w is a weighting over values of m
6: Calculate WMAC for all partial trajectories using (5.7)
7: y′ ← argmax(WMAC) ▷ y′ is the predicted cluster
8: if y′ matches ground truth y then
9: PTA← PTA+ 1

10: PTA← PTA
n ▷ n is the number of trajectories in D
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5.2.3.2 Identifying Play-style Characteristics

As clustering is an unsupervised approach it is not commonly the case that the semantic meaning behind
clusters is known beforehand. The characteristics of each cluster need to be identified for the grouping
to be useful for developers or players. For the purpose of identifying play-style characteristics we utilise
state-based frequency analysis. In particular we use Equation 5.8 to calculate the frequency (fk) of
occurrences for a particular state (σ). In Equation 5.8 a state (st,i) is defined as an individual time step
(t) within an i-th trajectory from Pk of length mt. Here, the state σ ∈ S and S is the set of all possible
states in the partition Pk. Here we also denote nk to be the total number of trajectories for a given
play-style partition Pk.

fk(σ) =

nk∑
t=1

[ mt∑
i=1

1[st,i = σ]
]

(5.8)

The functioning of Equation 5.8 is demonstrated in Figures 5.4 and 5.5 where we utilise a simple exam-
ple. Given a sequence of states making up two trajectories for each play-style, we obtain the formulation
depicted in Figure 5.4 where S now becomes the set of all states within these trajectories.

Figure 5.4: Example formulation of fk given a set of specific trajectories where k = 1, 2

By applying Equation 5.8 to the example in Figure 5.4 we obtain the resulting state frequencies depicted
in Figure 5.5. For example, given state (2, 7, 1, 1) has a frequency of 1 and 2 for fk1 and fk2 respectively.

Figure 5.5: Example of neighbouring states for two states namely (5, 6) and (4, 2)

Therefore the application of Equation 5.8 on each play-style allows us to form an interpretation of
general characteristics associated with that play-style. Although the identification of individual cluster
characteristics has been previously demonstrated [Drachen et al. 2009], very little research has been done
in terms of the relationship between play-styles in video games. To identify play-style characteristics in
relation to each other we apply Equation 5.8 to identify the shared, differing and unique states across all
play-styles as depicted in Figure 5.6.
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Figure 5.6: Example representation of the play-style characteristic identification process

Shared Characteristics

The shared states between play-styles are calculated as the combined frequency for each common state.
A state is said to be common if it exists within trajectories in both clusters. Frequencies are combined
by selecting the minimum frequency between the two clusters for each particular state (σ). Formally
this is defined in Equation 5.9 where k1, k2 correspond to the 2 clusters whose shared states are being
calculated.

Shared(σ, k1, k2) = min(fk1(σ), fk2(σ)) (5.9)

Intuitively, here we are obtaining the regions where the state visitations overlap, which can be likened
to the intersection operator from boolean algebra [Sikorski and others 1969]. Once again we utilise the
simple example as depicted in Figures 5.4 and 5.5 to demonstrate the functioning of Equation 5.9. By
applying Equation 5.9 to this example we obtain the results depicted in Figure 5.7. Here it is observed
that the only states in common are (2, 7, 1, 1), (2, 8, 1, 1) and (3, 5, 1, 1) (depicted in orange) and after
applying the “min” operation, these are the only states which remain. If we consider state (3, 3, 1, 1)
which has a frequency of 2 and 0 in fk1 and fk2 respectively, since 0 is the minimum value it is not
included in the final set of shared states.

Figure 5.7: Shared states observed between fk1
and fk2

in the simple example

Differing Characteristics

The difference between two play-styles at a state-based level is calculated using Equation 5.10.

Diff(σ, k1, k2) = max(fk1(σ)− fk2(σ), 0) (5.10)
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Conceptually this can be considered the frequency of state occurrences for a given play-styles (k1) after
subtracting the number of occurrences for that same state for another play-style (k2). Once again this
is similarly inspired by the complement operator in boolean algebra where A \ B means everything in
A that is not in B [Sikorski and others 1969]. Again for an intuitive depiction, we look to the example
introduced by Figures 5.4 and 5.5. In this case, we apply Equation 5.10 to obtain the results depicted
in Figure 5.8. Here it is important to note that since we are looking for everything in fk1 that is not in
fk2 , we only need to consider the states that occur in both sets, as well as their frequencies. For example
state (2, 7, 1, 1) appears in both therefore we take its frequency in fk1 and subtract its frequency in fk2 .
Since this results in a value ≤ 0, the max of this respect to 0 will always be 0 and therefore this state
won’t appear in the resultant set of differing states.

Figure 5.8: Differing states observed between fk1 and fk2 in the simple example

Unique Characteristics

To determine the states which are unique to a particular play-style we solve for Equation 5.11. Here
uniqueness emerges when a particular state occurs more often than the total frequency for that state in
all the other clusters. Fundamentally, we are utilising the identical difference equation as delineated in
Equation 5.10, albeit in relation to all other play-styles. Additionally, a state is said to be more or less
unique when compared to other unique states based on the frequency of occurrences.

Unique(σ, k1) = max

(
fk1(σ)−

k∑
h=0,h̸=k1

[
fh(σ)

]
, 0

)
(5.11)

To illustrate the functioning of Equation 5.10, we once again intuitively employ our example. We build
upon our previous examples by introducing fk3 , which comprises four states, as depicted in Figure 5.9.
Through this example, we demonstrate the emergence of unique states when we take the difference of
fk1 with respect to both fk2 and fk3 simultaneously. Specifically, if we consider the state (2, 8, 1, 1), the
calculation of max(2− (2 + 3), 0) results in zero, and hence this state is not considered to be unique.
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Figure 5.9: Unique states observed for fk1
given fk2

and fk3
in the simple example

5.2.3.3 Identifying Play-style Decision Boundaries

Using state-based frequency analysis for unique state discovery allows us to understand the regions in
which players of a particular play-style should occupy. However, this approach does not reveal what
decisions a player will make during gameplay to reside in those locations. The limitation of utilising
state-based frequencies for comparison is that this process ignores the temporal nature of trajectories.
We incorporate this temporal knowledge into our play-style characteristic identification approach by
locating the states which constitute the boundaries between play-styles as depicted in Figure 5.10. At
these points, players decide to perform some action which is highly indicative of a particular play-style.

Figure 5.10: Example representation of the play-style decision boundaries identification process. Here decision
boundaries are depicted as black circles

These points are determined using Algorithm 6 which works as follows: First, we create an empty
dictionary BoundDict to store the decision boundaries and another empty dictionary StateDict to
store the state-wise cluster prediction accuracies. We iterate over each trajectory X in our dataset (D).
For each state xj in the trajectory, we create a set of partial trajectories P consisting of all states from
the start of the trajectory up to state xj . For each partial trajectory Pj , we calculate the prediction
confidence using Equation 5.5 and identify the highest likelihood cluster prediction y′. We then update
the dictionary StateDict with the average prediction confidence for each state and its corresponding
cluster prediction y′. Once we have calculated the average prediction confidence for each state and
prediction pair in our dataset, we iterate over every unique key in dictionary StateDict, which consists
of tuples (xi, y

′) representing each state and its highest likelihood cluster prediction. For each unique
state xi, we identify its neighbouring states N as any state which is a single action away. We calculate
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the variance of the state-wise cluster prediction accuracies for all neighbouring states xj ∈ N and store
it in the variable var. If the variance var is above a given threshold υ, we add the current state xi to
our decision boundary dictionary BoundDict. Therefore, a state is considered to be a boundary point
if the variance between the confidence values of its neighbours exceeds a threshold parameter. One
can intuitively regard this as any state where performing one action yields a high degree of confidence
in the accuracy of the play-style prediction, whereas performing another action yields a low degree
of confidence in the accuracy of the play-style prediction. Finally, we return the decision boundary
dictionary BoundDict containing all identified decision boundaries.

Algorithm 6 Identifying Decision Boundaries

1: function IDENTIFYDECISIONBOUNDARIES(D)
2: Trajectory dataset D
3: BoundDict← empty dictionary ▷ stores decision boundaries
4: StateDict← empty dictionary ▷ stores state-wise cluster prediction accuracies
5: for X ∈ D do
6: for t ∈ {0, 1, ..., |X|} do
7: P ← X[0 : t]
8: k ← prediction confidence of P ▷ using Equation 5.5
9: y′ ← argmax{k} ▷ y′ : highest likelihood cluster prediction

10: for xj ∈ P do
11: StateDict[(xj , y

′)]← average of k and StateDict[(xj , y
′)]

12: for (xi, y
′) ∈ unique keys of StateDict do

13: N ← neighbouring states of xi ▷ any reachable state one time-step away
14: var ← variance of StateDict[(xj , y

′)] for all xj ∈ N
15: if var > υ then
16: BoundDict[xi]← decision boundary

return BoundDict

Two examples of what constitutes a neighbouring state are depicted in Figure 5.11. Here we note that
for the state (5, 6) regardless of the value of B1 or B2 the only neighbours are (5, 5) and (5, 7) since both
(4, 6) and (6, 6) are non-traversable tiles. If we consider state (4, 2) we observe that all four cardinal
directions are valid neighbours. If we were to consider a state (1, 4, 1, 1), a valid neighbour would be
(2, 4, 0, 1). In this case, the value of B1 has been updated as it has already been visited. However,
(2, 4, 1, 1) would be an invalid neighbour in this scenario.

Figure 5.11: Example of neighbouring states for two states namely (5, 6) and (4, 2)

63



While not directly inspired, this approach demonstrates certain similarities with the research conducted
byKirman and Lawson [2009], who sought to model classification boundaries as abrupt changes in a
social network game [Watts 2004]. By understanding these boundaries game designers can tailor specific
segments of a player’s gaming experience to meet their play-styles specific needs and preferences.

5.2.3.4 Identifying Mean Play-style Behaviours

Mean play-style behaviour refers to a statistical representation of how a certain play-style is typically
exhibited in a game. It can be determined by analysing data on the behaviour of multiple players who
exhibit the same play-style, such as their decisions, actions, and other in-game behaviours, and deter-
mining the average or most common pattern of behaviour as represented in Figure 5.12.

Figure 5.12: Example representation of the general play-style behaviours identification process

An added benefit of utilising our autoencoder clustering approach is the ability to utilise the identified
centroids (C) for each cluster to determine examples of general play-style behaviours. We accomplish
this in two ways, the first being to directly feed Ck in Equation 5.2 to reconstruct a mean trajectory Ck

for each play-style k. This is possible since the centroids themselves exist within the generated latent
space (C ⊆ Z) of our network. Therefore, it can be reconstructed similarly to any other encoded vector.
However, this does not guarantee that the trajectory is valid. Our second approach is to take the closest
real encoded trajectory to the centroid and use that as the mean trajectory as determined by Equation
5.12. In this equation, ||Zi − Ck||2 represents the squared Euclidean distance between the latent space
representation Zi and the specific representation Ck.

Mean(k) = argmin
Zi∈P

nk∑
i=1

||Zi − Ck||2 (5.12)

This approach to generating mean play-style examples can be used to better describe the general ex-
pected behaviour for a particular style. Additionally, we can cluster new unseen trajectories using
the mean trajectories for each style by applying the Longest Common Subsequence (LCS) algorithm
[Needleman and Wunsch 1970]. We can modify the original algorithm for the longest common subse-
quence as presented in Algorithm 7, such that it takes two trajectories X1 and X2 as input, along with
their lengths m1 and m2 respectively. The algorithm will then return the longest common subsequence
of these two trajectories using a recursive approach by comparing each state of the trajectories on a
one-to-one basis.

64



Algorithm 7 Longest Common Subsequence (Recursive)

1: function LCS(X1, X2,m1,m2)
2: if m1 = 0 or m2 = 0 then
3: return empty sequence
4: else if X1[m1 − 1] = X2[m2 − 1] then
5: return LCS(X1, X2,m1 − 1,m2 − 1)+X1[m1 − 1]
6: else
7: L1← LCS(X1, X2,m1 − 1,m2)
8: L2← LCS(X1, X2,m1,m2 − 1)
9: return L1 if length of L1 ≥ length of L2, else L2

In this context, the trajectory being considered belongs to the play-style whose mean trajectory has the
highest similarity score with the sample trajectory using the LCS algorithm. The determination of this
is made by utilizing Algorithm 8, where X represents the sample trajectory that is being clustered, and
C represents the set of all the play-style centroids.

Algorithm 8 LCS Clustering

1: function LCS-CLUSTERING(X,C)
2: n = |X|
3: L = 0 ▷ L represents the largest LCS value
4: k = 0 ▷ k represents the index of the largest LCS value
5: for i← 0 to |C| do
6: c = Ci

7: m = |c|
8: T = LCS(X, c,m, n) ▷ as seen in Algorithm 7
9: if L ≤ T then

10: L = T
11: k = i

12: return k

5.2.4 Summary

Table 5.1 below serves to summarise all the previously discussed metrics as well as for which form of
analysis they are associated.

Table 5.1: Summary of metrics used for each form of analysis

Section name Section reference Metrics used
Clustering Performance Analysis Section 5.2.3.1 Equation 5.3 and Algorithm 5
Play-style Characteristic Identification Section 5.2.3.2 Equations 5.9, 5.10 and 5.11
Decision Boundary Identification Section 5.2.3.3 Algorithm 6
General Behaviour Identification Section 5.2.3.4 Equation 5.12 and Algorithm 8

5.3 Training
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Our model employs a two-phase training process, wherein the initial phase entails training an autoen-
coder architecture to obtain latent space representations, which are subsequently utilized for cluster-
ing purposes. We trained an individual model for each of our 7 environments (E1, . . . , E5, Mario,
MiniDungeons).

5.3.1 Autoencoder

We employ a single-directional single-layered LSTM architecture for both the encoder and decoder
network. The output sizes of the LSTM cells and latent vector representation were (20, 8) respectively.
The output dimension of the encoder network as seen in Figure 5.1 is the size of our latent space. The
input dimension is dependent on the dataset being used in particular (E1, . . . , E5) = 4, Mario = 6 and
MiniDungeons = 15. To avoid dataset-specific tuning, we used the same parameters across all domains
with ReLU as the activation function. The models were trained for 10000 episodes using the Adam
optimiser with a learning rate 0.001 using mean squared error to determine the reconstruction loss as in
Equation 5.13.

Reconstruction Loss =
1

|X|

|X|∑
i=1

||(Xi −X ′
i)||22 (5.13)

5.3.2 Clustering

For the clustering step, we evaluated both k-means and Gaussian Mixture Models (GMMs). For both
algorithms, the number of clusters were 4, 6 and 3 for the GridWorld, MiniDungeons and Mario do-
mains, respectively. In the instances of the GridWorld and MiniDungeons domains, we opted to set the
number of clusters to correspond to the actual number of policies employed in generating the domains.
The purpose of this decision is to assess the effectiveness and behaviour of our model when the correct
number of underlying play-styles is determined explicitly. In Section 5.4.5, we conduct experiments to
confirm the accurate count of play-styles present. A similar experimental approach was used to deter-
mine the number of clusters in the Mario domain, where the actual number of clusters is unknown. For
k-means and GMM, we fit our data using 100 restarts and a maximum iteration of 10000. In addition, k-
means used a tolerance of 0.0001 and GMM used a “full” covariance type. k-means is a prototype-based
method that assigns data points to the nearest cluster centroid, while GMM is a probabilistic model that
represents clusters as Gaussian distributions. By employing both methods, we are exploring the diversity
of clustering techniques and their ability to capture different structures in the data.

5.3.3 Baselines

To realise our model’s performance in terms of play-style identification we compare it against two
baselines. The first is a random baseline which simply represents the chance of correctly predicting
the corresponding play-style to a trajectory using a random policy. This is calculated as Accuracy =

1
Numberofplay−styles . The second is a non-learning-based baseline by employing extensive data aug-
mentation on the original dataset to facilitate subsequent k-means clustering. This procedure works
by padding all trajectories with a standardised “zero” state achieving a uniform trajectory length. For
example for the GridWorld environments, we pad with time-steps of (0, 0, 0, 0). Subsequently, we im-
plement a custom RSME function to determine dissimilarity between pairs of trajectories. Both of these
additions allow for the calculation and updating of the “k-means” as described in Section 2.6.1.
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5.4 Results

Through the results of our experimental analysis, we demonstrate the ability of our model to accurately
cluster game trajectories into their respective play-styles on both complete and partial trajectories. Ad-
ditionally, we show how interpretive descriptions for each play-style can be recovered.

In Sections 5.4.1 and 5.4.2, we examine the performance of our model in comparison to the ground truth
clusters, both offline and online. In Section 5.4.3, we investigate the results of characterizing play-style
traits and their correlations with other play-styles. This leads to Section 5.4.4, where we illustrate our
approach’s outcomes in identifying the decision boundaries between play-styles. Finally, in Sections
5.4.5 and 5.4.6, we present our discoveries regarding identifying the optimal number of clusters and
general behavioural representations and how they can improve clustering performance.

5.4.1 Offline Trajectory Clustering

To demonstrate the effectiveness of our model in identifying play-styles, we plotted heat maps of the
trajectories in each cluster as well as the original trajectories for each r ∈ R for E1. In Figure 5.13 we
calculated that there is a 65% similarity using Mean Absolute Error [Chai and Draxler 2014] between
heat maps for both the clustered trajectories and the original trajectories separated by reward function.

Figure 5.13: Heatmap of visited states comparing 8000 clustered trajectories separated by our model (bottom)
and original trajectories separated by reward function (top) for E1.

This shows firstly, that the desired behaviours in Table 4.1 are represented in the data through the use of
the rewards in Table 4.1. Secondly, we observe that the clustered trajectories depict the same behaviour.
For example, R4 sees the agent move to both bonus objectives (top-right in 5.13) and the same behaviour
is observed in the corresponding clustered set (bottom-right).

For quantitative analysis, we directly compared the set of all predicted labels (y′) with the set of all
ground truth labels (y) for each Environment (E1, . . . , E5, MiniDungeons) using Equation 5.6. The
clustering accuracies shown in Table 5.2 for both k-means and GMM clustering algorithms were ob-
tained through our offline clustering procedure. Table 5.2 demonstrates our model’s ability to accurately
cluster play-styles from completed trajectories across multiple varying environments. In this case, a
complete trajectory represents X ∈ D whereas a partial trajectory represents P = X[1 : t]. In particular,
we note, weaker performance within the MiniDungeons domain resulting from the higher complexity
due to the dataset containing trajectories from multiple levels. In all domains, our performance sur-
passed that of a random policy that relied on clustering trajectories at random, based on a fixed number
of clusters - specifically, four clusters for GridWorld and six for MiniDungeons. Additionally, we note
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we compared against the non-learned approach, we can see that our model is able to better distinguish
and identify different play-styles. In Table 5.2 we can see that the RSME baseline barely outperforms
the random baseline. This discrepancy can be attributed to the substantial data augmentation necessary
for handling trajectories through conventional clustering methods. This diverges from the data augmen-
tation integrated into our model, where this process is acquired in a manner that preserves information
integrity without introducing superfluous changes or information loss.

Table 5.2: Complete and partial trajectory clustering accuracy

Environment Random RSME Offline Offline Online Online
Baseline Baseline GMM k-means GMM k-means

E1 0.25 0.298 0.653 0.598 0.499 0.534
E2 0.25 0.310 0.707 0.714 0.602 0.706
E3 0.25 0.321 0.778 0.705 0.749 0.670
E4 0.25 0.267 0.709 0.706 0.576 0.639
E5 0.25 0.278 0.778 0.652 0.686 0.678
Average across GridWorlds 0.25 0.295 0.725 0.675 0.622 0.645
MiniDungeons 0.17 0.191 0.589 0.489 0.446 0.419

5.4.2 Online Trajectory Clustering

As previously mentioned, attempts have been made to cluster video game playthroughs [Drachen et
al. 2009], however, very little work has been done in clustering trajectories online (during gameplay).
To investigate the ability to identify play-styles during gameplay, we clustered partial trajectories and
measured the change in clustering confidence as a function of time. This was achieved using Algorithm
5 with the results depicted in Table 5.2. The algorithm functions by initially encoding the partial tra-
jectory and subsequently identifying the centroid that is closest to the encoding. The closest centroid
corresponds to the cluster that the partial trajectory is most aligned with and consequently represents the
corresponding play-style. We observe that an environment where trajectories are initially similar such
as E1 has a lower clustering performance. This indicates that the play-styles are initially well aligned
while only diverging after some time.

In Figure 5.14 we observe that the cluster assignments are non-volatile after an initial fluctuation. How-
ever, two noticeable shifts occur, namely 3 → 0 which corresponds to the shift R1 → R2 and 0 → 2
which corresponds to the shift R2 → R4. This change in clustering assignment is valid as these trajec-
tories are both from R4 where the optimal behaviour was to move B1 → B2 → G. This corresponds
with the expected behaviours described in Table 4.1. This also demonstrates that the autoencoder is
separating data according to the reward functions. Therefore, this form of analysis can identify how a
player’s play-style changes over time as a result of performing some objective in some fashion.
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Figure 5.14: Change in play-style prediction over time for two particular trajectories with behaviour correspond-
ing to R4 with 2 being the correct cluster assignment for both

The image presented in Figure ?? illustrates the evolution of cluster assignments over time for two dis-
tinct trajectories in the Mario domain. The graph shows how these two trajectories eventually converge
to the same play-style, despite starting with different behaviours. Trajectories in a video game are sub-
ject to change over time and can even converge due to shifts in the game’s dynamics, and our model
is capable of capturing such changes effectively. The occurrence of fluctuations in the graph indicates
regions of uncertainty in our model, which are suggestive of cross-over regions between play-styles. The
primary advantage of identifying play-styles temporally is that it provides developers or players with a
more detailed signal of when and where different styles become uniquely distinguishable.
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Figure 5.15: Change in play-style prediction over time for two particular trajectories from the Mario dataset

Both Figures 5.14 and 5.15 serve as behavioural examples of our online play-style identification process.
To quantitatively demonstrate the efficacy of our partial clustering over time we analysed all trajectories
separated by the identified clusters across all 5 GridWorld environments (E1, . . . , E5). This aggregation
is possible since the play-styles we are trying to recover are the same across these different environ-
ments, as they would be across multiple levels in a video game. Figure 5.16 depicts the results of this,
where we observe that for all environments the clustering assignment converges to a unique cluster.
This demonstrates that across multiple trajectories our approach to partial trajectory clustering produces
consistent desired results.

70



Figure 5.16: Clustering assignment over time separated by identified clusters over all 5 grid environments. Here
each quadrant represents each of the generated partitions P

The partial trajectory clustering accuracy (PTA), calculated using Algorithm 5, is shown in Table 5.2.
The accuracy does decrease using partial trajectories, but not by a significant amount. This decrease,
however, is to be expected with play-styles sharing similarities, most notably the start location. Taken
together, these results demonstrate the robustness of the clustering model to unseen data within the
domain as well as demonstrating our ability to quickly identify the correct play-style.

5.4.3 Identifying Play-style Characteristics

The results of applying Equation 5.8 outlined in Section 5.2.3.2 are visualised in Figure 5.17, where
the state visitations are represented by a heatmap corresponding to the 4 different play-styles (k =
{0, 1, 2, 3}). Our GridWorld trajectories are characterised by time steps that consist of four dimensions.
Nonetheless, as described in Section 4.5.1, the bonus tiles are limited to two states, either 0 or 1. Hence,
we can represent these four-dimensional states through the expansion of the following figures, taking
into account the value of the bonus tiles (B1 and B2). Finally, we can reason about how each heatmap
corresponds to the reward functions used to generate the data in the GridWorld environments as defined
in Table 4.1. In particular cluster 1 (Figure 5.17a) strongly corresponds with R4 and cluster 3 (Figure
5.17d) corresponds with R3. However, cluster 0 and cluster 2 share similarities with both R1 and R2.
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(a) Heatmap of state visitations on trajectories identified
as play-style 0

(b) Heatmap of state visitations on trajectories identified
as play-style 1

(c) Heatmap of state visitations on trajectories identified
as play-style 2

(d) Heatmap of state visitations on trajectories identified
as play-style 3

Figure 5.17: Collection of heatmaps across all trajectories clustered relative to four play-styles for E4

Applying the same process to the Mario and MiniDungeons domain we obtain Figures 5.18 and 5.19
respectively. Here we observe that the frequency of the start state for the MiniDungeons domain domi-
nates the rest, whereas this is not observed to such a degree leading to the belief that the Mario domain
has a more diverse set of trajectories. However, through this visualisation, it is not easy to discern the
behaviours of each play-style. Additionally, we note that as a result of the clustering process, it is not
guaranteed that the number of trajectories across the clusters will be the same. This can cause issues
in extreme cases where a cluster is populated by very few trajectories as the state frequencies can be
dominated by another cluster. Therefore further analysis involving the relationships between play-styles
is required. However through both Figures 5.18 and 5.19 we can observe the relationship between states
and the differing play-styles. In particular we observe that different identified play-styles visit different
states at vastly differing frequencies. This indicates that our state representation for the given domains
is suitable for being able to separate differing behaviours. Lastly through this analysis we are able to
visualise the most important states in the different domains across all play-styles, these being the states
with the overall highest frequencies.
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Figure 5.18: State visitations for the top 50 most common states across all play-styles contained within trajectories
from the Mario domain

Figure 5.19: State visitations for the top 50 most common states across all play-styles contained within trajectories
from the MiniDungeons domain

5.4.3.1 Shared States

For our Gridworld example, the overlapping states between clusters 1 and 3, are computed using Equa-
tion 5.9 as Shared(σ, 1, 3) with results seen in Figure 5.20. Here it is observed that both play-styles
initially congregate around B1. If we consider both fk1(σ) and fk2(σ) separately, which are also repre-
sented in Figure 5.20, we can observe that both heatmaps occupy the regions around B1. This observa-
tion validates our formulation of a “shared” state. We also observe that after obtaining B1 which results
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in the change in state to B1 = 0, both play-styles occupy spaces within the narrow corridor in the middle
of the environment.

Figure 5.20: Shared states observed between Cluster 3 and 1 for E4 (excluding non-visited states)

We conducted an analysis of the number of shared states for all possible play-style pairs of fk in both
Mario and MiniDungeons. Importantly this is just an indicator of the number of shared states and does
not factor in the frequency of occurrences per state. Our findings are presented in Figure 5.21a and Figure
5.21b respectively. Notably, there is a strong correlation along the diagonal in both domains, which
is an expected outcome when evaluating the similarity between identical play-styles. This significant
correlation provides evidence that our model effectively separates trajectories into distinct clusters.

(a) Frequency of shared states observed relative to all play-
styles for Mario (excluding non-visited states)

(b) Frequency of shared states observed relative to all play-
styles for MiniDungeons (excluding non-visited states)

Additionally, we compared the shared states generated using our clustering methodology with that of
the clusters separated using the ground-truth labels as observed in Figure 5.22. Once again using Mean
Absolute Error we determine a similarity of 70% between matrices. This indicates that we can separate
the trajectories into relatively similar partitions as those of the ground-truth labels. Lastly, Figure 5.22c
illustrates a substantial increase in the overall quantity of shared states. As a result, we hypothesise that
there is a direct correlation between a decrease in clustering accuracy and an increase in the total number
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of shared states. This observation suggests that the optimal play-style clustering may be achieved by
utilising a minimal set of shared states.

(a) ground-truth clustering (Total shared state frequency :
6167)

(b) our unsupervised clustering method (Total shared state fre-
quency : 7553)

(c) random clustering (Total shared state frequency : 9994)

Figure 5.22: Comparison between ground-truth, our method and random clustering in terms of shared states.

Equation 5.9 alone does not provide enough information to ascertain the point at which two play-styles
deviate; for that purpose, we compute the disparity between the two play-styles.

5.4.3.2 Differing States

Equation 5.10 is used to identify the states of divergence as demonstrated here in Figure 5.23 which
depicts the differing states between clusters 1 and 3. Here it is observed that the states surrounding B2

are found in cluster 1 but not in cluster 3 which also corresponds with the expected behaviour. This
behaviour is to go to the goal after obtaining B1 rather than also going to obtain B2.
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Figure 5.23: The States found in Cluster 1 without any of shared states with Cluster 3 (max(f1 − f3, 0))

It is important to note that Equation 5.10 is a relative difference calculation, as Diff(σ, k1, k2) ̸=
Diff(σ, k2, k1). Therefore, the heatmaps generated using Equation 5.10 do not represent all the states
not present in fk1 or fk2 . When comparing two play-styles, it can be informative to consider both the
similarities and differences between the two states. However, such an analysis does not fully reveal the
main features or characteristics of a specific play-style. To accomplish this, it is necessary to compare a
given play-style with respect to all other play-styles to identify its unique characteristics.

In a similar fashion to the shared states the number of different states for all possible pairs of play-styles
fk in both Mario and MiniDungeons was analysed. It should be noted that this is solely an indicator
of the number of different states and does not take into account the frequency of state occurrences. In
the case of the Mario domain, as shown in Figure 5.24, we observe no differences along the diagonal,
which is as expected when comparing a play-style with itself. This outcome could potentially serve as an
indication that a sufficient number of clusters was selected. We expand on this notion in Section 5.4.5.

Figure 5.24: Frequency of differing states observed relative to all play-styles for Mario (excluding non-visited
states)

Moreover, upon a comparison of the ground-truth correlation matrices and our approach depicted in
Figure 5.25, we note that the outcomes are analogous to those observed in the shared states scenario.
It is worth noting that play-styles three and five display considerable dissimilarity in comparison to all
other play-styles. However, it should be acknowledged that this difference is relative (Diff(σ, k1, k2) ̸=
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Diff(σ, k2, k1)) and play-styles encompassing a vast number of diverse states will invariably result in
elevated values as per Equation 5.10.

(a) ground-truth clustering (Total differing state frequency :
28166)

(b) our unsupervised clustering method (Total differing state
frequency : 28654)

(c) random clustering (Total differing state frequency : 30279)

Figure 5.25: Comparison between ground-truth, our method and random clustering in terms of differing states

5.4.3.3 Unique States

In particular, we observe in Figure 5.26 that the unique states for cluster 1 reside in the top right of the
map for E4 when B1 = 0, B2 = 1 as well as when B1 = 0, B2 = 0 which expectantly corresponds to
behaviour 4 in Table 4.1. These unique states for cluster 1 (k = 1) were calculated as Unique(σ, 1).

Figure 5.26: Unique states observed for Cluster 1 for E4 (excluding non-visited states)
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Identifying the unique characteristics of a play-style is important for an individual player in a game
because it allows them to understand what sets their particular style apart from others. This knowledge
can inform decision-making about game strategy, character selection, and in-game tactics, and help the
player to develop their own distinct identity and approach to the game. Additionally, understanding the
unique characteristics of a play-style can help a player to improve their gameplay by identifying their
strengths and weaknesses, and allowing them to focus on the aspects of their play that are most effective.
For example, a player that is known for their defensive play-style may be able to focus on improving
their ability to read opponents and anticipate their moves, which can help them to win matches more
consistently.

The application of the same analytical approach to the Mario dataset reveals the 50 most unique states
across all play-styles, as depicted in Figure 5.27. It can be observed that “Play-style: 3” in the figure
has the highest number of unique states, occurring at a significantly higher frequency than in other play-
styles. In contrast, “Play-style: 1” has the lowest number of unique states, with the least degree of
uniqueness for those states. However, it can be concluded that there is a set of states which can uniquely
identify each play-style.

Figure 5.27: State visitations for the top 50 “most” unique states contained within trajectories from the Mario
domain

Looking into the specific characteristics of the most unique states as seen in Table 5.3, allowed us to
discover the meaning behind the identified clusters. For example, we note that cluster 0 corresponds to
players who die the least while cluster 2 contains players who are more likely to collect coins while also
killing enemies. By engaging in this behaviour we see that they are more likely to die. Lastly, cluster 1
players tend to jump the least while also ignoring picking up any coins.

The unique state counts can also be used to influence the number of clusters chosen when using k-means.
By considering whether the frequency of the most unique state was too large or small we could raise and
lower the number of clusters we identified. For example, if the frequency of unique states was below
a certain threshold, the particular cluster would be considered too similar to another. By doing this we
settled on 3 clusters that had both unique cluster characteristics and a suitable amount of data.
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Table 5.3: The 3 most frequent unique states for each identified cluster for all the trajectories in the Mario dataset

State Description
jumps kills runs coins deaths action

Cluster 0 17 1 2 3 0 9
17 1 2 3 0 2
12 1 0 2 0 2

Cluster 1 11 7 0 0 1 9
11 7 0 0 1 2
8 7 0 0 1 2

Cluster 2 38 8 0 8 2 9
38 8 0 8 2 9
49 8 0 8 1 9

Finally, we determined the unique states associated with the MiniDungeons domain as seen in Figure
5.28. Here we observe similar characteristics as to both the GridWorld and Mario domains where each
play-style is represented by a set of unique states. Additionally, we note that in particular “Play-style:
4” has the most frequently occurring and “most” unique states.

Figure 5.28: State visitations for the top 50 “most” unique states contained within trajectories from the MiniDun-
geons domain

By representing the unique states across play-styles we are able to formulate a general understanding of
play-style behaviour as well as visually depict the diversity in behaviour.

5.4.4 Identifying Play-style Decision Boundaries

In Figure 5.29 we observe that when B1 = 0, B2 = 1 there is a transition boundary after moving
up through the middle corridor where a player could then either go left or right. Here the play-style
prediction accuracy greatly increases if one chooses to travel left while the accuracy for other actions is
far less. This is per the behaviour of this particular cluster which is, as previously indicated, to obtain
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B1 and head to the goal. The converse can be observed in Figure 5.30 which represents the boundary
points for cluster 2. For this case, the behaviour was to obtain B2 followed by going to the goal. Once
again after a player gets to the end of the corridor they need to decide whether to go left, right or back
down, however, once the player decides to go right, the prediction accuracy greatly increases as opposed
to following any of the other actions. As a result of this designers would only need to identify how a
particular player acts around a small finite set of decision points to classify a player’s behaviour.
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Figure 5.29: Play-style Decision Boundary Points indicated by green squares for cluster 1

Figure 5.30: Play-style Decision Boundary Points indicated by green squares for cluster 2
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Although these are just particular examples, the identified boundary regions for each GridWorld envi-
ronment can be seen in Appendix B.1. Here we observe a general trend whereby we can identify the
points where initially indistinguishable play-styles suddenly diverge as a result of one or two actions.
However, our approach performs worse when play-styles gradually drift apart.

5.4.5 Determining the Appropriate Number of Play-styles

A limitation of our approach lies in the choice of k which corresponds to the number of play-styles that
we aim to identify. By choosing an arbitrary k our resultant number of play-styles is not guaranteed
to represent the true number of unique play-styles within a certain domain. This is a well-known issue
related to both k-means and GMM approaches. A common solution, which has also been previously
used [Arendse et al. 2022], has been to employ the ELBOW technique [Thorndike 1953]. However,
we can utilise the identified shared, differing and unique characteristics of the clusters to determine if
what has been identified has enough substance to be an individual cluster. Specifically, this is attained
by computing the average number of unique states in comparison to the total number of clusters, and
determining the point at which the slope of the curve ceases to decrease significantly. Figure 5.31 depicts
the average uniqueness across all the identified play-style clusters for differing values of k calculated
using Equation 5.14. Here it is observed that for GridWorld environments it is best to use four clusters
to represent all the different play-styles, such that all clusters have a substantial number of unique states.

AverageUniqueness =
n∑

k=0

(
max

[
fk(σ)− (

n∑
h=0

[fh(σ)];h ̸= k), 0
])

(5.14)

Figure 5.31: Analysis of uniqueness across all play-styles and all GridWorld environments for differing numbers
of k

Although somewhat inconclusive we note that the appropriate number of clusters should fall between
three and five according to this approach, whereas the ground truth number of clusters was four. This
serves as an interesting exploration into the idea of using uniqueness for estimating the number of clus-
ters in unsupervised methods, however, it requires further investigation.
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5.4.6 Identifying Mean Play-style Trajectories

In Figure 5.32 we visualise the result of evaluating Mean(k = 1) using Equation 5.12. In this case,
we can see the generalised behaviour for this play-style is to head to B1 then B2 and finally to the goal.
This directly corresponds to the expected behaviour described in Table 4.1 Visualising higher dimen-
sions in this fashion is difficult, however, with this approach we can obtain state-transition dynamics
representative of generalised behaviour for both Mario and MiniDungeons.

Figure 5.32: Mean Trajectory for Cluster 1 represented as a visitation map

By applying this method we obtained results seen in Table 5.4 comparable to that of our unsupervised
approach, however in some cases, particularly for E1 and E5 we observed notably greater clustering
accuracy. We note that the high play-style prediction accuracy is due to the mean trajectories for both
E1 and E5 being highly correlated to the expected general behaviours for each play-style in those en-
vironments. The heatmaps for these mean trajectories can be seen in Appendix B.2. This leads us to
believe that there is a benefit to utilising distance metrics which value structural similarity. Furthermore,
this demonstrates that by identifying “mean” play-style representations we can improve the play-style
prediction accuracy on unseen trajectories. It is important to acknowledge that our autoencoder model
remains indispensable for generating the means, hence this strategy is not intended to supplant the model
but rather to utilise it in conjunction to possibly attain superior outcomes.

Table 5.4: Comparison between LCS clustering with mean trajectories versus our autoencoder model

Domain LCS Prediction Accuracy Unsupervised Model Prediction Accuracy
E1 0.598 0.653
E2 0.644 0.707
E3 0.931 0.778
E4 0.643 0.709
E5 0.893 0.778
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5.5 Conclusion

In this chapter, we have presented a novel system for play-style identification that addresses the chal-
lenges of processing complex data and finding interpretive descriptions of behaviours within a dataset.
By clustering multi-dimensional variable-length trajectories in video games, we have shown that our
system can accurately identify different styles of behaviours exhibited by players. The core of our sys-
tem is a specialised LSTM-autoencoder that can effectively handle sequence-based data by utilising the
benefits of Recurrent Neural Network architectures.

Our system has several potential benefits, including its ability to identify play-styles in both offline and
online settings without requiring additional engineering or training time. We have demonstrated this
capability in Sections 5.4.1 and 5.4.2. Moreover, our system can recover the characteristics of each
play-style through state-based cluster analysis in Section 5.4.3, which can provide useful insights for
game designers to better understand player behaviour.

In addition, our system can identify the decision boundaries that separate different play-styles, as demon-
strated in Section 5.4.4. This can help designers to create games that appeal to different play-styles and
provide a more personalised experience for players. Finally, our process for generating mean represen-
tations of each play-style and determining the appropriate number of play-styles, as shown in Sections
5.4.6 and 5.4.5, can provide a more accurate and informative representation of player behaviour.

In summary, online identification of a player’s play-style from partial trajectories during a live gameplay
experience provides numerous benefits, including real-time adaptation, improved player engagement,
dynamic matchmaking, and fraud detection and prevention. These benefits can lead to a more person-
alised, immersive, and enjoyable gaming experience for players, as well as a more successful game for
developers.
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Chapter 6

Game Modeller

Portions of this chapter have been published in Ingram et al. [2023a].

Branden Ingram, Benjamin Rosman, Richard Klein, and Clint van Alten. Creating Diverse Play-Style-
Centric Agents through Behavioural Cloning. In Proceedings of the Eighteenth (AAAI) Conference on
Artificial Intelligence and Interactive Digital Entertainment, (AIIDE) 2023.

6.1 Introduction

The development of diverse and realistic agents has become an important goal for game developers
required to ensure the game world feels more immersive and believable, which can enhance player sat-
isfaction and enjoyment. Traditional techniques in game design tend to involve hand-crafted solutions
while in recent years approaches for learning game-playing agents often focus on optimising for a single
objective, such as maximising the score or winning the game [Berner et al. 2019]. While these agents
may perform well in specific scenarios, they often lack the ability to adapt their play-style to different
situations and opponents [McIlroy-Young et al. 2020]. For example in chess, certain aggressive open-
ing strategies can be countered by putting pressure on key points on the board, while more defensive
opening strategies can be vulnerable to an opponent who seeks to control the board and develop their
pieces effectively [De Marzo and Servedio 2022]. Additionally, these agents may not be able to repre-
sent the full range of play-styles that human players exhibit, such as “speed-runner”, “completionist”,
or unpredictable play-styles [Drachen et al. 2009]. In particular, these types of play-styles could be
advantageous to designers by serving as a form of playtesting, either independently or in conjunction
with human players. Such an approach would enable a more informative development cycle by provid-
ing a deeper understanding of how the player base could react to various design decisions. In terms of
players, utilising human-like agents maintains a level of realism and fairness not awarded by an optimal
agent. There is some empirical evidence indicating that human players prefer playing with and against
human-like agents [Arrabales et al. 2012]. Therefore, the question becomes not how can we learn an
optimal policy but rather how can we learn a set of policies which exhibit diverse behaviours or styles.

Despite the significant success achieved in developing singular optimal policies for multiple video game
domains [Berner et al. 2019], there has been considerably less research focused on creating sets of
agents exhibiting diverse behaviours. Alternative approaches that aim to replicate observed behaviours
have demonstrated their effectiveness in generating human-like behaviours [Pearce and Zhu 2022]. In
the context of either of these approaches, learning varied policies relies on either designing or auto-
matically identifying sets of characteristics from which a similar behavioural policy can be learned. To
design a policy, we define relevant features that describe the desired play-style, and then we can learn a
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policy that maps these features to actions [Arzate Cruz and Ramirez Uresti 2018]. Alternatively, we can
automatically extract relevant play-style features from data using techniques like clustering or dimen-
sionality reduction and then learn a policy from those, as demonstrated in Chapter 5. In both cases, the
goal is to learn a set of play-style-centric agents whose behaviour matches that of either a designed or
identified play-style.

Creating such a set of play-style-centric agents that play according to a certain style can have several
potential benefits. Firstly, by generating a group of agents who play according to different styles we
can provide players with a more diverse and varied gaming experience, as they will be playing against
opponents with different strengths and weaknesses. Moreover, such a technique that generates a set of
agents that adhere to a particular gameplay style can offer a cost-efficient alternative for supplying a
greater quantity of adversaries for players to confront, in contrast to the conventional design methodol-
ogy. Lastly, play-style-centric agents can be useful for players who want to learn more about a particular
strategy or play-style, as they can observe the agents in action and analyse their decision-making pro-
cesses. For example, a chess player might find enjoyment in being able to play against an opponent of a
particular style or in training it may be useful to train against players of different styles.

In this chapter, we propose a novel pipeline which aims to generate a diverse set of play-style-centric
agents dubbed PCPG (Play-style-Centric Policy Generation). This pipeline consists of a combination of
unsupervised play-style identification and policy learning techniques. Through the unsupervised identi-
fication process, the demonstrations are divided into subsets based on identifiable behaviours. The policy
learning method is then applied to train agents that can mimic a particular play-style. The ultimate goal
is to create a diverse set of agents that can accurately represent various play-styles in the game. We
evaluate the efficacy of our proposed approach on multiple video game domains and demonstrate that
the agents generated by our pipeline can effectively capture the richness and diversity of gameplay expe-
riences. Our results show that our agents learn policy with a high degree of accuracy while showcasing
identifiable and diverse play-styles.

6.2 Methodology

We aim to solve the following problem: given a set of trajectories (D) can we separate them into k
distinct partitions (Pk) from which we can generate a policy (πk) which exhibits the behaviour identified
for each partition identified by k? Furthermore, can we further partition Pk such that we can learn
optimal policies (π∗

k) for each play-style k?

6.2.1 Play-style-Centric Policy Generation (PCPG)

Our PCPG system as depicted in Figure 6.1 is based on three key steps. In step A, we use a clustering
technique to separate our observations, or in this case our multi-dimensional trajectory data, according
to different identifiable play-styles as demonstrated by the PI in Chapter 5. In step B, we order the
trajectories based on a ranking function. Step C is then to train individual Behavioural Cloning (BC)
models on a selection of the top-performing observations for each of the generated partitions. Since
each of these selections contains data associated with a specific behaviour, it is expected that the learned
policies would display similarities to that behaviour. Therefore, these models trained using behavioural
cloning are referred to as play-style-centric models.
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Figure 6.1: Overall PCPG system; initially the set of trajectories is clustered in step A into subsets Hk, each
subset is then rank-ordered in step B indicated by the colour gradient, and finally the top performing trajectories
are thresholded (Pk,p) and used to train the play-style-centric agent in step C.

6.2.1.1 Trajectory Clustering (Step A)

In the context of this chapter, we use the PI to perform the task of separating trajectories into partitions
with respect to the style. To recap, this works by first projecting a trajectory (Xi ∈ D) into a lower-
dimensional latent representation (Zi ∈ Z) using an LSTM autoencoder network. Subsequently, we
cluster this latent space (Z). This process aims to discover k clusters, resulting in the creation of k
partitions (P) of the original trajectories.

6.2.1.2 Policy Learning (Steps B and C)

Next, we look to train representative policies having clustered all trajectories (X ∈ D) into separate
subsets (Pk ⊂ D) where k is the cluster identifier. In step B each Pk is reordered based on a ranking
metric. Subsequently, a thresholding parameter (p) is used to choose a subset of trajectories (Pk,p ⊆ Pk)
that perform in the top “p” percentile, which will be utilised as inputs for the corresponding play-style-
centric model. This is implemented to guarantee that the trajectories received by our play-style-centric
models correspond to high-performance instances of the particular play-style. Lastly, in step C, the play-
style-centric model is trained through a supervised learning approach that minimises the loss between
the predicted action by the model and the expected action.

6.2.2 Training

For the trajectory clustering, we used an unsupervised LSTM clustering model as described in Chapter 5.
Our play-style-centric models were made up of 3 fully connected layers of 5 nodes each. The dimensions
of the input and output for this model correspond to the length of a single timestep, which is equal to
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4 for the GridWorld domain and 15 for MiniDungeons. Once more we define k as 4, 6 and 3 for the
GridWorld, MiniDungeons and Mario domains, respectively.

All experiments were conducted using 4 seeds across the 5 GridWorld environments as well as the
Mario and MiniDungeons domains with the average accuracy for each being recorded. We trained each
play-style-centric model for 2000 episodes. The initial dataset (D) contains 4000 trajectories for each
GridWorld environment 780 for MiniDungeons and 74 for Mario. For our ranking metric, we utilised
Equation 6.1;

Performance(X) =
1

|X|
·

{
1 if xT is a goal state
β otherwise

(6.1)

where xT denotes the final state in the trajectory X , and β is a constant penalty factor that reduces the
score when xT is not a goal state. This performance metric incentivises shorter trajectories by utilising
the length of a trajectory calculated as |X|. Here higher values of |X| correspond to lower performance,
while smaller values of |X| indicate better performance. Additionally, we adjust this metric based on
whether a trajectory successfully reaches the goal state or not. For example, if β = 0.5, then the score
is halved when the trajectory does not end in a goal state. In particular, we used β = 0.1 heavily
penalising all trajectories which did not reach the goal state. We further demonstrate the functioning of
this performance metric in Table 6.1, where we represent a few example scenarios for different values
of the different parameters.

β |X| is xt a goal state Performance
0.1 10 True 0.1
0.1 10 False 0.01
0.1 100 True 0.01
0.1 100 False 0.001
0.5 10 True 0.1
0.5 10 False 0.05
0.5 100 True 0.01
0.5 100 False 0.005

Table 6.1: Example scenarios for input values used to calculate the performance of a trajectory X as used in
Equation 6.1

While in our domains we employ trajectory length as a performance measure, it is equally feasible to
substitute it with a predefined score metric inherent in the environment or a different combination of
features that can serve as indicators of overall skill. To showcase the advantage of “step C” in our
approach, we trained an individual model with the same architecture as each play-style-centric model
without clustering, as a baseline approach. Lastly, we tested over a range of thresholding percentages, in
particular, where p = [1, 0.75, 0.5, 0.25, 0.1]. Here a value of 1 indicates we train our play-style-centric
models on all trajectories while 0.1 indicates we train each model on the top 10% of trajectories.

6.2.3 Evaluation

In this study, model accuracy was determined by evaluating whether the model was able to correctly pre-
dict the action necessary to transition the agent from state si to si+1. Now, autoregressively predicting
the next state at each step, where the model receives its previous outputs as inputs, would be problem-
atic due to compounding errors. For instance, if the model makes a slight mistake at the start of the
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trajectory, the final state would likely be very inaccurate. To remedy this and ensure that each prediction
can be made independently of historical mistakes, we input, at each step, the ground truth state to the
model instead of its previous predictions. This is a widely-used technique in language modelling and
model-based reinforcement learning [Moerland et al. 2023]. This process is completed for all states in a
trajectory and across all trajectories in the testing set.

6.3 Results

Through the results of our experimental analysis, we demonstrate the ability of our model to accurately
represent desired behaviours which correspond to identified play-styles.

6.3.1 PCPG model performance

Figure 6.2 demonstrates that our PCPG model not only yields high performance but also surpasses
the equivalent “No Clustering” baseline. Comparable outcomes can be observed for MiniDungeons
depicted in Figure 6.3 and Mario in Figure 6.4. This benefit can be observed across all tested values
for the performance threshold (p). The observed stability of our model in the face of alterations to the
performance threshold underscores its robustness in accurately depicting a wide range of behaviours
associated with different skill levels. This resilience implies that the model’s predictive capabilities
remain consistent even as we increase the variety of skill levels present in our dataset. As a result,
it becomes evident that our model possesses the capacity to effectively generalize and encapsulate the
nuances of behaviours exhibited by individuals of varying skill proficiencies.

Figure 6.2: Comparison of the effect of differing the performance threshold percentage p on the model’s accuracy
across all GridWorld environments (E1, . . . , E5)
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Figure 6.3: Comparison of the effect of differing the performance threshold percentage p on the model’s accuracy
in MiniDungeons

Figure 6.4: Comparison of the effect of differing the performance threshold percentage p on the model’s accuracy
in Mario

It is important to mention that when using smaller subsets (Pk,p) for training (lower p values), the
performance of the “No Clustering” approach does improve. However, this improvement is mainly
because there is a decrease in the variety of trajectories that are present in the training and testing sets.
In contrast, our PCPG approach is not affected by this issue. This can be seen in Figure 6.5 where
we depict the average trajectory diversity across p. Here we measure diversity based on the variety of
lengths of the trajectories found in each dataset. We can see that, unlike the “No Clustering” approach,
the trajectory diversity for our PCPG model does not converge to a single length. In Figure 6.6 we
depict the diversity of trajectory lengths in the Mario domain. Here it is observed that once again as
the performance threshold tends to 0.1 (indicating higher proficiencies), that each play-style tends to a
different trajectory length.
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Figure 6.5: Comparison of the effect of differing the performance threshold percentage p on the trajectory diver-
sity across all GridWorld environments (E1, . . . , E5)

Figure 6.6: Comparison of the effect of differing the performance threshold percentage p on the trajectory diver-
sity in Mario

Finally, Table 6.2 reports the clustering accuracy of each play-style-centric model GMk with respect to
each partition P . The results are averaged over all values of p. The strong performance on the diagonal
suggests that each model is specialised in the data within its partition. This finding indicates that the
policies learned by each model are inherently different.
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Table 6.2: Prediction Accuracy of each model versus the different partitions averaged across all GridWorlds and
all p

Average over all values of p GM1 GM2 GM3 GM4

P1,p 0.57 0.45 0.44 0.36
P2,p 0.37 0.64 0.36 0.49
P3,p 0.38 0.39 0.63 0.46
P4,p 0.33 0.57 0.40 0.69

6.3.2 Behavioural and skill-based diversity

By varying the value of the performance threshold p we are also able to generate policies of varying
skill levels, which is another form of diversity. The reason for this outcome can be attributed to the fact
that our PCPG model was trained on an increasing proportion of weaker-performing trajectories. This
is evidenced by Figure 6.5, which shows a consistent pattern where increasing values of p correspond to
longer average trajectory lengths. This is a valid analogue for skill as the trajectory length was used as the
primary feature of our performance metric (Equation 6.1). Furthermore, we can observe that each play-
style is converging towards its own optimal length, which serves as further evidence of the behavioural
diversity that can be achieved through our PCPG model. In contrast, the “No Clustering” approach
converges towards a single behaviour. To further demonstrate diversity across models we observe in
Figure 6.7 the cross-correlation between play-style-centric models and the different partitions (Pk). The
closer the value is to 1, the stronger the correlation between play-style and trajectory subset. Here it
is observed that the model exhibits the highest degree of correlation with the specific subset on which
it underwent training. The correlation values that lie outside the diagonal are notably lower, barring a
single exception. Specifically, play-styles 1 and 3 exhibit a degree of correlation that is discernible but
not significant. This suggests that these two play-styles share some common characteristics, while the
remaining play-styles differ significantly from one another.

Figure 6.7: Correlation Matrix depicting relationship between play-style-centric models and data subsets across
all GridWorld environments (E1, . . . , E5)

Qualitatively we can view the diversity in behaviours in Figure 6.8 for a particular environment E2.
Here we observe that the exhibited behaviours match those behaviours encoded in the data, as shown in
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Table 4.1. It is also observed that the “No Clustering” behaviour corresponds to the play-style of going
directly to the goal, which is expected since these correspond to the shortest trajectories.

Figure 6.8: Play-style-centric model and “No Clustering” model behaviour visualisation for p = 0.1 in E1

6.3.3 Clustering Performance

Since our approach is dependent on first separating trajectories we look to analyse the effect of the
clustering performance of our PCPG model’s performance. In Figure 6.9 we observe the results of
manually varying the levels of clustering accuracy. Since our GridWorld data was generated we have
access to the ground truth clusters. We then manually mislabel a varying portion of these ground truth
labels. Therefore Figure 6.9 is the result of training our play-style-centric models on datasets of varying
corruption levels. Here “1” indicates random clustering and “0” is perfect clustering. As a result, we
identify that increasing the levels of corruption results in decreasing the effectiveness of our model.
However, it does not affect the case where we do not employ any separation. This observation is to be
expected as the case whereby we train a single model on the entire dataset does not utilise the play-
style information. It is also noted that the variance in performance increases substantially in our models
when the level of corruption increases, which indicates that our models are no longer able to specialise
in the expected and similar behaviour of the trajectories found in clustered subsets. Additionally, it
is worth highlighting that our model’s behaviour remains unaffected by variations in the performance
threshold, as demonstrated in Section 6.3.1. In contrast, the model does exhibit sensitivity to changes
in the corruption threshold. This contrast implies that our model adeptly clusters individuals exhibiting
lower performance levels by their correct play-style, as evidenced by the consistent prediction accuracy
despite adjustments to the performance threshold.
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Figure 6.9: Comparison of the effect of differing the corruption threshold percentage on the models’ accuracy.
Here “1” indicates random clustering and “0” perfect clustering

The impact of clustering accuracy on the average generated rewards for each play-style-centric model
across all GridWorlds is shown in Table 6.3. This form of analysis is only possible as a result of knowing
the underlying reward function. Here we observe that perfect clustering results in expected rewards
that are identical to those obtained from the original reward functions as defined in Table 4.1 used to
generate the GridWorld trajectories. This demonstrates that the play-style-centric models trained on
partitioned data can learn to exhibit the underlying play-styles encoded in the trajectories. Additionally,
our clustering approach enables us to achieve similar average rewards to the optimal case. However, as
clustering performance worsens, the correlation between the underlying reward functions and average
obtained rewards degrades.

Table 6.3: The effect of clustering accuracy on the average generated rewards for each play-style-centric model
across all GridWorlds

Perfect clustering Clustering using our model
Reward Function GM1 GM2 GM3 GM4 GM1 GM2 GM3 GM4

R1 99.89 0 0 0 74.07 12.03 13.02 18.24
R2 0 149.85 0 0 7.42 112.32 11.99 19.22
R3 0 0 149.86 0 7.42 10.25 115.43 17.38
R4 0 0 0 199.81 7.30 11.09 16.42 148.52

Clustering with 50% accuracy Random clustering
Reward Function GM1 GM2 GM3 GM4 GM1 GM2 GM3 GM4

R1 46.87 27.90 24.97 35.56 21.97 39.23 39.85 50.42
R2 15.32 72.73 29.18 33.27 22.34 36.47 38.09 55.71
R3 15.65 24.62 76.57 33.59 23.50 36.90 40.80 49.20
R4 13.27 26.17 25.87 103.88 22.49 38.27 40.60 49.66
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6.4 Conclusion

Defining or learning a set of play-style-centric behaviours can be challenging due to the subjective nature
of play-styles and the diversity of play-style preferences among players. Additionally, it can be difficult
to identify and quantify the defining characteristics of each play-style and create a suitable framework
for learning these behaviours. This paper proposes an approach to generating a diverse set of play-style-
centric agents that exhibit expected behaviours corresponding to their play-style. Our approach involves
utilising unsupervised clustering to separate multi-dimensional varying-length gameplay trajectories by
play-style. The resulting trajectory subsets are used to train models using behavioural cloning, enabling
the learning of representative policies. This study demonstrates that the separation approach results in
models that specialise in the subsets of trajectories on which they are trained and outperform the base
case where no separation was used. This paper also demonstrates that model diversity can be achieved
through the scaling of a performance threshold, which allows for the learning of agents with varying skill
levels. This scalability is useful for developers in creating realistic behaviours that can be more easily
scaled in terms of difficulty. Furthermore, this is accomplished without the requirement for designing
or learning reward functions, which can be a challenging and non-intuitive process. Notably, this study
shows that clustering accuracy has an impact on performance, but decreased clustering accuracy only re-
sults in the model prediction accuracy tending towards the baseline. These results were obtained through
testing in both synthetic and natural domains, highlighting the method’s robustness and generalisability.
In conclusion, our proposed PCPG model, which involves both unsupervised clustering and behavioural
cloning, is an effective approach for the creation of a diverse set of play-style-centric policies.
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Chapter 7

Player Modeller

The content in this chapter is already published [Ingram et al. 2022b] Branden Ingram, Benjamin Ros-
man, Clint van Alten, and Richard Klein. Improved action prediction through multiple model processing
of player trajectories. In 2022 IEEE Conference on Games (CoG), pages 548–551. IEEE, 2022.

7.1 Introduction

The task of tailored advice generation depends heavily on the ability to form a representation of the
user’s characteristics, preferences, and past behaviours which we call a user (player) model. Particularly,
it allows for more effective penalisation of advice or recommendations. By understanding a user’s
preferences and behaviours, tailored advice can be generated that is more likely to be relevant and useful
to the user.

We look to solve the problem of action prediction given a dataset of trajectories captured from video
games. However, video games are dynamic and temporal domains containing long-term dependencies
which all affect decision-making, thus making it difficult to train accurate prediction models. In par-
ticular, our goal is to train a model which can forecast the behaviour of a particular user rather than an
optimal policy. In a competitive setting, this can help players outperform others or from a developer’s
perspective predictions can be utilised to modify future gameplay experiences. For our particular use
case, we leverage this model to aid in the generation of tailored advice in an online fashion. Common
approaches to player modelling have revolved around future action prediction; these include using ma-
chine learning techniques such as decision trees [Cheung Chiu and Webb 1998], neural networks [Oh
et al. 2015], and hidden Markov models [Luckin and others 2007]. These methods can be effective, but
they often require large amounts of training data and computational resources.

In addition to generating an accurate model of a user, there is an added requirement of needing to
generate this model in a sample-efficient manner. The reason for this is that players’ preferences and
behaviours can change rapidly, and advice that is not timely or relevant may not be useful to the player.
Furthermore, generating tailored advice quickly can help to improve the player’s overall experience with
the game or application. By providing timely and relevant advice, the player is more likely to engage
with the game or application and achieve their goals, leading to a more positive experience.

Pretraining is a common technique used for sample-efficient model learning [Zoph et al. 2020]. It
can be especially useful when the target dataset is small or when labelled data is limited [Yarats et al.
2021]. In such cases, training a model from scratch on the target dataset may result in overfitting or
poor generalization [Martens and Dardenne 1998]. Pretraining on a large, related dataset can help to
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regularise the model and improve its ability to generalise to new data. In the context of tailored advice
generation, pretraining can help to capture common patterns and behaviours that are shared among users
of similar play-styles, which can improve the accuracy and usefulness of the advice.

Our main contribution is the introduction of a novel neural network-based model, termed Cluster As-
sisted Prediction (CAP), for predicting future actions. This model improves prediction accuracy by
utilising identified play-style clusters to assist in the learning process. By incorporating cluster informa-
tion, each sub-component of the model only needs to learn from semantically similar data, as opposed
to the entirety of the dataset. This enables the sub-components to specialise on their respective data-
subsets, leading to enhanced overall performance. The CAP model undergoes initial offline pre-training
using a trajectory dataset, followed by online fine-tuning for a particular user to mitigate the delay in
accurate predictions as a result of new unseen data.

7.2 Methodology

We aim to solve the following problem: given a user’s partial trajectory (P = X[1 : t]) can we accurately
and efficiently predict the action which produces the next state in P ? Furthermore, can this approach be
utilised in a sample-efficient manner, to accurately predict the actions of new users?

7.2.1 Cluster Assisted Prediction (CAP)

Our proposed CAP model depicted in Figure 7.1 operates in two modes. The first is an offline stage
whereby we pre-train the network on a dataset (D) of trajectories. In this process, every trajectory
(X ∈ D) undergoes a gating mechanism and is directed to a specific Predictor Node (Mki). This
ensures that each X ∈ D is processed by a single Mki , which is chosen based on an associated cluster
index (ki). The index corresponding to the appropriate cluster is obtained by utilising the trained Play-
style Identification (PI) model, as discussed in Chapter 5. The PI model generates a set of play-style
partitions, denoted by Pki , where Pki ⊂ D and ki represents the index associated with a specific play-
style partition to which X belongs. Here ki ∈ {1, . . . , k} where k is the number of identified clusters.
The value of k also dictates the number of Predictor Nodes found in our proposed CAP model for a
given dataset. These Predictor Nodes, described in further detail in Section 7.2.2, then predict the action
required to move from X[t] to X[t+ 1] where t represents the current timestep.

To use the player model in an online fashion, we need to ensure that it can adapt to the specific user’s
behaviour as they interact with the virtual environment in real-time. Therefore, we employ online train-
ing of our CAP model to fine-tune it on the individual user. During the online mode, we continuously
train on partial trajectories (P = X[1, t]) obtained from a particular user. This training occurs within the
same environment that was used to pre-train the CAP model. The pipeline operates similarly to the of-
fline mode, except that we identify the cluster index for the currently available partial trajectory P using
the PI model. We then utilise the gating mechanism and direct the partial trajectory to the corresponding
predictor node (Mki), based on the associated cluster index (ki), to predict the user’s next action. This
training occurs in real-time as the user is engaged with the environment. As new data is collected, it is
fed into the model to refine its predictions.

97



Figure 7.1: Cluster Assisted Prediction Model (CAP)

7.2.2 Predictor Nodes

Our proposed CAP model makes use of a set of Predictor Nodes Mki , where each node is only trained
on data from its corresponding partition Pki . The individual Predictor Node architecture is depicted in
Figure 7.2. The objective for each of these nodes is to forecast the succeeding time step (X[t+ 1]) of a
given partial trajectory (P = X[1 : t]) present within the trajectory partition (Pki), whereby t denotes
the timestep. Our Predictor Nodes are comprised of two components. The first component is a standard
LSTM layer which is required since P varies in length as we receive more input from a user. This
layer accepts as input any partial trajectory and outputs a one-dimensional vector which represents an
encoding of the trajectory. This encoding is then appended to the current time step (X[t]) of the partial
trajectory and serves as the input to the second component, our fully connected neural network. Finally,
this node outputs the next state as its prediction (X[t+ 1]).

Figure 7.2: Individual LSTM Predictor Node

7.3 Offline Pre-Training

We trained our CAP model on a set of trajectories (D) where the cluster for each X ∈ D was identified
using the PI detailed in Chapter 5 and is represented as ki. This identification is important as it dictates
which Predictor Node our input trajectory should be passed to. The fully connected neural network
component found in each Predictor Node of our CAP model consists of 3 hidden layers of 5 neurons
with ReLu activations. Additionally, these nodes utilised a non-stacked LSTM which outputs an encoded
state of size 8. By appending this encoded state by the last time step of the partial trajectory we get the
input of the fully connected neural network. The input dimension of both the fully connected component
and the LSTM layer is, therefore, dependent on the dataset’s timestep dimension. For comparison, we
trained a model (Single) with the same architecture as depicted in Figure 7.2 on the complete dataset (D).
This model has the same structure as a single Predictor Node found in our CAP model. The difference
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is the size of the hidden layers found in the fully connected component. To ensure fairness between
our CAP and Single models, we keep the total capacities of the models roughly equal. This is achieved
by increasing the size of the hidden layers in the Single model by a factor dependent on the number of
clusters. For the Single model, we used a hidden layer size of 5× k where k was the number of clusters.
The resultant accuracy from this model would serve as the base of comparison with our CAP model.

Both our CAP and Single models were trained for 10000 episodes using the Adam optimiser with a
learning rate 0.001 using mean square error as our loss function. During each episode, progressively
longer partial trajectories are fed forward through the complete network until the entire trajectory has
been processed. For each of these partial trajectories (X[1 : t]) the output (y′) is compared to X[t + 1]
with the loss being backpropagated through the entire network. This process is outlined in Algorithm 9.

Algorithm 9 Player Modeller (PM) Training
Input: Set of trajectories D, CAP model
Output: Trained CAP model

1: for each trajectory X ∈ D do
2: for each partial trajectory P ∈ X do
3: Identify the cluster ki for P using PI detailed in Chapter 5
4: Select Predictor Node (Mki) using ki
5: Encode P using LSTM layer in Mki to obtain ZP

6: ZP = ZP ⊕ Pt where pt is the final state in the P , and ⊕ represents concatenation
7: Pass ZP through the fully connected NN layer to obtain predicted X ′

t+1

8: Calculate loss between Xt+1 and X ′
t+1 using Equation 2.11

9: Back-propagate using loss

The efficacy of our methodology relies on the utilisation of grouped data, and as such, is contingent on
the accuracy of the clustering process. To showcase a standard of excellence for our approach, we lever-
age the preexisting knowledge that the grid world data was designed to showcase distinct patterns. This
implies that a definitive clustering solution exists. Consequently, we proceeded to train our CAP model
on the distinct partitions (P ⊆ D) that were separated using these ground truth labels. We performed
this procedure for all six of our environments (E1, · · · , E5,Mario). All experiments were conducted
using 4 seeds across the 5 GridWorld environments as well as Mario with the average accuracy for each
being recorded. The initial dataset (D) contains 8000 trajectories for each GridWorld environment and
74 for Mario. These datasets were then split 70-30 for the training and testing sets.

7.4 Online Fine-Tuning

To train our model for online learning, we use the latest partial trajectories collected from the user to
continually train the pre-trained CAP model. To evaluate the effectiveness of our pre-training method,
we created a small subset of trajectories, consisting of 5 previously unseen trajectories for each play-
style (k), which represents our user-set, denoted as Uk. These unseen trajectories were randomly selected
from the testing set. We trained both the pre-trained CAP model and the CAP model without pre-training
on Uk to demonstrate the benefits of pre-training in achieving sample efficiency. Both models are trained
for 5 episodes, where each episode involves progressively increasing the amounts of data sampled from
Uk. The intra-episode training process is similar to Algorithm 9 described in the offline training process,
except that now our training dataset D is a subset of Uk that grows by one trajectory until it is equivalent
to Uk. This process is repeated for each play-style k.

99



7.5 Results

For evaluation purposes, we use unseen trajectories from each environment. For each trajectory (X)
we process every partial trajectory (P = X[1 : t]) through each of the evaluated models to generate
predictions y′. The overall performance is the percentage of correct predictions across the given testing
set.

7.5.1 Offline Training Model Prediction Accuracy

The results of evaluating the prediction accuracy of the pre-training step are depicted in Table 7.1 with
bold values representing the best model for a given environment. Here we observe for each of the
environments, whether structurally similar in the case of E1, . . . , E5 or more complex (Mario), our CAP
model outperforms the Single model. Notably, this performance level was achieved in both synthetic and
natural domains. This indicates our approach of utilising clustered partitions of data can be beneficial
when using real-world data. Since our CAP model is partially dependent on the clustering accuracy,
we analysed the effect of using the ground truth clusters available from the GridWorld environments.
The results of using ground truth clustering serve as a benchmark comparison to minimise the impact of
clustering performance. We observed that our CAP model performed at an even higher level when using
the data separated using the ground truths. This indicates that with better clustering our CAP model can
achieve greater accuracy.

Table 7.1: Prediction Accuracy on Clustered Data

E Random Single CAP CAP (ground-truth)
E1 0.27 0.56 0.6 0.63
E2 0.28 0.51 0.53 0.6
E3 0.27 0.34 0.47 0.48
E4 0.29 0.58 0.62 0.68
E5 0.27 0.52 0.56 0.57
Average across GridWorlds 0.28 0.50 0.56 0.59
Mario 0.025 0.30 0.36 N/A

Lastly, we analysed the ability of the individual sub-models (M1, . . . ,Mk) to specialise in their respec-
tive data partition (P1, . . . ,Pk) averaged across all environments. This is achieved by comparing the
prediction accuracy of each sub-model on all data subsets for a given environment. The results of this
process were then averaged across all environments and are depicted in Table 7.2. Here we observe that
the prediction accuracy of M1 . . .M4 is higher when making predictions from trajectories within their
corresponding data partition depicted by the bold values. Conversely, the prediction accuracy on trajec-
tories from other partitions is far lower than even the average performance of the overall CAP model
depicted in Table 7.1. It is by specialising on these partitions that when combined into our CAP model
we obtain the overall benefit. Lastly, we observe that the average prediction accuracy of our CAP model
across all environments is greater than the average performance for each sub-model.
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Table 7.2: Prediction Accuracy of sub-models on each data subset

M1 M2 M3 M4 CAP
P1 0.65 0.29 0.21 0.2 –
P2 0.25 0.56 0.19 0.21 –
P3 0.15 0.15 0.66 0.23 –
P4 0.22 0.21 0.2 0.44 –
Average 0.32 0.3 0.32 0.27 0.56

7.5.2 Pre-training Effectiveness For Online Training

In Figure 7.3, it can be observed that the pre-trained CAP model outperforms the CAP variant that
did not undergo pre-training. Furthermore, our pre-trained CAP model exhibits the ability to quickly
specialise on user data, as it demonstrates good performance from the outset. Additionally, the rate at
which it specialises on individuals is faster than that of the CAP model without pre-training.

Figure 7.3: Prediction Accuracy comparison between pre-trained CAP model versus no pre-training

7.6 Conclusion

This chapter proposes a new multi-model approach dubbed CAP which demonstrates the benefit of pre-
training multiple models on separated data over a single model on a complete dataset. Our CAP model
was trained to perform optimally in a future action prediction task on multi-dimensional variable-length
gameplay trajectories which had been separated with respect to a clustering process. We tested this on
a synthetic dataset where cluster information was known as well as a natural domain (Mario) where
the ground truth clusters were not known. Through empirical analysis, we demonstrated that our CAP
model consistently outperformed the Single model trained on the overall dataset. We also demonstrated
that the performance increase came from the ability of the sub-models to specialise on their respective
data subsets. We conclude that with the use of an initial data separation process, you can obtain superior
performance when training future state prediction models in video game environments. Finally, we have
shown that by leveraging the pre-training process, where our CAP model was trained on an existing
dataset of trajectories, we were able to develop a model that could swiftly adapt to previously unseen
trajectories from a specific user. This result serves as evidence of the model’s efficacy in online scenarios.
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Chapter 8

Advisor

8.1 Introduction

Learning how to advise in an efficient and engaging way has long since been a problem in numerous
domains including teaching [Feiman-Nemser 1983], robotics [Kober et al. 2013] and video games [Shaf-
fer et al. 2005]. Doing so in an automatic fashion which is tailored to a specific user is an even more
challenging problem. Specifically in video games, this involves generating advice that is helpful, rele-
vant, and actionable for individual players that require overcoming obstacles such as personalisation and
human-like reasoning [Brisson et al. 2012]. Generating tailored advice in video games is important for
learning and skill development, enjoyment and engagement, which can enhance the player experience
and contribute to a more personal, enjoyable, and engaging gaming experience.

Machine learning [Char et al. 2018], natural language processing [Papamichail and French 2003], and
expert systems [Ye and Johnson 1995] have been utilised for the generation of advice for recommenda-
tion systems. These models analyse a user’s data and provide personalised feedback and advice based
on the specific context and goals of the user. Overall, while recommender systems can be useful for
making personalised recommendations, they may not be sufficient for learning to be better. Specifically
in terms of games, many also incorporate tutorial systems or walkthroughs that provide advice and guid-
ance to players as they progress through the game [Andersen et al. 2012]. However, these systems tend
to exhibit a limited scope and lack of personalisation due to their one-size-fits-all nature. Thus, generat-
ing tailored advice that is helpful, relevant, and actionable remains a challenging problem that requires
overcoming several obstacles, including the need for personalisation, domain expertise, and human-like
reasoning. Automated systems may not account for individual differences in play-style, preferences,
and goals. Therefore, new approaches such as our model comparison approach discussed in this chapter
are needed to augment existing automatic advice generation systems and improve their effectiveness.

Comparing models of individuals with that of an expert, such as a teacher or mentor, is a promising
approach for garnering tailored advice and improving learning rates [Bullough Jr et al. 2003]. This
approach involves creating a model or profile of the novice player’s gameplay and comparing it to that
of an expert. By analysing the differences between the two models, the system can identify areas where
the novice player could improve, and offer tailored advice to help them progress. The expert’s behaviour
can be used to augment the automated system, providing a more comprehensive understanding of the
game mechanics and strategies. This approach can be seen as a form of apprenticeship learning, where
novice learners receive targeted instruction from experts and progress through a structured learning
pathway [Abbeel and Ng 2004]. The expert’s behaviour can be used to create a curriculum of tasks or
challenges that build upon each other, guiding the novice player towards mastery. Additionally, transfer
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learning techniques can be used to adapt the expert’s knowledge to the novice player’s context, such as
by identifying commonalities between different situations [Torrey and Shavlik 2010].

In this chapter, the ultimate component of our automated advice generation system is presented, namely
the Advisor (AD). The chapter proposes the integration of the previous three components, namely Play-
style Identifier (PI 5), Game Modeller (GM 6), and Player Modeller (PM 7), into an operational online
format. This process is described in Section 8.2. In particular, the PI provides a way to identify a
player’s unique play-style, which can inform the selection of the expert model to be used for comparison.
Through this approach, we aim to teach a player to be better with respect to their identified play-style,
which can be obtained from the PI. In Section 8.3, we delineate our experimental framework that was
employed to produce the encouraging and exploratory findings presented in Section 8.4. The success of
open-ended games like Minecraft1 which allow players the freedom to play in their own style as well as
their application in learning [Nebel et al. 2016] leads us to believe that approach can lead to increased
user engagement, motivation, and enjoyment. Additionally, the PM provides an accurate model of a
novice learner allowing for the understanding of their motivations, behaviours and preferences, while
the GM provides the expert model which is aligned to those needs. By comparing the two models,
the system can identify differences between novice and expert gameplay and offer personalised advice
to help the player progress. The overall goal is to minimise the disparity between the user and their
corresponding expert.

8.2 Methodology

Our methodology is designed such that it is capable of being used in real-time while a user is playing,
wherein it offers guidance to the user during their interaction with a video game. The interaction between
a player and a game environment can be described as a cycle as seen in Figure 8.1, consisting of four
stages:

• Input: The player inputs commands or actions into the game, such as moving a character or
selecting an item.

• Processing: The game processes the player’s input and updates the game state accordingly, such
as moving the character to a new location or updating the inventory.

• Output: The game outputs the updated game state to the player, such as displaying the new loca-
tion of the character or the updated inventory.

• Feedback: The player receives feedback from the game, such as a reward for completing a task or
a penalty for failing to complete a task. This feedback can influence the player’s future input and
behaviour in the game.

1www.minecraft.net/
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Figure 8.1: Cycle of interaction between user (player) and environment (video game)

It is during this feedback stage that our model augments standard feedback to include tailored advice.
Given this consideration, we aim to tackle the following problem: can the utilisation of identified play-
style information (pk) to train precise models of a user (pm) and their expert self (gmpk) facilitate the
reduction of the disparity between them?

8.2.1 Advice Generation

This overall process of advice generation in an online setting is outlined in Algorithm 10. We associate
each user (U) with a parameter ϖ which serves as a measurement of the likelihood of the user accepting
advice (Line 1). By introducing this thresholding parameter, the model is able to simulate the practical
scenario of users rejecting advice, thereby enhancing the realism of the system.

Algorithm 10 Advice-giving Process
1: procedure ADVICE-GIVING(U , ϖ)
2: Initialise pi, pm and gm models
3: Initialise Memory
4: P ← X[1 : t] ▷ This is the trajectory observed we observe form U
5: pk ← pi(P ) ▷ using Play-style Identifier obtain play-style pk from P
6: π∗

pk ← gm(pk) ▷ using Game Modeller obtain optimal play-style-centric π∗
pk from pk

7: pm← pm.train(P ) ▷ Fine-tune player model with new user data
8: ae ← π∗

pk(P ) ▷ Predict optimal action using π∗
pk

9: if P ∈Memory then ▷ If previously advised on current partial trajectory
10: ap ←Memory[P ] ▷ Use advised action
11: else
12: ap ← pm(ap) ▷ Predict player action using pm(ap)

13: if ae ̸= ap then ▷ Equation 8.1
14: Inform the user of the disparity
15: r ∈ [0, 1)
16: if r ≤ ϖ then ▷ Check to see if user takes advice
17: Memory[P ]← ae ▷ Add expert action into memory for current P

At the outset of a user’s interaction with the system, we initialise the three models that were previously
introduced in Chapters 5, 6, and 7, namely the Play-style Identifier (pi), Game Modeller (gm), and
Player Model (pm), respectively (Line 2). In addition, a memory buffer is created to keep track of
instances when the user accepts advice. The buffer stores the current partial trajectory P , representing
the current sequence of states the user has visited, and the corresponding “correct action” provided by the
expert. In continuous domains function approximation can be used to generalise experiences, allowing
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the model to learn from a smaller set of experiences [Lillicrap et al. 2015]. The subsequent step involves
determining whether advice is required, which entails predicting the next action of the player and their
corresponding expert, taking into account their play-style. This prediction is made based on the user’s
current partial trajectory P .

The process of determining the action of the player involves several steps. Initially, the memory buffer
is queried (Line 9) to verify whether the user has received advice for the current partial trajectory (P ) in
the past. If the memory buffer contains P , the advised action that was previously stored in the memory is
selected as the user’s upcoming action ap (Line 10). In this way, we assume that if a user had previously
decided to remember the given advice then the user will act on it if possible. On the other hand, if
P is not present in the memory buffer, the player model pm predicts the user’s action ap (Line 12).
Furthermore, we fine-tune the pm by training the model on the observed partial trajectories of the user
(Line 7). The key goal of the pm is to achieve a precise representation of the user’s actions by focusing
on the latest incoming user-specific information during system usage. This objective is accomplished
by continuously learning from the observed partial trajectories P as the user continues to interact with
the system, as demonstrated in Figure 8.2. As we receive additional data from the user, the model can
specialise further on that individual, leading to more reliable predictions.

Figure 8.2: Online functioning of the player model (PM). Upon initial usage of the system, a pre-trained model
is utilized as the player’s model. However, as additional information regarding the user’s gameplay is obtained
through partial trajectories, the model is updated to enhance its ability to accurately predict the user’s behaviour.

In addition to acquiring the user’s action (ap), we also determine the optimal action ae based on the
partial trajectory P . This involves the identification of the user’s expert play-style policy (gmpk), which
is continuously obtained from the set of policies learned by the GM, as explained in Chapter 6 (Game
Modeller). This identification process consists of several steps, as shown in Figure 8.3. During the
user’s interaction with the game, the system records information on their gameplay in the form of a
partial trajectory (P ). The trajectory is then encoded (ZP ) using the trained PI model, as detailed in
Chapter 5 (Play-style Identifier), using the Encoder(P ) method as presented in Equation 5.1. Next,
the user’s play-style (pk) is determined by minimising the average distance between the cluster centroid
and the latent encoding (ZP ), as specified in Equation 5.4, i.e., pk = argmin(d(ZP )). The play-style
identifier (pk) refers to the index of the play-style cluster centroid that is closest to the latent encoding
(ZP ). Ultimately, the expert play-style-centric model (gmpk) corresponding to the cluster identifier pk
is selected (Line 5). Finally, the optimal action (ae) for the specific user is determined using the policy
(π∗

pk) of the expert play-style, given the partial trajectory P (Line 6).
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Figure 8.3: Five-step process of identifying an expert play-style-centric version of the current user. Firstly, the
user interacts with the video game (A). Secondly, the system collects the user’s current trajectory (B). Thirdly,
this partial trajectory is encoded online (C). Fourthly, the encoding is clustered (D). Finally, the corresponding
play-style-centric policy is selected using the cluster identifier (E).

These user-specific models (pm and gmpk) are then compared (Line 12) on a per action basis to identify
differences using Equation 8.1. This function computes the action vectors outputted by the two models
given the partial trajectory and then computes the Euclidean distance between them.

distance(pm, gmpk, P [1 : t], t) =

√√√√ n∑
i=1

(pm(P [1 : t])i − gmpk(P [1 : t])i)
2 (8.1)

Figure 8.4 illustrates a sequence of comparisons between the user model (depicted on the left) and the
corresponding expert play-style-centric model (on the right). In the first cases, the user’s actions match
those of the expert, and hence, no advice is given. However, in the third case, a discrepancy is observed
between the user’s actions and the expert’s, indicating that advice should be sent to the user. Upon
receiving advice we consider the scenario where the user can decide whether to remember the advice or
not. If the user chooses to accept the advice, based on the parameter ϖ, the current partial trajectory is
stored in the memory for future reference.

Figure 8.4: Example comparison between player model and corresponding expert play-style-centric model

8.3 Experiments

This section describes the experimental protocol developed to assess the effectiveness of the entire sys-
tem in improving user performance using Algorithm 10. The experimental procedure involved con-
structing a dataset of individual users by randomly selecting five trajectories from a larger dataset (D)
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from the GridWorld domain, which is referred to as a user-set (U). For diversity, four selection schemes
(outlined in Table 8.1) were used to select the trajectories, each representing a different user archetype.
The term “skill” in this context denotes the level of proficiency of a user, independent of their playing
style, assessed by the same metric outlined in Equation 6.1 as explained in Chapter 6. The term“style”
represents the user’s play-style irrespective of their performance. Therefore, our four user archetypes
are represented by the different combinations of these two features.

Table 8.1: Different user-set trajectory selection schemes with their associated description

Selection Scheme Name (Archetype) Description (Trajectories are randomly selected from entire dataset D)
full-random Trajectories do not share play-styles or skill level
random-skill Trajectories have different play-styles and relatively similar skill levels
random-style Trajectories share the same play-style but with varying skill levels

set-skill-and-style Trajectories share the same play-style and relatively similar skill levels

The aforementioned process (Algorithm 10) was repeated for a total of eight users, for each selection
scheme and for each value of ϖ within the range of [0, 0.25, 0.5, 0.75, 1]. A value of “0” indicates a user
who never accepts advice, while a value of “1” denotes a user who always accepts advice. Additionally,
an infinite memory buffer was used, which means that once a user accepted advice, it would never be
forgotten. The correlation score between each user and their corresponding expert was calculated and
recorded as the performance metric for our model. This metric is chosen as the objective of our model is
to minimise the disparity between a user and their identified expert. Therefore the approach of minimis-
ing the distance between our expert and the user is a valid approach as we have previously demonstrated
in Chapter 6 that the play-style-centric models, when trained on high-performing trajectories, result in
high-performing policies with respect to the play-style’s underlying reward function.

8.4 Results

The experimental results regarding the impact of the tailored advice generation pipeline on various
advice acceptance thresholds and user archetypes are presented in Figure 8.5. As expected, it is observed
that when advice is never utilised, the advice generation model fails to assist the user in improving their
performance. However, in every other case where even marginal levels of advice utilisation occur, the
model performance across all archetypes improves. Furthermore, as the degree of utilisation rises, there
is a corresponding increase in the proportion of performance improvement.

Notably, it is observed that the “set-skill-and-style” archetype outperforms all others except in the “never
take advice” scenario. Nevertheless, improvements were seen across all archetypes, indicating that the
system provides tailored advice. The “set-skill-and-style” archetype performs best because the model is
best able to exploit the consistent play-style characteristics found in this user-set. Similarly, the model
performs the second best in the “random-skill” archetype as this archetype also has a consistent play-
style. Both the Game Modeller and Player Modeller are trained in play-style-centric fashions rather than
skill-centric, which explains these results. Lastly, it is worth noting that having a consistent skill level is
more conducive to improvement compared to randomness.
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(a) Never take advice (b) Take advice 25% of the time

(c) Take advice 50% of the time (d) Take advice 75% of the time

(e) Always take advice

Figure 8.5: Comparison of the impact of a tailored advice generation pipeline on various advice acceptance
thresholds and user archetypes for GridWorlds domain.

We employed the identical experimental configuration within the MiniDungeons domain, and the out-
comes are depicted in Figure 8.6. In this context, it is evident that, similar to our previous observations,
when the advice is consistently disregarded, our model does not contribute significantly to improving
the performance of the simulated user. Furthermore, as we observed in the GridWorlds domain, allow-
ing the model’s advice to be followed tends to lead to performance enhancements in our user model.
However, this phenomenon is less pronounced in the MiniDungeons domain, particularly for the “full-
random” and “random-style” user archetypes. Additionally, we observe slower performance improve-
ments, which can be attributed to the increased complexity of the MiniDungeon trajectories, requiring
users to accumulate more experiences before entering states they have encountered previously. Notably,
the most effective user archetypes remain “set-skill-and-style” and “random-skill”, both of which cor-
respond to users with consistent play styles. This indicates that our play-style identification model can
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better comprehend our users, enabling the generation of more tailored advice, ultimately leading to a
more substantial impact on their ability to emulate their respective experts.

(a) Never take advice (b) Take advice 25% of the time

(c) Take advice 50% of the time (d) Take advice 75% of the time

(e) Always take advice

Figure 8.6: Comparison of the impact of a tailored advice generation pipeline on various advice acceptance
thresholds and user archetypes for MiniDungeons domain.

8.5 Conclusion

In this chapter, we have presented the Advisor (AD) component of our automated advice generation
system which integrates the previously developed PI, GM, and PM into an operational online format.
Specifically, our aim was to provide an illustration of how these interconnected components could be
used to generate personalised advice for individual users through the use of a modal comparison tech-
nique. Our experimental simulations have demonstrated promising results in achieving the desired goal
of minimising the disparity between users and their corresponding experts.
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Furthermore, we have shown that the PM and GM models can accurately identify differences between
novice and expert gameplay, which allows for the provision of personalised advice to help players
progress. While additional research is necessary to fully investigate the potential of our system, we
hold a strong belief that our efforts constitute a noteworthy advancement towards creating efficient au-
tomated advice generation systems that can be utilised in diverse applications.

In conclusion, our AD component has demonstrated the ability to provide tailored advice to individual
users based on their gameplay characteristics, leading to improvements in performance. By integrating
this component with our previously developed PI, GM, and PM, we have created a comprehensive
automated advice generation system that has the potential to benefit a range of applications, including
gaming and education.
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Chapter 9

Conclusion

Our aim for this thesis was to be able to create a system for the automatic generation of beneficial and
tailored advice through the utilisation of identified play-style information. In the context of our initial
example, our approach involved identifying a player’s style, such as defensive, as a primary step to
furnish recommendations that could assist them in achieving the pinnacle of their defensive capabilities.

Therefore, the main contribution of this thesis aimed to develop an end-to-end system capable of auto-
matically generating tailored advice for video game players. To this end, we proposed an overall advice
generation model as seen in Figure 9.1 that was made up of four separate interconnected components that
were trained in both online and offline settings. These individual component’s namely; the Play-style
Identifier (PI), the Game Modeller (GM), the Player Modeller (PM), and the Advisor (AD), although
interconnected, each looked to answer a separate question.

Figure 9.1: Complete Pipeline of Play-style-centric Advice Generation

Firstly, we demonstrated how our proposed PI was able to identify, analyse, and interpret different play-
styles through an unsupervised clustering autoencoder approach. Here we demonstrated the ability of
the model to identify play-styles of users in an online fashion from partial trajectories without the need
for further training. Additionally, through the analysis process, we were able to discern not only the
characteristics of individual play-styles but also their relation to others, which was something previously
unstudied in video games.

Secondly, we demonstrated how our GM was capable of learning policies representative of the best
way to play for each identified play-style. This was achieved through a novel clustering-assisted be-
havioural cloning model dubbed PCPG which learns play-style-centric policies in a supervised fashion
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from demonstrations separated with respect to play-style. Here we demonstrated that not only is this
a viable technique for learning accurate policies representative of expected behaviours but is also an
efficient technique for learning a diverse set of policies in terms of both skill and behavioural diversity.

Thirdly, we showed how the PM was able to model the play-style of individual users. This was also
achieved through a cluster-assisted model dubbed CAP. We demonstrated that this model was able to
accurately predict user action necessary for forecasting the future states of a user by leveraging the
identified play-style. Furthermore, we demonstrated that through the use of a pretraining procedure, we
were able to limit the lag in performance essential for using such a model in an online setting.

Lastly, we discussed how our AD was able to utilise each of these previous components to produce
advice specific to the particular user. This was demonstrated through the application of a model compar-
ison approach whereby the player’s model was compared with their corresponding optimal play-style
model to formulate useful advice.

9.1 Limitations

In this section, we outline the two main limitations of the presented work. These are the misclassification
rate of the different models as well as the lack of exploration in complex domains. We discuss potential
solutions to these issues in Section 9.2

9.1.1 Misclassification Rate

One of the primary limitations of our model’s play-style identification task is its misclassification rate.
While achieving roughly 70% accuracy is a significant accomplishment, the remaining 30% misclassifi-
cation rate cannot be overlooked. This level of inaccuracy has the potential to undermine the utility and
credibility of the model’s predictions. Individuals who are misclassified might receive recommenda-
tions, personalized experiences, or interventions that do not align with their actual play-style, leading to
frustration, disengagement, and a lack of trust in the model’s capabilities. One key factor contributing to
this misclassification is the similarity in the starting points of trajectories. Play-styles tend to diverge and
become more distinct as the game or activity progresses. Players with different play-styles will eventu-
ally make different decisions, adopt unique strategies, and exhibit varied behaviours. However, during
the initial phases, these differences might not be apparent, leading to misclassification. This behaviour
can be observed in Figure 5.14 where the model initially fluctuates between multiple play-styles before
converging.

9.1.2 Continuous Action and State Space Domains

Another notable limitation of our work is the lack of testing in continuous action and state space domains.
The model’s performance might differ when applied to scenarios that involve continuous and dynamic
interactions, such as real-time strategy games, sports simulations, or virtual reality environments. In
discrete tasks, the model’s ability to classify play-styles might be more straightforward due to the distinct
categories. However, continuous domains introduce large state and action-based complexities. Failing
to adequately test the model’s capabilities in such contexts might result in suboptimal performance
or even inaccurate insights. Addressing this limitation would require extending the model’s training
and evaluation to encompass a wider variety of scenarios that better reflect the continuous nature of
certain activities and games. However, the overall model’s architecture as presented in Figure 9.1 can
still be applied to these domains with minor alterations. These alterations would involve changing
representations such that our model could process the data. For example, this could involve incorporating
convolutional layers into our networks to process image-based trajectories.
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9.2 Future Work

In this section, we outline several potential directions for improving our model for generating automated
tailored advice in video games. Given that our overall model for automated tailored advice generation
in video games consists of multiple components, each of which serves a specific purpose, it is possible
to make individual improvements to each of these components as well as to explore how they interact
with one another.

9.2.1 Play-style Identifier (PI)

One potential avenue for future research with the PI component of our model would be to explore its ap-
plication on image-based trajectories. This could be captured from the screen recordings of individuals
while they were playing a video game. Convolutional autoencoders have shown effectiveness in image
segmentation and classification tasks [Guo et al. 2017] and could be a suitable architecture for clustering
sequences of screen frames based on play-style. Success in these more complex domains would allow
for the integration of our model into current and future games where the complete state is not available.
Additionally, transformer-based models have demonstrated remarkable success in natural language pro-
cessing tasks [Wolf et al. 2020] and could be adapted to replace our LSTM autoencoder, potentially
improving the model’s ability to cluster trajectories based on play-style. There has also been some work
on applying transformers to images, showing further potential for adapting our model to image-based
datasets [Wu et al. 2021]. Similarly, there have been encouraging efforts to explore contrastive losses
in the latent space as a means of promoting clustering, and this avenue of research warrants further in-
vestigation [Guo et al. 2022]. Lastly, rather than relying exclusively on gameplay data, future research
could explore the use of multi-modal data (e.g., audio, biometric, and contextual data) to better identify
an individual’s play-style.

9.2.2 Game Modeller (GM)

Inverse reinforcement learning (IRL) [Ng et al. 2000] is a promising approach that could potentially
improve or replace the behavioural cloning aspect of our GM. IRL aims to learn the underlying reward
function of an expert from its demonstrated behaviour, and then use this reward function to generate a
new behaviour that is similar to the expert’s behaviour. By doing so, IRL can produce behaviours that go
beyond simple mimicry, as it learns the reasoning behind the expert’s behaviour. A potential advantage
of IRL over behavioural cloning is that IRL can handle situations where the expert’s behaviour is sub-
optimal or imperfect. This is because IRL learns the underlying reward function, whereas behavioural
cloning only learns from the expert’s behaviour [Codevilla et al. 2019]. However, IRL is also com-
putationally more expensive than behavioural cloning and requires a larger amount of data not usually
available in video game domains.

9.2.3 Player Modeller (PM)

Incorporating more information about the identified play-style characteristics could potentially improve
the online prediction accuracy of the model. Currently, the play-style identifier is used as a feature in
the overall model, but additional information about the characteristics of each play-style could provide
a more detailed understanding of a player’s behaviour. For example, if a play-style is identified as
aggressive, the model could benefit from additional information about the player’s tendency to take
risks, their response to pressure, or their preferred offensive strategies. By incorporating more detailed
information about play-style characteristics, the model could potentially make more accurate predictions
about a player’s behaviour.
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9.2.4 Advisor (AD)

Future research in the area of advising can explore various avenues to enhance the effectiveness of
advising. Particularly, testing this system with human participants has the potential to provide valuable
insights into its effectiveness and practical application in real-world settings. However, it would require
careful planning and execution to ensure ethical considerations are taken into account and to optimise
the system for use with human-generated data.

Another key challenge in automated advice generation is knowing when to provide advice and when
to let players learn on their own. Future research could explore how to incorporate machine learning
algorithms to identify the most opportune moments to provide advice and ensure that the advice is
helpful and not overwhelming [Judah et al. 2010]. It is important to consider the timing and frequency
of advice delivery, as well as the type of advice given. For example, should advice be given proactively
or reactively? Should advice be given in real-time or after a game session? One potential solution could
be to use a reinforcement learning agent that learns when to give advice based on user behaviour. The
actions of the agent would be to give or not give advice, and the reward function would depend on
whether or not the user follows it. This could be a promising approach to tailor advice to individual
users and improve the overall effectiveness of tutorial systems.

Moreover, research can investigate how to tailor advice to the player’s experience level, as novice play-
ers may require different types of advice compared to expert players. Another area of research can focus
on the design of the advice itself. The language, tone, and specificity of the advice can impact its effec-
tiveness [Torrey et al. 2013]. Research can investigate how to design advice that is clear, concise, and
actionable. Another avenue of research can be to explore how to motivate players to follow the advice
given. Research can investigate how to frame the advice in a way that is motivating and encourages
players to engage with it. Recent advancements in large language models could be leveraged to gener-
ate natural language advice for users, rather than relying on hard-coded or grammar-based techniques.
Large language models such as GPT-3 [Floridi and Chiriatti 2020] have shown impressive capabilities in
generating human-like text, which could potentially be applied to the generation of personalised advice
for users. By training the language model on a large dataset of user behaviour and expert knowledge,
the model could learn to generate advice that is more personalised, relevant, and natural-sounding to the
user. This could potentially lead to more effective tutorial systems and greater user engagement.

Furthermore, research can explore how to integrate game design elements that incentivise players to
follow the advice given, such as through rewards or other game-based mechanics [Blair 2011]. The
advice generator can be integrated into the game in various ways. For instance, it can be implemented
as a pop-up window that appears when a player spends too much time on a particular puzzle or task.
Alternatively, it can be integrated into the game’s reward system, where players can earn hints and tips as
they progress through the levels. Additionally, in a broader sense research can investigate how advising
can be integrated into other learning experiences. For example, research can explore how advising can
be integrated with other forms of feedback, such as progress tracking and assessments [Robertson and
Howells 2008]. Since our research explored how to personalise advice to individual players based on
their play-style, we could incorporate other factors of an individual such as their age, experience from
other games or desire to learn. In particular Tekofsky et al. [2015] demonstrated that age has a significant
influence on play-style. Thus, including this particular feature information could potentially enhance
both the identification process of play-style and the generated advice. Finally, future research could
explore the use of collaborative advice generation, where players are actively involved in generating and
refining the advice they receive.

All these avenues have the potential to enhance the overall user experience and lead to increased en-
gagement and motivation to complete the game. Conducting further research and implementing the
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aforementioned improvements would represent a significant step forward in the development of an ef-
fective automated system for tailored advice generation. Such a system has the potential to provide
valuable guidance and support to users, facilitating their improvement in various domains, not just video
games.

9.3 Discussion

Automated tailored advice generation for video games has the potential to greatly impact the way people
learn to play video games. By learning in their own style, players can feel more confident in their
abilities, leading to a more positive experience overall. The current state of tutorial systems in games
is often quite simplistic and does not provide a personalised or adaptive experience. Many games still
rely on text-based tutorials or video tutorials that are often quickly forgotten or become irrelevant as
players progress. This can be frustrating for players who are trying to learn a new game, and it can also
be a barrier to entry for new players who may become overwhelmed or frustrated by the complexity of
a game.

However, with the development of automated systems for tailored advice generation, there is the po-
tential to drastically change tutorial systems and provide a personalised, evolving teacher for players.
By identifying a player’s unique play-style characteristics, a system can provide tailored advice that is
specific to the individual, rather than generic advice that may not apply to every player. Moreover, as
the system continually learns from the player’s behaviour and progress, it can adapt and provide new
advice as needed, ensuring that the player is always receiving the most relevant guidance. By providing
a personalised and evolving teacher, players may be more likely to stick with a game and continue to
improve, even if they struggle at first. This approach may be particularly effective for novice players
who may be intimidated by complex games or overwhelmed by the amount of information they need to
learn. By providing tailored advice that is specific to their play-style and learning style, they may feel
more confident and motivated to continue playing and improving. Overall, the development of auto-
mated systems for tailored advice generation has the potential to greatly enhance the tutorial experience
in games.

Additionally, this approach to learning has the potential to transfer to other domains where learning
play-style characteristics can be applied to improve how people learn with respect to their own preferred
style. One potential application for this technology is in educational settings. By identifying a student’s
preferred learning style, educators can better tailor their teaching methods to fit the student’s needs. This
could lead to more efficient learning and higher retention of information. Additionally, this technology
could be applied in sports and other physical activities, where understanding and improving upon one’s
own style is crucial for success.

In conclusion, automated tailored advice generation has the potential to improve the way people learn
and improve their skills in a variety of domains. By identifying and utilising a person’s preferred learning
or play-style, this technology can improve the efficiency and effectiveness of learning. Additionally,
learning in one’s own style can lead to a more positive and engaging learning experience, which is likely
to lead to more sustained improvements.
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Appendix A

Raw Data

The following sections contains visualisations related to the levels and trajectories used for the Grid-
World, MiniDungeons and Mariodomains.

A.1 GridWorld

The following figures are a visual representation of all the levels and trajectories generated as outlined
in Section 4.5 for the GridWorld domains. This serves to demonstrate the variety in levels, both in terms
of length, complexity and structure.

A.1.1 E1

Figure A.1: Heatmap of all E1 trajectories
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(a) Moves directly to G (b) Visits B1 before G (c) Visits B2 before G (d) Visits B1 and B2 before G

Figure A.2: Heatmap of all trajectories generated using different reward functions as described in Table 4.1

A.1.2 E2

Figure A.3: Heatmap of all E2 trajectories

(a) Moves directly to G (b) Visits B1 before G (c) Visits B2 before G (d) Visits B1 and B2 before G

Figure A.4: Heatmap of all trajectories generated using different reward functions as described in Table 4.1
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A.1.3 E3

Figure A.5: Heatmap of all E3 trajectories

(a) Moves directly to G (b) Visits B1 before G (c) Visits B2 before G (d) Visits B1 and B2 before G

Figure A.6: Heatmap of all trajectories generated using different reward functions as described in Table 4.1
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A.1.4 E4

Figure A.7: Heatmap of all E4 trajectories

(a) Moves directly to G (b) Visits B1 before G (c) Visits B2 before G (d) Visits B1 and B2 before G

Figure A.8: Heatmap of all trajectories generated using different reward functions as described in Table 4.1
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A.1.5 E5

Figure A.9: Heatmap of all E5 trajectories

(a) Moves directly to G (b) Visits B1 before G (c) Visits B2 before G (d) Visits B1 and B2 before G

Figure A.10: Heatmap of all trajectories generated using different reward functions as described in Table 4.1

A.2 MiniDungeons

Figure A.11 is a visualisation of all the levels used by Holmgard et al. [2014] to generate trajectories as
outlined in Section 4.5 for the MiniDungeons domain. This serves to demonstrate the variety in levels,
both in terms of length, complexity and structure.
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Figure A.11: Visual representation of all levels used to create Minidungeons dataset

A.3 Mario

Figure A.12 is a visualisation of all the levels used by Guzdial and Riedl [2016] to collect trajectories
from human participants as outlined in Section 4.5 for the Mariodomain. This serves to demonstrate the
variety in levels, both in terms of length, complexity and structure.
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Figure A.12: Visual representation of all levels used to create Mariodataset
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Appendix B

Play-style Identification

The following sections contain the visualisations of the play-style boundaries described in Section
5.2.3.3 and the play-style mean behaviours described in Section 5.2.3.4

B.1 Play-style Boundaries

Visualisation of all decision boundary regions across GridWorld domains.

B.1.1 E1

Figure B.1: Visualisation of E1
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(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.2: Heatmap of prediction accuracy’s per-states with boundary decision boundaries depicted as green
circles

B.1.2 E2

Figure B.3: Visualisation of E2
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(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.4: Heatmap of prediction accuracy’s per-states with boundary decision boundaries depicted as green
circles

B.1.3 E3

Figure B.5: Visualisation of E3
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(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.6: Heatmap of prediction accuracy’s per-states with boundary decision boundaries depicted as green
circles

B.1.4 E4

Figure B.7: Visualisation of E4
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(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.8: Heatmap of prediction accuracy’s per-states with boundary decision boundaries depicted as green
circles

B.1.5 E5

Figure B.9: Visualisation of E5
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(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.10: Heatmap of prediction accuracy’s per-states with boundary decision boundaries depicted as green
circles

B.2 Mean Behaviours

Visualisation of all mean trajectories across GridWorld domains.
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B.2.1 E1

Figure B.11: Visualisation of E1

(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.12: State visitation heatmap representation of mean trajectories for each play-style

146



B.2.2 E2

Figure B.13: Visualisation of E2

(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.14: State visitation heatmap representation of mean trajectories for each play-style
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B.2.3 E3

Figure B.15: Visualisation of E3

(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.16: State visitation heatmap representation of mean trajectories for each play-style
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B.2.4 E4

Figure B.17: Visualisation of E4

(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.18: State visitation heatmap representation of mean trajectories for each play-style
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B.2.5 E5

Figure B.19: Visualisation of E5

(a) play-style cluster 0 (b) play-style cluster 2

(c) play-style cluster 3 (d) play-style cluster 4

Figure B.20: State visitation heatmap representation of mean trajectories for each play-style
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