
Improved Action Prediction through Multiple
Model Processing of Player Trajectories

Branden Ingram, Benjamin Rosman, Clint van Alten, Richard Klein
School of Computer Science and Applied Mathematics

University of the Witwatersrand
Johannesburg, South Africa

{branden.ingram, benjamin.rosman1, clint.vanalten, richard.klein}@wits.ac.za

Abstract—Action prediction in video games is the process
of extracting useful information in order to predict the future
actions of a player. Long-range dependencies and the dynamic
nature of video games make it difficult for most algorithms to
accurately predict the future actions of players. We propose
a novel machine learning approach to improving future action
prediction from video game trajectories. This method requires
having first clustered player trajectories based on behaviour
similarities. Our model consists of a set of LSTM based prediction
modules each trained on a subset of data based upon a respective
cluster. The effectiveness of our model is analysed on both a
synthetic and natural dataset. We find that our future action
prediction approach of leveraging multiple models trained on
individual data subsets results in greater accuracy over a single
model on a complete dataset.

Index Terms—action prediction, player modelling

I. INTRODUCTION

We look to solve the problem of action prediction given a
dataset of video game trajectories. Video games are dynamic
and temporal domains containing long term dependencies
which all affect decision making. These characteristics make
it difficult to train accurate prediction models. Our goal is to
train a model which can forecast the behaviours represented
across many trajectories rather than an optimal policy. In a
competitive setting, this can help players outperform others or
from a developer’s perspective predictions can be utilised to
modify future gameplay experiences.

Techniques involving analysis and prediction of time-series
data have always been key for practical problems [1], [2].
For these problems, the goal is to extract useful information
from historical data to determine future values. In particular,
we propose a new method to improve the accuracy of future
action predictions given an individual’s current gameplay
trajectory. This is a form of player modelling where abstracted
descriptions of players are generated [3]. Another form of
player modelling utilised unsupervised clustering techniques
to reveal the characteristics representative of play-styles [4].
These learned characteristics serve to inform developers if
players are playing as intended. Similar to how clustered data
can aid a developer’s understanding of their player base, our
method utilises clusters to aid in improving prediction accu-
racy. Thakar and Mehta [5] also showed that separating data
based upon identified traits benefited their overall approach.

Our main contribution comes in the form of a new neural-
network-based Cluster Assisted Prediction (CAP) model for
future action prediction which leverages trajectory clusters to
improve prediction accuracy. By utilising the cluster informa-
tion each sub-component of our model only needs to learn
from semantically similar data rather than the entirety of a
dataset. This allows the sub-components to specialise on their
respective datasets increasing the overall performance. This
idea of “cluster-then-predict” has been utilised for sentiment
analysis [6]. However, where they used the identified cluster
as a feature for a single Support Vector Machine classifier, we
train multiple neural networks in a supervised fashion on data
separated with respect to a cluster.

II. RELATED WORK

A. Time-Series Forecasting

The standard neural network methods for performing time
series prediction include MLP, RBF or Cascade Correlation
Models, which use a sliding window of N-tuple inputs to
predict a single output target value [7]. Since these methods
are dependent on the size of the rolling window, important
long-range dependencies can be forgotten over the course of
the full training set. Long Short-Term Memory (LSTM) [8]
solutions are a special form of Recurrent Neural Network’s
(RNN) [9] which makes use of a component called a “memory
block” [8] which allows it to learn long term dependencies.
LSTM prediction models have been utilised in StarCraft2 for
learning action selection [10]. We, however, employ an LSTM
prediction model to video game based trajectory data to predict
player actions.

B. Modelling player actions

A common implementation of player modelling is that of
modelling a player’s choices (actions) given different scenarios
(states) [3]. In its basic form, this consists of a model which
indicates the likelihood of any available player action given
any state. Traditionally action models were implemented for
board game research to improve game tree searches by pre-
dicting opponent moves. In this case, the player model was
expressed as an evaluation function [11]. Similar approaches
have been applied to more complex games, however, the in-
creasing sizes of state and action spaces make training accurate
models difficult. This has resulted in solutions involving large



scale computing [10] or utilising abstracted actions spaces
called “options” [12]. Our approach differs from these by
using supervised learning instead of reinforcement learning to
predict low-level accurate action similar to Muñoz, Gutierrez
and Sanchis [13].

C. Trajectory Clustering

Although the specific method for clustering trajectories is
independent of our methodology we applied a similar model to
Xie, Girshick and Farhadi [14] who implemented an LSTM-
autoencoder which is capable of handling time-series data ef-
fectively. This model jointly optimises for both reconstruction
loss as well as a clustering loss in an unsupervised fashion.
In a separate study we were able to utilise a similar model to
separate gameplay trajectories with respect to play-style [15].

III. METHODOLOGY

The proposed model depicted in Figure 1 takes a set X
of trajectories as input. This input is fed through a gating
mechanism to a corresponding Predictor Node (Mi). This
means each x ∈ X is only input into a single Mi which is
selected based upon an identified cluster index (i). This index
is the result of a clustering pre-processing step [15] which
results in a set of data subsets Hi where Hi ⊂ X and i is the
index of a particular data subset. Here i ∈ {0, . . . , k} where
k is the number of identified clusters. The value of k dictates
the number of Predictor Nodes found in our proposed CAP
model for a given dataset.

A. Predictor Nodes

Our proposed CAP model makes use of a set of Predictor
Nodes Mi, where each node is only trained on data from its
corresponding data subset Hi. The individual Predictor Node
architecture is depicted in Figure 2. The goal for each of these
nodes is, for any given any partial trajectory (x(0), . . . , x(t))
within the subset of trajectories (Hi), to predict the next time
step in that trajectory (x(t+ 1)), where t represents timestep.
Our Predictor Nodes are comprised of two components. The
first component is a standard LSTM layer which is required
since our trajectories are variable in length and temporal in
nature. This layer accepts as input any partial trajectory and
outputs a one-dimensional vector which can be now processed
by traditional non-recurrent networks. This encoding is then
appended to the current time step (x(t)) of the partial trajectory
and serves as the input to the second component, our fully
connected neural network. Finally, this node outputs the next
state as its prediction (x(t+ 1)).

IV. EXPERIMENTS

To analyse the effectiveness of our approach, we compared
the overall prediction accuracy of our CAP model with the
prediction of a single model trained on the complete dataset
(X).

A. Datasets

To validate our method in both synthetic and natural do-
mains, we test our model on different datasets. Synthetic
datasets are derived from a grid-world game where a player
seeks out a goal with the opportunity of completing two
additional optional objectives. The natural dataset is an unla-
belled set of trajectories from the game Super Mario Bros [16]
collected from human participants and used to demonstrate the
model’s effectiveness on real-world data.

1) Grid World: We generate 5 individual datasets Tn from
5 different environments (E1, . . . , E5) made up of trajecto-
ries generated to exhibit one of four set behaviours. These
behaviours represent play-styles which are listed in Table I.
This is achieved by modelling play-styles as different reward
functions in a reinforcement learning paradigm. This idea of
reward shaping has been used to train a set of human-like bots
with differing styles [17].

Each environment is a 10×10 grid world, as depicted in Fig.
3. These environments each have a goal state (G, in green) and
a start state (S, in blue). Walls (black tiles) cannot be traversed
and trap states (red tiles) result in failure. The variety in play-
styles is introduced through the addition of two bonus states
(B1, in gold and B2, in cyan). These are the optional objectives
that a player with certain preferences might wish to complete.
The set of actions is the movement in any of the 4 primary
cardinal directions. The set of reward functions R used to
emulate these behaviours is defined in Table I. The respective
bonus rewards were only given the first time an agent reached
either B1 or B2.

TABLE I
OBSERVABLE PLAY-STYLES AND REWARD STRUCTURE

R Behaviour G reward B1 reward B2 reward
1 Moves directly to G 100 0 0
2 Visits B1 before G 100 50 0
3 Visits B2 before G 100 0 50
4 Visits B1 and B2 before G 100 50 50

In order to generate the trajectories we trained a RL agent
for each of the combinations of R and E for 20000 episodes
with discount factor γ = 0.99 and linear ϵ decay in order to
ensure our agent converges to the global optimum. The state is
given by the tuple (x, y, b1, b2) where x and y are the Cartesian
grid coordinates and b1 and b2 indicate whether an agent has
visited B1 or B2, respectively. Our dataset consists of 8000
trajectories, randomly selected from the training episodes, per
R and E. Therefore a trajectory is a sequence of time steps
in the form of (x, y, b1, b2).

2) Mario: This dataset consists of 74 playthroughs across
11 different levels of Super Mario Bros. These playthroughs
were each captured by logging the actions of a unique human
participant [16]. We then refactored this data into a trajectory,
where each time step represents the current state of the
playthrough at that point. We defined a state as a tuple given
by (j, k, r, c, d, e) where j is the number of jumps, k is the
number of enemies killed, r number of times the player has
started running, c the number of coins collected, d the number



Fig. 1. Cluster Assisted Prediction Model (CAP)

Fig. 2. Individual LSTM Predictor Node

of time the player died and e the unique encoding for each of
the 37 actions.

B. Training

We trained our CAP model on a set of trajectories (X)
where the cluster for each x ∈ X has been identified and
is represented by i. This identification is important as it
dictates which Predictor Node our input trajectory should be
passed to. The fully connected neural network component
found in each Predictor Node of our CAP model consists of
3 hidden layers of size 5 with ReLu activations. Additionally,
these nodes utilised a non-stacked LSTM which outputs an
encoded state of size 8. By appending this encoded state by
the last time step of the partial trajectory we get the input
of the fully connected neural network. The input dimension
of both the fully connected component and the LSTM layer
is, therefore, dependent on the dataset’s timestep dimension.
For comparison, we trained a model (Single) with the same
architecture as depicted in Figure 2 on the complete dataset
(X). This model has the same structure as a single Predictor
Node found in our CAP model. The difference is the size
of the hidden layers found in the fully connected component.
To ensure fairness between our CAP and Single models, we
keep the total capacities of the models roughly equal. This
is achieved by increasing the size of the hidden layers in the
Single model by a factor dependent on the number of clusters.
For the Single model, we used a hidden layer size of 5 × k
where k was the number of clusters. The resultant accuracy
from this model would serve as the base of comparison with
our other CAP model.

Both our CAP and Single models were each trained for
10000 episodes using the Adam optimiser with a learning rate

0.001 using Mean Square Error as our loss function. During
each episode progressively longer partial trajectories are fed
forward through the complete network until the entire trajec-
tory has been processed. For each of these partial trajectories
(x(0), . . . , x(t)) the output (y′) is compared to x(t+ 1) with
the loss being backpropagated through the entire network.

Our approach is dependent on utilising clustered data and,
therefore, its overall effectiveness is dependent on the quality
of the clustering. To demonstrate a benchmark benefit of
our approach we utilise the fact that the grid world data
was generated to exhibit particular styles. This means that a
ground-truth clustering is known. We therefore also trained
our CAP model on the data subsets separated using these
ground truth labels. This process was repeated for each of
our 6 environments (E1, . . . , E5,Mario).

V. RESULTS AND DISCUSSION

For testing purposes, we use unseen trajectories from each
environment. For each trajectory (x) we process every partial
trajectory (x(0), . . . , x(t)) through our CAP and Single models
to generate predictions y′. The overall performance is the
percentage of correct predictions across the given testing set.
The results of this process are depicted in Table II with bold
values representing the best model for a given environment.
Here we can see for each of the environments, whether
structurally similar in the case of E1, . . . , E5 or more complex
(MARIO), our CAP model outperforms the Single model.
Notably, this performance level was achieved on both synthetic
and natural domains. This indicates our approach of utilising
clustered subsets of data can be beneficial when using real-
world data. Since our approach is partially dependent on the
clustering accuracy, we analysed the effect of using the ground
truth clusters available from the grid world environments. The
results of using ground truth clustering serve as a benchmark
comparison to minimize the impact of clustering performance.
We observed that our CAP model performed at an even higher
level when using the data separated using the ground truths.
This indicates that with better clustering our CAP model is
able to achieve greater accuracy.

Lastly, we analysed the ability of the individual sub-models
(M0 . . .Mk) to specialise in their respective data subsets
(H0 . . . Hk) averaged across all environments. This is achieved



Fig. 3. Randomly generated grid world environments E1, ..., E5

TABLE II
PREDICTION ACCURACY ON CLUSTERED DATA

E Random Single CAP CAP (ground-truth)
E1 0.25 0.56 0.6 0.63
E2 0.25 0.51 0.53 0.6
E3 0.25 0.34 0.47 0.48
E4 0.25 0.58 0.62 0.68
E5 0.25 0.52 0.56 0.57
Mario 0.025 0.30 0.36 N/A

TABLE III
PREDICTION ACCURACY OF SUB-MODELS ON EACH DATA SUBSET

M0 M1 M2 M3 CAP
H0 0.65 0.29 0.21 0.2
H1 0.25 0.56 0.19 0.21
H2 0.15 0.15 0.66 0.23
H3 0.22 0.21 0.2 0.44
Average 0.32 0.3 0.32 0.27 0.56

by comparing the prediction accuracy of each sub-model on
all data subsets for a given environment. The results of this
process were then averaged across all environments and are
depicted in Table III. Here we observe that the prediction
accuracy of M0 . . .M3 is higher when making predictions
from trajectories within their corresponding data subset de-
picted by the bold values. Conversely, the prediction accuracy
on trajectories from other subsets is far lower than even the
average performance of the overall CAP model depicted in
Table II. It is by specialising in these data subsets that when
combined into our CAP model we obtain the overall benefit.
Lastly, we observe that the average prediction accuracy of our
CAP model across all environments is greater than the average
performance for each sub-model.

VI. CONCLUSION

This paper proposes a new multi-model approach dubbed
CAP which demonstrates the benefit of training multiple
models on separated data over a single model on a complete
dataset. Our CAP model was trained to perform optimally in
a future action prediction task on multi-dimensional variable-
length gameplay trajectories which had been separated with
respect to a clustering process. We tested this on a synthetic
dataset where cluster information was known as well as a
natural domain where the ground truth clusters were not

known. Through empirical analysis, we demonstrated that
our CAP model consistently outperformed the Single model
trained on the overall dataset. We also demonstrated that the
performance increase came from the ability of the sub-models
to specialise on their respective data subsets. We conclude
that with the use of an initial data separation process you
can obtain superior performance when training future state
prediction models in video game environments.

REFERENCES

[1] E. M. Azoff, Neural network time series forecasting of financial markets.
John Wiley & Sons, Inc., 1994.

[2] T. Edwards, D. Tansley, R. Frank, and N. Davey, “Traffic trends analysis
using neural networks,” in Procs of the Int Workshop on Applications
of Neural Networks to Telecommunications, 1997.

[3] S. C. Bakkes, P. H. Spronck, and G. van Lankveld, “Player behavioural
modelling for video games,” Entertainment Computing, vol. 3, no. 3,
pp. 71–79, 2012.

[4] A. Drachen, A. Canossa, and G. N. Yannakakis, “Player modeling using
self-organization in tomb raider: Underworld,” in 2009 IEEE symposium
on computational intelligence and games. IEEE, 2009, pp. 1–8.

[5] P. Thakar, A. Mehta et al., “A unified model of clustering and classi-
fication to improve students’ employability prediction,” (IJISA), vol. 9,
no. 9, p. 10, 2017.

[6] R. Soni and K. J. Mathai, “Improved twitter sentiment prediction through
cluster-then-predict model,” arXiv preprint arXiv:1509.02437, 2015.

[7] N. A. Gershenfeld and A. S. Weigend, The future of time series. Xerox
Corporation, Palo Alto Research Center Palo Alto, CA, USA, 1993.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep
learning with long short-term memory for time series prediction,” IEEE
Communications Magazine, vol. 57, no. 6, pp. 114–119, 2019.

[10] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[11] D. Cannel and S. Markovitch, “Learning models of opponent’s strategy
game playing,” in Proceedings of the 1993 AAAI Fall Symposium on
Games: Learning and Planning, 1993, pp. 140–147.

[12] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[13] J. Muñoz, G. Gutierrez, and A. Sanchis, “Towards imitation of human
driving style in car racing games,” in Believable bots. Springer, 2013,
pp. 289–313.

[14] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning.
PMLR, 2016, pp. 478–487.

[15] B. Ingram, B. Rosman, R. Klein, and C. van Alten, “Play-style identi-
fication through deep unsupervised clustering of trajectories,” in 2022
IEEE Conference on Games (CoG). IEEE, 2022.

[16] M. Guzdial and M. Riedl, “Game level generation from gameplay
videos,” in Twelfth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2016.

[17] C. Arzate Cruz and J. A. Ramirez Uresti, “Hrlb: A reinforcement
learning based framework for believable bots,” Applied Sciences, vol. 8,
no. 12, p. 2453, 2018.


