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Abstract— This work proposes a framework that enables
arbitrary robots with unknown kinematics models to imitate
human demonstrations to acquire a skill, and reproduce it
in real-time. The diversity of robots active in non-laboratory
environments is growing constantly, and to this end we present
an approach for users to be able to easily teach a skill to a robot
with any body configuration. Our proposed method requires
a motion trajectory obtained from human demonstrations via
a Kinect sensor, which is then projected onto a correspond-
ing human skeleton model. The kinematics mapping between
the robot and the human model is learned by employing
Local Procrustes Analysis, which enables the transfer of the
demonstrated trajectory from the human model to the robot.
Finally, the transferred trajectory is modeled using Dynamic
Movement Primitives, allowing it to be reproduced in real time.
Experiments in simulation on a 4 degree of freedom robot
show that our method is able to correctly imitate various skills
demonstrated by a human.

I. INTRODUCTION

The robots active in real world settings are not only
constantly growing in number, but their capabilities are
continuously improving as well. It is envisioned that they
will soon be ubiquitous in assisting humans with a variety
of tasks in every day environments. It is often the case that
these platforms are designed to physically resemble humans,
but for many settings this is inappropriate. Either way, it
is important that they can be adapted to new situations by
extending their sets of behaviors or skills.

Numerous approaches have been proposed to equip robots
with skills. Conventionally this is done by directly program-
ming the robot, but this requires tedious effort to ensure the
skill is natural, efficient and safe. As an alternative approach,
the paradigm of Learning from Demonstration (LfD) has
been extensively studied in recent years. In this approach,
new trajectories are generated from learned and generalized
trajectories provided from demonstrations from a human [1].

In this work, we propose a novel system to enable imi-
tation learning for robot arms from human demonstrations
by learning a kinematic mapping between a human model
and a robot. The contribution of this paper is a data-driven
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approach based on manifold mapping that is suitable in
cases where an accurate kinematics model of a robot is
not available. This may be the case, for example, when
the specifications required for modeling the robot are not
released by the manufacturer. It is often the case that a robot
manipulator may need to be modeled using parameters that
were measured by hand because the manufacturer was unable
to release them [2]. These hand measurements can lead to
an inaccurate kinematic model, requiring further calibration.
Another example is in dealing with robots whose bodies
change over time, potentially as a result of modification,
repair, or material damage [3].

This paper is organized as follows. In section II, we relate
our problem to existing work. In section III we introduce and
explain the building blocks of our system, namely Local Pro-
crustes Analysis (LPA) and Dynamic Movement Primitives
(DMPs). In section IV, we present details of the proposed
system. In section V, we evaluate the performance of each
component and the system through multiple experiments in
simulations on a 4-DoF robot arm, and finally section VI
concludes.

II. RELATED WORK

A. Learning from demonstration

The framework of LfD is divided into two fundamental
phases: motion transfer and skill modeling. There are two
widely used approaches to transfer a motion: kinesthetic
guiding and motion capture [4]. The former physically mov-
ing the robot in question. This is an intuitive way for users
to teach motions to a robot and there are no correspondence
issues since the robot is typically aware of its current
configuration, i.e., through joint encoders [4,5]. Resulting
behaviors tend to be unnatural, because kinesthetic guiding
cannot exactly imitate a skill the same way humans would
naturally perform it, and it may be difficult for the human
to smoothly manipulate the robot. Alternatively, in motion
capture systems, users demonstrate a behavior which is
extracted by the system, and then converted to a suitable form
after some pre-processing steps to remove noise in order to
project it onto the robot. One of the main challenges of this
approach is how to project recorded data onto the body of the
robot, since its morphology may be different from that of the
human – the correspondence problem [4]. Typically a body-
suit system [6,7] or a camera-based system [8,9] is employed
as a motion capturing system. The latter is preferable for
demonstrators because it does not constrain performances,
allowing for more natural or complex demonstrations.



Regarding modeling a skill or trajectory, the data-driven
approach has received considerable attention recently. Re-
ward function learning [10], statistical modeling [11] and
dynamical systems [12-15] are amongst the most popu-
lar approaches. In particular, dynamic movement primitives
(DMPs) are widely used due to their flexibility and stability
[13,14], and involve encoding a behavior as a dynamical
system.

In this work, we propose using a manifold mapping tech-
nique to deal with the correspondence problem in camera-
based systems for motion transfer, and use DMPs to model
the skills, as discussed in section III.

B. Skill transfer

The projection into joint space is hereafter referred to
as behavior transfer, and the task space projection as skill
transfer. Behavior transfer is suitable for skills that do not
require complex interactions with the external world, e.g.
dancing or walking. This is however unsuitable for any
behavior requiring interaction with other objects, as unless
the robot has exactly the same kinematic structure as the
demonstrator, it cannot perform the task because the end-
effector positions in task space do not match those of a
human with a different morphology. In contrast, skill transfer
is suitable when the target skills require an interaction with
some component of the external world, such as for grasping
and manipulation. To correctly execute those skills in a
human environment, the robot’s end-effector should track the
Cartesian trajectory, such that the arm follows certain desired
configurations, e.g., those similar to that of a human arm.

To achieve skill transfer, a conventional approach is to
provide a Cartesian trajectory in task space and solve the
inverse kinematics (IK) to obtain the corresponding joint tra-
jectory of the robot. For example, a Kinect-based system may
be used to capture human motion and project this directly
onto a robot arm [16], using incremental IK to obtain a joint
trajectory from a given Cartesian trajectory from a human.
High quality path tracking can then be achieved with the aid
of an accurate known kinematics model. In [17], they extract
the end-effector Cartesian trajectory of the demonstration and
find parameters of a mapping to the corresponding robot
trajectory by Stochastic Optimization of the Embodiment
Mapping, combining IK and the optimization.

The common hypothesis in [16] and [17] is that an
accurate kinematics model exists for the target robot, so
their trajectories are reliant on the quality of the model.
Although these methods have been shown to work well when
an accurate kinematics model of the robot is known, data-
driven approaches have been proposed to deal with cases in
which an accurate robot model is not available. This involves
learning a mapping from human demonstrations to the robot,
from corresponding samples of the human and robot data.
Examples of this can be seen in applications, e.g. robotic
imitation of human poses [7, 18]. Most of these works focus
on behavior transfer rather than skill transfer. We adopt a
data-driven approach to realize skill transfer.

III. OVERVIEW AND SYSTEM COMPONENTS

We propose a novel framework to enable skill transfer
to robots without the need for a kinematics model of the
robots. The outline of the proposed system is shown in Fig.
1, and is described as follows. A demonstrator first performs
the desired skill which is recorded as a trajectory of body
part positions. This trajectory is then projected onto a human
skeleton model, which corresponds to the demonstrator’s
body structure. We collect robot training data by moving the
robot around its workspace, and then generate human model
data that corresponds to these robot end-effector poses. This
is done in the area of the workspace common to both the
robot and the human model. Once we have collected a data
set of corresponding configurations, we can learn a mapping
between them using LPA [19] (section III-A). After learning
this mapping function, any trajectory represented as a set of
joint states and Cartesian positions can be transferred onto a
target robot. The transferred trajectory is finally modeled as
a DMP (section III-B) to improve reproduction stability.

Our system has the following features:
• Any human motion can be transferred to any robot, as

long as the workspace of the robot overlaps with that of
the human model. The user only needs to demonstrate
the skill to the robot.

• It does not require any kinematic model for the target
robots. The projection is established by collecting data
of corresponding poses between humans and robots.
Thus, human-likeness of the trajectory can be preserved.

• Once a skill is equipped on a robot, it can be transferred
to another robot, by collecting corresponding samples
in the workspaces and employing the same architecture.

A. Learning kinematics mapping: Local Procrustes Analysis

To learn a joint space mapping between a human model
and a robot, we employ Local Procrustes Analysis. LPA is
an extension of Procrustes Analysis (PA) [20] – a linear
manifold mapping method – for non-linear mapping. The
objective is to learn a mapping f that maps data points
between a source manifold Zs and a target manifold Zt.
We assume that the manifolds have the same dimensions and
are composed of the same number of data points. Briefly, in
LPA these manifolds are separated into multiple clusters such
that a set of alignment functions can describe the mapping
f , assuming local linearity and smoothness of the domains.

LPA approximates a non-linear mapping as follows. First,
LPA reduces the dimensionality of the manifolds to a joint
latent space. Each dataset is represented by a mixture of local
regions, such that each region contains data points which
can be mapped from a region in the source manifold to the
corresponding region in the target manifold. The regions in
each manifold are described as a Gaussian Mixture Model
(GMM), which is fit to the data using the Expectation-
Maximization (EM) algorithm. We assume that the source
manifold Zs is to be mapped to the target manifold Zt.
The manifolds are required to have the same dimension and
same number of paired data points such that zs

i corresponds



Fig. 1: Proposed system overview. The demonstration is recorded via the Kinect sensor and converted to a pair of the end-effector Cartesian trajectory and
joint trajectory on a human model. This is then projected onto a robot via a mapping learned offline using LPA to obtain θt from θs, and modeled by
DMPs to be independently reproduced.

to zt
i, where Zs = {zs

i} and Zt = {zt
i} for i = 1...N .
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s
, dimensionally reduced from Zs,

is modeled by a GMM and then clustered by assigning
points to components with the highest responsibilities. After
obtaining the corresponding clusters, the linear mapping of
each k cluster fk can be learned by the Procrustes method
as follows.

First, data points in each cluster are transformed as
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where s ∈ M s and t ∈ M t are the normalized elements,
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k and wt
k are the means of the data, zs
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elements of each manifold in cluster k. Matrices Bs
k and
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k are transformation matrices obtained via Singular Value

Decomposition (SVD) of Zs
k and Zt

k respectively.
This transform whitens M s and M t. Then, the alignment

function fk is defined as

fk(s) = As, s.t. fk : M s 7→ M t (3)

where A is a J by J matrix, and J is the dimension of
the manifolds. The mapping is approximated by minimizing
the expected loss of the transformation. The problem can be
reformalized as

A = arg min
A

L(A) (4)

with

L(A) = E{(t−As)T (t−As)}
= tr(Σtt − 2ATΣts +ATΣssA), (5)

where Σss,Σtt and Σts are covariance matrices and L
indicates a loss function. L(A) converges to the minimum
when the derivative of L(A) is equal to 0, giving

A = Σ−1
ss Σts (6)

To estimate the number of components, K, and parameters
of each mixture model, {πk,µk,Σk}, the EM algorithm is
initialized using a hierarchical clustering scheme [19].

Finally, the set of mapping functions
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clusters are obtained. A new corresponding point can be
predicted as
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where γk is the weight of the kth Gaussian component, and
zs
k∗ = Bs

k(d
s
∗ −ws

k) from (1).

B. Modeling a motion: Dynamic Movement Primitives

We briefly introduce DMPs to encode a trajectory with
a small set of weight parameters. Each degree of freedom
(DoF) q of the demonstration is modeled with the following
set of non-linear differential equations

τ υ̇ = αυ(βυ(qgoal − q)− υ) + g(s) (8)
τ q̇ = υ (9)
τ ṡ = −αss, (10)

where αυ and βυ are variables related to the responsibility
of the system, τ specifies the time scale, υ is a supplemental
variable, and αs is a variable for the canonical system.
The function g is a non-linear function responsible for
representing the trajectory from the initial position q0 to
the final goal qgoal, and often modeled with Local Weighted
Regression (LWR). To converge to the query point, αυ , βυ,
αs and τ should be carefully chosen. A trajectory is encoded
into a DMP as follows. One of its DoFs can be described
in terms of its position, velocity and acceleration profile as
qdemo, q̇demo, q̈demo, composed of a set of U points, and
its goal position qfinal. Equations (8) and (9) are combined
into one second-order differential equation,

gtarget,i = τ q̈demo,i − αυ(βυ(qgoal − qdemo,i)− q̇demo,i),
(11)

where i refers to the ith point of U . Once g is approximated,
the DMP can generate a new trajectory following (8) - (10).

IV. SYSTEM FRAMEWORK

We now present a detailed discussion of our proposed
framework for enabling skill learning from human demon-
strations. The full system is illustrated in Fig. 1, and is com-
posed of four steps. 1) A human demonstration is extracted
from camera data (section IV-A). 2) These demonstrations



are projected onto a human model (section IV-B). 3) A
kinematics mapping between the human model and the
target robot is prepared offline (section IV-C). 4) Using this
mapping, the demonstration is transferred to the robot as a
DMP (section IV-D).

A. Human demonstration extraction

The demonstrator first needs to record demonstrations to
teach a robot. These are recorded as a set of trajectories, with
hand orientations described in the form of rotation matrices.

The requirement for our system was to use a camera with
depth information, and as such we used the Microsoft Kinect
v2 sensor. This provides standard software for extracting
both the joint positions and rotations from the demonstrated
human trajectories.

B. Projecting demonstrations onto human model

In order to decompose the human motions into several
DoFs joint trajectories and Cartesian positions, we prepared
a human skeleton model. This model is based on a Master
Motor Map (MMM) [21], which is a commonly used ref-
erence kinematic model to describe a human skeleton with
52 DoFs. As a preprocessing step, each corresponding angle
is calculated from each pair of joint positions at each time-
step. This provides a dataset of joint trajectories and the end-
effector Cartesian position trajectories.

Following this, the dataset is projected onto the human
model to obtain its corresponding trajectories. We addi-
tionally employ LPA (section III-A) in this step, as the
prepared human model is likely to differ slightly in its
morphology from the true human demonstrator. Using LPA,
the differences between the demonstrator and model can be
compensated for, retaining the same end-effector trajectory.
In particular, when the ratio between corresponding links is
the similar, the transform between the source and the target is
approximately linear. Note that this means only one reference
skeleton model is required, and is scaled to every user by
employing LPA.

C. Learn mapping between human model and target robot

To learn a mapping between a human model and a robot,
we need to collect data of corresponding poses between the
two. For skill transfer, this takes the form of joint space
mapping. We collect corresponding points by placing the
end-effector of the human model and the robot at the same
position in the workspace. Our objective is to learn a set
of mapping functions f = {f1, f2, ..., fM} using LPA, as
shown in Fig. 2. M represents the number of clusters in
LPA. Since the robot may have different arm lengths from
the demonstrator, joint angles corresponding to the same end-
effector position may be different as well.

In our experiments, we make use of a numerical IK solver
to collect joint angles of the human model corresponding to
each end-effector position of the robot, and we provide the
robot joint values as the initial solution to the IK solver.
This guides the IK solver to solutions that correspond to the
robot’s configuration, which is exactly what we need. The

Z s ={ Θs
  , X s } 	

f1	
f2	

fM	

Z t ={ Θt
  , X t } 	

…	

Fig. 2: Left: the relationship of workspaces of two domains. Right: the
bottom region in orange represents the human arm workspace as the source
domain, and the top region in blue is the workspace of the robot arm – the
target domain.

IK solver is then only needed for the human models and not
for the target robots.

Finally, LPA learns the mapping between the two datasets,
and note that LPA was developed mainly to transfer kine-
matics data from a large amount of data in the source
domain to a small amount of data in the target domain
in order to improve learning of kinematic models in the
target domain. We consider Zs = {Θs,Xs} as the source
dataset, Zt = {Θt,Xt} as the target, where the end-effector
positions are given by X and joint coordinates by Θ.

Here, our objective is to approximate the kinematics
mapping between the source and the target, in order to map
a new trajectory from the source to the target. Once the
mapping function is learned, it can be used to project new
demonstrations onto the robot online.

D. Transfer human demonstration onto robot

Through the mappings described above, human demon-
strations projected onto the human model are then transferred
onto the robot. This is done by representing the joint trajec-
tories as DMPs (section III-B). After the projection, joint
trajectories of each DoF are encoded in each DMP such that
the set of DMPs corresponds to one motion. This allows
for smooth reproductions by the robot, and generalizations
of the skills to new start and goal positions, as opposed to
replaying the taught motion.

V. EXPERIMENTS

These experiments involve the transfer of behaviors from
a human to a PR2 robot. In particular, we analyzed the
mapping accuracy of LPA for projecting human data onto
the PR2 robot, and then using the mapping, we demonstrate
the skill transfer.

PR2 has longer arms than the human model: 40 cm for
the upper arm and 32 cm for the forearm, as opposed to 30
cm and 31 cm on the human model. Both the human model
and the PR2 have 7 DoFs for each arm, but for our tasks the
first 4 DoFs are sufficient and so we learn the mapping for
these DoFs. All results reported in this section are averaged
over five runs.
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A. Mapping accuracy

We first evaluate the mapping accuracy. To compute a
mapping between the left arm of the human model and
that of the PR2 in simulation, we cluster the data for LPA
in joint space and for the initialization step, we optimize
the parameters through an offline grid search. The ground-
truth dataset for the mapping is a randomly generated set
of 5,000 corresponding instances of configurations of the
human model and the PR2.

Fig. 3 shows the mapping errors (RMSE) in Cartesian
space and joint space, and the success rate in Cartesian
space of the mapping as a function of error tolerance. As
expected, in general, the accuracy improves as the training
size increases. We note that the RMSE in Cartesian space
remains at 0.0051 m with 15,000 training points. For the
success rate, we set tolerances for desirable error as 0.01 m,
and acceptable error as 0.02 m. 95.5 % of the test data was
then desirable, and more than 99.4 % acceptable.

The results obtained in this section show that LPA is able
to learn an accurate mapping for the first 4 DoFs and that
we can expect accurate projections of human demonstrations
onto the robot.

B. Trajectory mapping and modeling with DMP

We next demonstrate the trajectory mapping performance
of the proposed system. In this experiment, two tasks were
performed by a human: writing the letter “w” and drawing a
spiral. Fig. 5 shows a series of frames with a human teacher
demonstrating writing the letter “w” and the PR2 executing
it using our system. The mapping was trained using 15,000
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points. Each trajectory is projected onto the human model,
and then mapped onto the PR2 and encoded as a DMP. In
Fig. 4, the red trajectories are the human demonstrations from
the human model, the blue trajectories were transferred to the
PR2, and the cyan trajectories were modeled by DMP from
transferred trajectories, and reproduced when provided with
the same start and goal positions. To evaluate our method,
we also use inverse kinematics (unknown to our method) to
track human demonstrations with the PR2 and encode the
joint-space trajectories as a DMP. These comparisons to IK
trajectories are shown in purple.

Trajectories for both motions were accurately transferred,
and their RMSE were less than 0.01 m: 0.0028 m for the
spiral, and 0.005 m for the “w”. RMSE between DMP-ik
and DMP-transfer trajectories were also small: 0.0066 m for
the spiral, and 0.0055 m for the “w”. The results show that
our method performs as well as the method relying on the
kinematics model of the robot.

As the ground truth trajectories show, the Kinect sensor
data contains non-negligible noise and trajectories are not
smooth. This can be eliminated by smoothing or optimizing
the DMPs through adding more weights [22].

VI. CONCLUSION

In this work, we proposed a novel system to project
human demonstrations onto a robot. By combining LPA
and DMPs, it was shown experimentally that our proposed
method can imitate human demonstrations and reproduce
them with minimal errors. Notably, this system only requires
a single demonstration in order to teach a motion to a robot
with a different kinematic structure, without relying on the
kinematics model of the robot. This is desirable to use in



Fig. 5: Demonstration and imitation, writing a letter “w”

real-world applications where an accurate kinematics model
may not be available.

In future work, we aim to combine our approach with
reinforcement learning, or other optimization techniques, to
refine the taught motions considering the limitations of the
robot and/or obstacles in the environment and allow for
more general reproductions. Furthermore, this data-driven
approach can be improved with the combination of analytical
models [23,24]. The limitation of our current system is the
assumption by LPA that the manifolds have the same dimen-
sionality. Although one can manually select corresponding
dimensions (i.e., robot DoFs) between a human and robot
for a particular task, our future work will examine inferring
this automatically from data.
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