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ABSTRACT
In many situations, agents are required to use a set of strate-
gies (behaviors) and switch among them during the course of
an interaction. This work focuses on the problem of recog-
nizing the strategy used by an agent within a small number
of interactions. We propose using a Bayesian framework
to address this problem. In this paper we extend Bayesian
Policy Reuse to adversarial settings where opponents switch
from one stationary strategy to another. Our extension en-
ables online learning of new models when the learning agent
detects that the current policies are not performing opti-
mally. Experiments presented in repeated games show that
our approach yields better performance than state-of-the-art
approaches in terms of average rewards.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems
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1. INTRODUCTION
A core problem in multiagent systems and human-computer

interaction is being able to identify the behaviors of other
(target) agents. When such a problem is tackled correctly,
it allows an agent to derive an optimal policy against such
behavior [1]. Consider, for example, a poker player whose
behavior has been identified by the opponent player. Then,
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the opponent can act optimally against such player, antic-
ipating every move. Another example are service robots.
They need to interact with persons that have not one but a
set of different behaviors (strategies) depending, for exam-
ple, on factors such as personality or physical capabilities.
Moreover, it is desirable that robots learn new tasks and
learn how to optimize those.

The target opponent agents that we focus on use a fix
(stationary) strategy for an unknown number of interac-
tions, switching to another fixed strategy and repeating this
switching to different strategies. There has been some liter-
ature addressing this problem [2, 3, 5], however, no work has
focused on the problem of reusing previously seen strategies
to boost learning speeds.

The Bayesian policy reuse (BPR) framework [7] has been
proposed to determine quickly the best policy to select when
faced with an unlabeled (but previously seen) task. How-
ever, standard BPR assumes knowledge of all possible tasks
and optimal policies from the start. Our contribution, BPR+,
is an extension to BPR for adversarial settings against non-
stationary opponents. In particular, we relax the assump-
tion of knowing all opponent strategies a priori by providing
an online learning approach for incorporating models of new
strategies when current policies perform suboptimally.

2. BPR+
Our proposal BPR+ handles non-stationary opponents

and learns new models in an online manner. BPR was pre-
sented in a single agent environment facing different tasks
(represented by MDPs). BPR+ extends to a multiagent set-
ting. Now the tasks correspond to opponent strategies and
the policies correspond to optimal policies against those sta-
tionary strategies. To cope with these new type of environ-
ment, some considerations need to be taken.

(i) An exploration for switch detection is added: drift ex-
ploration. Against non-stationary opponents, exploration
cannot be terminated. Strategy switches can be difficult to
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Figure 1: BPR+ and other approaches against a non-

stationary opponent (thick line on top of the figure

means a unknown strategy to BPR+).

Table 1: Average rewards with std. dev. (±) of the

learning agents (average of 100 trials). The opponent

changes strategies randomly. Agents can have initial

information about the opponent strategies (Known col-

umn) or start without any information (Unknown col-

umn), ∗, † represent statistical significance with a priori

MDP-CL and WOLF-PHC respectively.
Opponent strategies

Learning agent Known Unknown
Omniscient 2.53 ± 0.00 2.32 ± 0.00
BPR+ 2.24 ± 0.30 ∗† 2.17 ± 0.27 ∗†
A priori MDP-CL 2.18 ± 0.31 2.11 ± 0.24
WOLF-PHC 1.71 ± 0.27 1.77 ± 0.19

detect, particularly if the strategies in question are very sim-
ilar. Such similarities can produce a “shadowing” effect [4]
in the agent’s perception — an agent’s optimal policy π?

will produce an ergodic set of states against some opponent
strategy, but if the opponent’s switching strategy induces a
similar MDP where the policy π? produces the same ergodic
set, the agent will not detect something has changed (unless
some exploration occurs).

(ii) A method for detecting when an unknown opponent
strategy appears is needed. This scenario is identified through
receiving a sequence of rewards which are unlikely given the
known opponent models. Two parameters are needed, ρ
measures how different the probabilities need to be (com-
pared to the known opponent strategies) and n controls the
number of rounds needed before consider learning a new op-
ponent strategy.

(iii) A method for learning the new opponent strategy
(and a new optimal policy). The opponent behavior is mod-
eled trough an MDP, Mnew [1]. To learn its parameters an
exploratory phase is needed. We assume the opponent will
not change of strategies during the learning phase (a number
of rounds) after which an MDP representing the opponent
strategy is obtained. Since the rewards are deterministic,
solving the MDP is done through value iteration, obtaining
an optimal policy π?

new.
(iv) An algorithm to update the known models to add the

the recently learned model, Mnew, is needed.

3. EXPERIMENTS
Our approach is evaluated in the context of repeated games,

in particular using the iterated prisoner’s dilemma. Well-
known strategies in this domain are Tit-for-Tat (TFT), Pavlov
and Bully [6].

We show the behavior of BPR+ against a switching oppo-
nent which uses known and unknown strategies. BPR+ only

has information about TFT and Pavlov strategies. However,
the opponent will also use Bully. Figure 1 depicts rewards
for BPR+, a priori MDP-CL [5], and WOLF-PHC [2]. For
the known opponents (TFT and Pavlov) BPR+ takes about
4 rounds to reach the optimal reward. From round 100 the
opponent uses Bully which is unknown to BPR+. Then,
BPR+ detects this as a new opponent strategy and starts a
learning phase which finishes approximately at round 160.
Now, BPR+ computes and uses an optimal policy against
Bully and updates its models to cope with future switches
(round 300).

We evaluated BPR+ against an opponent that switches
randomly among the three mentioned strategies. Table 1,
under column Known, shows the average rewards with stan-
dard deviations for the three learning approaches and the
Omniscient player against an opponent that switches strate-
gies randomly every 200 rounds. Both BPR+ and a priori
MDP-CL know the strategies the opponent may use but not
the order or the switching times (the opponent should use
all strategies at least once). Lastly, we tested the approaches
without any prior information, this is shown under column
Unknown. Results show that BPR+ obtained statistically
significant score improvements over the other approaches.

4. CONCLUSIONS
We propose a Bayesian approach to cope with non-stationary

opponents (that change from one stationary strategy to an-
other) in repeated games. Our approach, BPR+, exploits in-
formation of how the policies behave against different strate-
gies in order to asses the best policy faster than any algo-
rithm in literature. We also provided BPR+ with an online
learning algorithm for adding models to its library.
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