
Adapting Interaction Environments to Diverse Users
through Online Action Set Selection

M. M. Hassan Mahmud
School Of Informatics

University of Edinburgh, UK

Benjamin Rosman
Mobile Intelligent Autonomous Systems

CSIR, South Africa

Subramanian Ramamoorthy
School Of Informatics

University of Edinburgh, UK

Pushmeet Kohli
Machine Learning and Perception

Microsoft Research Cambridge, UK

Abstract

Interactive interfaces are a common feature of many systems
ranging from field robotics to video games. In most applica-
tions, these interfaces must be used by a heterogeneous set
of users, with substantial variety in effectiveness with the
same interface when configured differently. We address the
issue of personalizing such an interface, adapting parame-
ters to present the user with an environment that is optimal
with respect to their individual traits - enabling that partic-
ular user to achieve their personal optimum. We introduce a
new class of problem in interface personalization where the
task of the adaptive interface is to choose the subset of ac-
tions of the full interface to present to the user. In formalizing
this problem, we model the user as a Markov decision pro-
cess (MDP), wherein the transition dynamics within a task
depends on the type (e.g., skill or dexterity) of the user, where
the type parametrizes the MDP. The action set of the MDP is
divided into disjoint set of actions, with different action-sets
optimal for different type (transition dynamics). The task of
the adaptive interface is then to choose the right action-set.
Given this formalization, we present experiments with sim-
ulated and human users in a video game domain to show
that (a) action set selection is an interesting class of problems
(b) adaptively choosing the right action set improves perfor-
mance over sticking to a fixed action set and (c) immediately
applicable approaches such as bandits can be improved upon.

Introduction
Interactive interfaces, such as natural gesture-based user in-
terfaces, have revolutionised the way we interact with video
games, robots and other applications. A key attribute of such
an interface is the way in which users’ high-dimensional
movements are interpreted and correspondingly mapped to
the command set within the application. Many modern soft-
ware applications have similar requirements. For instance,
interfaces to search engines (e.g., Google, Bing), or photo-
editing software (e.g., Adobe Photoshop), involve numerous
configuration choices that, implicitly or explicitly, define the
context of the interaction between the human user and the
computational process actually being performed.

Almost all of these applications must be deployed with
large user populations, with substantial diversity in the per-
formance that results from any given pair of user and con-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

figuration setting. For instance, even with a simple interface
like joystick-based navigation within a video game or field
robotics application, there is variety in dexterity and skill. A
mismatch between a user’s skill level and settings such as
the sensitivity level at which one interprets a particular mo-
tion as a signal can have substantial negative impact on the
user’s ability to perform a task. Sometimes the mismatches
can be in assumptions about perceptual ability, e.g., how pre-
cisely aware a user is regarding the current computational
context. As behavioural studies, e.g., Valtazanos and Ra-
mamoorthy (2013), have shown, perceptual limitations can
have a disproportionately large effect on user’s performance
when the task involves interactive decisions in a dynamic
environment.

These issues of personalisation in diverse applications are
unified in the computational problem of automatically shap-
ing the environment so that it is best adapted to the specific
user whom the system is currently facing. Our particular
interest is in adapting online, to personalise on the fly as
the user interacts with the system, without long calibration
phases and with only partial knowledge of the underlying
traits that induce variability.

The objective of this paper is to concretely define this
problem of user environment shaping by presenting a model
of this problem. We also present experimental studies in a
stylised video game domain with human and simulated users
to characterise the benefits of adaptation as compared to us-
ing some a-priori optimal action set. We posit some desider-
ata such adaptation algorithms should satisfy: it must afford
- safety, i.e., ensuring that individualised adaptation does not
lead to worse performance than a pre-configured statically
optimal setting, efficiency, i.e., learning to obtain settings
that enable the user achieve their maximal performance, and
speed, i.e., the ability to adapt within a few episodes which
roughly corresponds to users’ patience. We also present a
simple algorithm that satisfy these desidirata, and show that
more established bandit algorithms such as Auer (2002) do
not. This leaves opens the door for development of more
powerful algorithms in future work.

We now briefly present our approach to modelling the
problem of interface adaptation by environment shaping. We
model the user as a sequential decision maker, operating in
an Markov decision process (MDP) (see Sutton and Barto
(1998), Puterman (1994)), where the MDP models the task.



We idenitify an interface for the task with a subset of the
set of MDP actions. The adaptation now takes the form of
choosing the action subset the user is allowed to use when
accomplishing the task. We posit that different user types
(e.g. skilled, expert, risk averse, daredevil etc.) will accom-
plish the task in different ways, which will manifest as dif-
ferent transition distributions of the MDP. So for different
user type/transition distribution different action sets might
be optimal. The task of a learning algorithm in this problem
will be to combine estimation of observed transition distri-
bution with prior training with users, and then determine on-
line which interface/action-set is the optimal and present that
action-set to the user.

Related work
The problem of learning to adapt to user behaviour is gar-
nering increasing attention from researchers in different do-
mains.

HCI researchers have considered ways to customize user
interfaces. For instance, Gajos, Wobbrock, and Weld (2008)
present a method for automatically synthesizing user inter-
faces tuned to user (dis)abilities. The process involves off-
line calibration using a battery of tasks, based on which
one obtains information necessary to pose the interface de-
sign problem as one of combinatorial search. Related works
on personalisation, e.g., in this sense, our work is related
to recent work on personalisation. Seuken et al. (2012);
Zhang, Chen, and Parkes (2009) have also considered ways
to model user performance in decision and game theoretic
models, to enable optimization of parameters therein. We
take inspiration from these notions of identifying a user in-
terface with parameters describing user performance but our
primary focus is on continual online adaptation.

A different line of work that is closely related to our ap-
proach is on plan recognition, e.g., see Charniak and Gold-
man (1991), where one utilizes traces of an agent’s actions
in order to infer which one of many possible plans they
are attempting to execute. Recent instantiations of this type
of problem have included work such as Fern and Tadepalli
(2010) on hidden-goal MDPs. Our focus is different in that
we are not trying to predict the user’s future state, based on
the past actions; instead, we try to infer latent ‘personality
traits’ or skill/preferences of the user (as in the earlier ref-
erenced HCI work) in order to shape their environment – to
enable them to do better in their chosen task.

Some other related work in this area includes Hoey et al.
(2010), who study the problem of synthesizing a policy for
issuing prompts to dementia patients that is best adapted to
an unobserved ‘attitude’ that must be inferred. In that work,
similarly to Fern and Tadepalli (2010), the goal is to influ-
ence an agent with latent states to move towards a mutually
desired goal state and efficiency is determined by optimally
coordinating with such a user. More directly related to our
problem of user interface adaptation, Hauser et al. (2009)
present the concept of website morphing, where the config-
uration of a web interface are adapted in response to esti-
mated ‘cognitive state’ of a user. All of these works inspire
our own, but our model differs from these prior works in
that our adaptation is at the level of changing the action set

as a whole, as opposed to intervening at individual states to
influence the path taken within the ‘inner loop’ of the task.
It is perhaps also noteworthy that the algorithm we adopt in
our experiments, which poses the problem as one of online
model selection, is relatively easy to implement and is at-
tractive from a computational cost standpoint. That said, the
algorithm as present in this paper is merely a first step and
many more computational procedures can be defined, as in
these prior works, to implement our model of action set se-
lection. This includes consideration, e.g., of users’ learning
behaviour (Rosman et al. (2014)) and other forms of chang-
ing dynamics.

Interface Adaptation As Action Set Selection
In our problem, the user is an agent acting according to
a Markov decision process (MDP) (see Puterman (1994))
and invokes optimal policy 1. The user skill level/type de-
termines the transition function of this MDP – this models
the fact that, for instance, a less skilled user will have a dif-
ferent way of transitioning between states (e.g., being more
variable) than an expert. Unlike in standard applications of
optimizing policies for given MDPs, we will be changing the
action set α as the interaction proceeds in episodes, which is
the main point of the interaction shaping process. The goal
of the learner 2 will be to choose action sets so as to maxi-
mize the future expected discounted reward of the agent. So,
the search space for the main learning algorithm in this pa-
per is a type-space3, rather than the space of paths the user
actually traverses, and the value of a type is the value of the
optimal policy given the type. In the following we first de-
scribe MDPs and then we describe our model.

Markov Decision Processes
Markov decision processes are a popular model for cap-
turing sequential decision problems – for an introduction
to Markov decision processes, see Puterman (1994) Sutton
and Barto (1998). A finite MDP M is defined by the tu-
ple (S,A,R, T,R, γ) where S is a finite set of states, A
is a finite set of actions and R ⊂ IR is the set of rewards.
T (s′|s, a) is a the state transition distribution for s, s′ ∈ S
and a ∈ A while and R(s, a), the reward function, is a
random variable taking values in R. Finally, γ ∈ [0, 1) is
the discount rate. A (stationary) policy π for M is a map
π : S → A.

The Q function Qπ : S ×A → IR of a policy π is defined
by: Qπ(s, a) = IE[R(s, a)]+γ

∑
s′ T (s

′|s, a)Qπ(s′, π(s′))
and gives the total future expected discounted reward ob-
tained by taking action a at the current step, and then fol-
lowing the policy π after that. The value function for π is
defined as V π(s) = Qπ(s, π(s)) and is total future ex-
pected discounted reward obtained by following policy π.
An optimal policy π∗ is defined as π∗ = argmaxπ V

π

– the Q function is given by Q∗(s, a) = IE[R(s, a)] +
γ
∑
s′ T (s

′|s, a)maxaQ
∗(s′, a). For the optimal policy the

value functions is denoted by V ∗. In general reinforcement
learning, goal of the agent is to estimate Q∗ and then choose
the action argmaxaQ

∗(s, a) at state s. In the sequel, we as-
sume, without loss of generality, a fixed starting state s◦ for



a MDP and define V π , V π(s◦).

Our Model of Interface Adaptation
From our discussion in the Introduction, our model of the
interface adaptation for applications we are interested in
should allow us to: (i) represent each user as a sequential de-
cision maker trying to optimize some goal; (ii) express that
users can be of different types; and (iii) specify interfaces as
collection of actions that the user is allowed to choose from
at any given point in time. In this section we give a concrete
definition of a model that fulfils these criteria.

It seems like a plausible way to satisfy criteria (i) is to
model the user as a MDP as it is a model of sequential de-
cision making where the user has a very precise objective to
optimize. In this case, the states S of the MDP represent the
different stages of a task, the actionsA represent the choices
available from all the interface, and the rewardR gives feed-
back on how to what extent the user has accomplished task.
The transition T is used to satisfy criteria (ii).

In particular, given the above mapping from MDPs to
users+tasks, we can make our model satisfy criteria (ii) by
positing a class of MDPs parametrized by the user type. We
assume that the user of our interface has a type τ from a
finite set of types τ , and the transition function T has the
form T (s′|s, a; τ). This models the fact that depending on
the user type, the same action will have different effect on
which state of the task is reached. For instance, in a joystick
interface for teleoperating a robotic unit, a ‘forward’ action
with the joystick set to high sensitivity will have different
reactions depending on the speed of reflex (i.e. type) of the
user. So, our user+task space is modelled by a class of MDPs
M of the form:

M , {((S,A,R, T (·; τ), R, γ)|τ ∈ τ} (1)

We now discuss how to incorporate (iii), the availability of
interfaces, into this picture.

To satisfy criteria (iii) we recall that each interface corre-
sponds to a set of actions that are available to the user. In that
case, it makes sense to posit that the action setA has been di-
vided into a subsets α1, α2, αn, where each αi corresponds
to an interface and contains the actions available in that in-
terface. So for instance, if the interface is a website, then
each αi corresponds to a specific view of the website, and
αi contains the buttons, text fields, instructions etc. avail-
able at that view. If the interface is a video game interface or
the joystick for a teleoperated robot, then each αi may con-
tain motion actions available at a specific level of sensitivity.
Putting this all together, this means that the action set A is a
union of subsets α1, α2, · · ·αn where in general we expect
each αi to be significantly smaller thanA (we do not assume
that the action sets αi are disjoint).

To model the fact that a user only gets to use one interface
at a time, we require that only one set αi is live at any point

2We refer to learning algorithms, which choose the action sets
as the learner; the human user is often referred to as the agent.

3The term type-space has a broader interpretation in the game
theory literature than in our work; here a type is a categorization
over policies, hence possible behaviours.

in time, so that the user is only allowed to choose actions
from the live set. Given a live set αt at time step t, we as-
sume that the user chooses the action π∗αt

(st) where is st is
the state at step t and π∗αt

is the policy maximizing V π(st)
among all policies which only chooses actions from αt.

The Learning Problem
Given the above concrete formulation of our problem, we
can define our learning problem as follows. The agent solves
a sequence of MDPs from the set M in collaboration with the
learner – that is the goal of both the agent and the learner is
to maximize the future expected discounted reward of the
agent. At the beginning of each phase of the problem, we
begin with some action set α0 live and a user with a particu-
lar type τ∗ comes in to use the application. At each step t the
user chooses an action a and in response the learner decides
to make a (possibly different) interface αt+1 live for the next
phase. The learner cannot observe the true τ∗ but knows the
value of T for each τ . Once αt is made live, the agent learns
and acts according to the policy π∗αt

.
We can define two fixed strategies for live action set se-

lection which are used as reference strategies later. The first
is the ‘true’ optimal action set and the second one is the a-
priori optimal action sets:

α∗ , argmax
α

V ατ∗ , α∗ , argmax
α

IEW (τ)[V
α
τ ] (2)

So α∗ is the action set/interface that we would have chosen
if we knew the true user type τ∗ from the beginning. And α∗
is the optimal action set based on some prior W over the set
of user types.

Experiments
Our experiment is a stylised version of the problem aris-
ing in popular mobile device games such as Temple Run
(ima), where the objective is to guide a continuously mov-
ing character across a terrain and through a series of obsta-
cles by swiping on the screen, tilting the mobile device etc.
A goal might be to induce the player to play as long as possi-
ble. This calls for adaptation, e.g., between the speed of the
game-character and user skill in terms of reflexes on such de-
vices. We frame this adaptation as a simple instance of live
action-set selection where each possible speed of the game-
character corresponds to an action set. The actions in a par-
ticular action set are the same (swipe on screen, tilt device)
but the effect is different, depending on the action set. This is
also an illustration of a situation where it is obviously better
to have distinct action sets rather than having all the actions
together simultaneously – having all the swipe and tilt ac-
tions at different speeds available at the same time would
make the game extremely hard, and reduce its enjoyability
significantly. It is worth repeating here that games such as
Temple Run are the simplest instances of our problem. As
we are focused more on introducing a particular class of in-
terface adaptation problem, this suffices. Our hope is to in
future address much more challenging and dynamic prob-
lems like the ones we presented in the introduction.

In the following, we first describe our domain, which dis-
tils the essential interface adaptation issues in the above



domain. We then describe the algorithms that we compare
against and then we present our results.

The Red Ball Video Game Domain
The domain that we use is a simple video game where the
user has to control a red ball from a target location to a goal
location (see Figure 1). The ball speed can be set to one of
several possible values and the player/user can only control
the direction of motion. Her goal is to take the ball from
a start location to the goal location as quickly as possible
without bumping into walls. The user has several possible
skill levels in terms of controlling the ball. So, depending on
her skill, different speeds are appropriate.

Specifically, the ball moves with a continuous speed p
pixels-per-second and taking an action in the each of the car-
dinal directions N,S,E,W changes the motion of the ball
to that direction. The speed p is one of {30, 40, 50, 60, 70}.
We assume that the users are different level of skills in
terms of controlling the ball. Given that this game is sim-
ple, we artificially enforce this difference in skill level by
giving each user a different ball sizes of b pixels where
b ∈ {2, 5, 10, 20, 40, 60}. We also add a noise level of b/2%
to the motion of the ball to further enforce different perfor-
mance. Hence, we capture two types of limitations in user
behaviour. The size of the ball reflects limits to perceptual
ability, with large ball sizes indicating reduced acuity. The
noise of the motion of the ball reflects limits to motor ability,
such as intrinsic jitter in the way they use the device. Com-
binations of larger ball+noise imply less skill. In our experi-
ments, neither of the algorithms EXP-3 and BOA (described
below) know the true ball size during the testing phase.

MDP Formulation of Interaction Adaptation
To construct our MDP formulation, we need to specify state
space S, actionsA, rewardsR, transition function T , reward
function R and the set of action sets AS. S is the location of
the ball at each time step (the game field was 1000× 1000).
Each action set αp corresponds to all the motions at speed p.
The actions a ∈ αp were the motions in each of the cardinal
directions N,S,E,W at speed p.

The direction of motion at step t is the most recent di-
rection chosen by the user at t′ ≤ t (so, the actual play
of the user is modelled in the MDP as the user choosing
the same action at every step as her last choice of direc-
tion). There was a constant amount of noise (on top of noise
due to skill/type) with each action, so the ball moves in the
given direction followed by (discretized) Gaussian motion
(perpendicular to the direction of motion) with mean 0, and
σ ∈ [0.3, 8] (chosen randomly for each episode).

The transition function T is defined as follows. There
were 5 different types: ball size b ∈ {2, 5, 10, 20, 40, 60},
noise levels nb = b/2%. So for type τ = (b, nb), with proba-
bility 1−nb, the ball moves in the current direction, and with
probability nb, it moves in another random direction. Hence,
the type modifies the base transition probabilities (1) by the
noise nb and (2) because the ball sizes determine the loca-
tions that result in collisions. Finally for the reward function
R, the player receives a reward of−1 for every time step and
−5 for every collision.

Experiment Description
We performed two sets of experiments on the above do-
main. In the first set, the user is a simulated, while in the
second set the users are humans. In both cases we ran a
training phase and test phase. The data collected during the
training phase was used to train our algorithms and these
learned algorithms were used in the testing. During the train-
ing phase we provided transition distribution information for
each (b, nb) × z (see sections below for more detail). The
simulated user policy was the A∗ algorithm, where the di-
rection chosen at each step, given speed p, was toward the
location, at distance p from the current location, that had the
lowest cost.

During the test phase we chose the type at random and
recorded the loss (difference between the user’s performance
and optimality) over 5 episodes (plays of the game) for var-
ious algorithms and policies. Note that, the user knows her
type but our algorithms do not. For the simulated user, the
policy used was the same, and for the human experiment,
we used three different users, each performing a sequence of
many trials involving combinations of ball sizes and speeds.

The strategies we used were α∗ (choose the optimal action
set (2) for the true type), α∗ (choose the a-priori/population
optimal action set (2)), and the algorithms we used were the
EXP-3 algorithm for bandits (Auer (2002)), and our own al-
gorithm that chooses the Bayes optimal action set with addi-
tional exploration. We describe these last two in more detail
now.

Algorithms
It is very natural to formulate the problem of live action set
selection as a non-stochastic multi-armed bandit problem
(NSMB). In the bandits problem, there are c arms where
each arm i has a payoff process xi(t) associated with it.
The learner runs for M steps and at each step t needs to
pull/select one of the arms f(t) and his payoff is xf(t)(t).
Additionally, the learner only gets to view the payoff of the
arm f(t) it has chosen. The goal of the learner is to min-
imize its regret with respect to the best arm, that is mini-
mize the quantity maxi

∑M
t=1 xi(t) −

∑M
t=1 xf(t)(t). One

optimal algorithm in the general case for minimizing the ex-
pected regret is the EXP-3 algorithm mentioned above. For
live action-set selection, we can identify each action set α as
an arm and the payoff received for choosing the arm as the
reward in the following time-step. With this identification
we can EXP-3 exactly as described in Auer (2002).

The second algorithm we use is a simple algorithm, which
we call BOA, that with probability εmakes live an action set
at random, and with probability 1 − ε makes live the Bayes
optimal action set at step t (hence the name BOA for the
algorithm) . This action set defined as follows. Assume that
at time step t of a particular interaction session we have ob-
served a state-action sequence sa0:t , s0a0s1a1 · · · st (with
sa0:0 , s0). Given this session, the likelihood of a type τi is
L(τi|sa0:t) =

∏t−1
i=0 T (si+1|si, ai; τi) (the function T (|; τi)

is learnt during the training phase. The posterior probabil-
ity of τi is Pr(τi|sa0:t) = L(τi|sa0:t)W (τi) where the prior
W (.) is the frequency with which we observed τi during



training. The Bayes optimal action-set αBO is the one that
maximizes the expectation of V ατ with respect to the poste-
rior over τ :

αBO(sa0:t) , argmax
α

∑
i

Pr(τi|sa0:t)V ατi (3)

Figure 1: The Red Ball video game domain; green rectangle
is the goal location, and the red circle is the ball. The initial
location was a random location in the bottom.

Results
Data Used For Experiments. For the simulated user case,
during training we generated 1548 trajectories from which
we learned the T (·|·; (b, nb)) for each type of ball-size+noise
(b, nb). The trajectories were divided uniformly over the dif-
ferent types. The results we present in graphs below are for
the testing phase, which contained 344 trajectories with the
types draw uniformly at random before each trajectory. For
the human experiments we used three different human users.
For the training phase we used 311 different trajectories and
for the testing phase we used 51 trajectories and the results
below are based on these latter ones.

Results For Simulated User. The results are presented in
Figures 2 – 4. Figure 2 shows the loss of each p for three rep-
resentative (b, nb) and establishes the baseline performance
of action-sets for these types: higher speeds tend to work
better for smaller sizes and conversely. The baseline perfor-
mance corresponds to the user choosing the optimal policy
given the speed and her type

Figure 3 shows that adaptation is more beneficial when we
have greater number of types of users in our pool of users.
Here, in the x-axis each x corresponds to all possible com-
binations of x types (so all

(
6
x

)
combinations). This captures

different levels of heterogeneity in user populations. In the
figure, for the curve α∗, the point α∗(x) gives the loss of
best speed averaged across all populations of size x. Hence
EXP -3(x) gives the loss of EXP-3 averaged over all pop-
ulation of size x, while BOA(x) gives the loss of BOA av-
eraged over all population of size x. This curve shows, that
averaged across population sizes, BOA outperforms EXP-3
significantly. Furthermore, while for the smaller population
size, the α∗ beats BOA, for the larger population sizes BOA
beats α∗ comprehensively, illustrating the need for adapta-
tion. Additionally, note that the curve for α∗, the optimal per
type, averaged over all types, is the line f(x) = α∗(1) be-
cause α∗(1) gives the ‘population optimal’ of size 1, which
is just α∗.

Finally, Figure 4 shows BOA is able to identify types very
quickly. In particular, the y-axis gives the ratio L(τ∗|sa0:t)

L(τ̂t|sa0:t) .

Here τ̂t , argmaxτ Pr(τ |sa0:t), i.e. the maximum a-
posteriori type. t is the time step at which the ratio is being
computed (this is measured by episodes in the x-axis for
convenience, where each episode lasts for M steps). Hence,
since the likelihood L(τ |sa0:t) measures how well the data
supports that τ is a true type, Figure 4 shows that BOA
generally converges to the true type rapidly. However, it
also shows that BOA has trouble identifying the smallest
type. We conjecture that this is because the behaviour of
b = 5 and b = 2 are nearly indistinguishable. In other cases,
correct type identification, occurring almost always halfway
through the first episode.

Results for Human Users. The results for the human ex-
periments are presented in Figures 5 – 7 and they draw sim-
ilar conclusions as with the simulated user. Figure 5 estab-
lishes the baseline as before and shows different speeds are
optimal for different types.

Figure 6 shows the performance of BOA and α∗ for the
human experiments in terms of population diversity. We do
not report the performance of EXP-3 because data collection
for that algorithm takes time that exceeded the constraints
of our human subjects. In these experiments, we see that
BOA significantly outperforms α∗ for all population sizes,
hence demonstrating the benefit of adaptation with real hu-
man subjects, corroborating our more extensive simulation
results above. This is a key experimental result of this paper.

Finally, Figure 7 shows the efficacy of our algorithm
at identifying different types. As in simulated user exper-
iments, our algorithm has some trouble distinguishing be-
tween the very nearby types b = 5 and b = 2 but the error is
not beyond the threshold of small noise.

Interpreting the Experiments: Safety, Efficiency
and Speed

As stated in the introduction, our goal is to construct al-
gorithms satisfying these desiderata. Our experiments show
that the algorithm BOA is safe. For simulated users, BOA
does not under-perform w.r.t. any alternatives including
EXP-3 and static best speed α∗. In human experiments,
BOA outperforms α∗ (Figure 6). In artificially constrained
low-population-diversity setting (1-3) with simulated users,
α∗ is marginally better than BOA; but BOA outperforms at
realistic levels of diversity (Figure 3). Hence, a key conclu-
sion of our experiments is that this kind of adaptation is in-
deed necessary in environments with substantial diversity as
the regret of alternate approaches shoots up at high diver-
sity. We also notice that the results of EXP-3 imply that there
is substantial scope for development of new algorithms in
this application. BOA is also efficient, in particular, Figures
3 and 6 shows that our solution adapts differently for differ-
ent user types. Finally, Figures 4 and 7 also shows that BOA
has speed, in that we identify the true types fairly rapidly,
demonstrating speed.



SIMULATED USERS

Figure 2: The performance of each speed for each type estab-
lishing baseline domain performance.

Figure 3: The performance of best static speed α∗, EXP-3 and
BOA for each of 6 possible combinations of type populations
when the user is simulated.

Figure 4: Rapid convergence to the true type, shown by the
ratio of the likelihoods of the maximum-a-posteriori type and
the true type, averaged over all population-diversity trials in
our experiments when the user is simulated. The likelihoods
are sampled uniformly at 100 points during each episode
(game).

HUMAN USERS

Figure 5: The performance of each speed for each type, es-
tablishing baseline performance in domain.

Figure 6: The performance of best static speed α∗ and BOA
for each of 6 possible combinations of population types.

Figure 7: Rapid convergence to the true type, shown by the
ratio of the likelihoods of the maximum-a-posteriori type and
the true type, averaged over all population-diversity trials in
our experiments when the user is human. The likelihoods are
sampled uniformly at 100 points during each episode (game).



Conclusions
The main contribution of this paper is a new model for inter-
face adaptation, based on categorising user types, each cor-
responding to a certain decision process that describes the
user’s skill, and then posing the problem of adapting to an
unknown user as one of Bayesian model selection in an on-
line setting. We perform model selection in the setting where
the user changes her behaviour immediately when the action
set changes. While this assumption has not been substan-
tially contradicted in our experiment, it is likely that devia-
tions may be more substantial as the complexity of the task
goes up. A direction for future work is to incorporate models
of user learning, e.g., Rosman et al. (2014), into this model
selection process. Similarly, we work in a setting where a
training corpus corresponding to various types seeds our
learning algorithm. We envision a number of different ways
of passively acquiring such training corpora from users’ reg-
ular behaviour with test systems. However, here again, in-
crementally acquiring data corresponding to heterogeneous
types and performing (fully unsupervised) learning in a life-
long fashion is an important direction to be explored in fu-
ture work.

Acknowledgements
This work has taken place in the Robust Autonomy and De-
cisions group within the School of Informatics. Research of
the RAD Group is supported by the the European Commis-
sion through SmartSociety Grant agreement no. 600854, un-
der the programme FOCAS ICT-2011.9.10.

References
Auer, P. 2002. Using upper confidence bounds for exploitation-

exploration tradeoffs. Journal of Machine Learning Research
3:397–422.

Charniak, E., and Goldman, R. 1991. A probabilistic model of plan
recognition. In Proceedings of the ninth National conference on
Artificial intelligence - Volume 1, AAAI’91.

Fern, A., and Tadepalli, P. 2010. A computational decision theory
for interactive assistants, advances in neural information pro-
cessing systems. In Proceedings of the 23rd Conference on Neu-
ral Information Processing Systems.

Gajos, K.; Wobbrock, J.; and Weld, D. 2008. Improving the perfor-
mance of motor-impaired users with automatically-generated,
ability-based interfaces. In CHI ’08: Proceeding of the twenty-
sixth annual SIGCHI conference on Human factors in comput-
ing systems, 1257–1266.

Hauser, J. R.; Urban, G. L.; Liberali, G.; and Braun, M. 2009.
Website morphing. Marketing Science 28(2):202–223.

Hoey, J.; Poupart, P.; von Bertoldi, A.; Craig, T.; Boutilier, C.; and
Mihailidis, A. 2010. Automated handwashing assistance for
persons with dementia using video and a partially observable
markov decision process. Computer Vision and Image Under-
standing 114(5):503–519.

Temple run. Developed and Published by Imangi Studios, 2011.

Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons.

Rosman, B.; Ramamoorthy, S.; Mahmud, M. H.; and Kohli, P.
2014. On user behaviour adaptation under interface change. In
Proceedings of the International Conference on Intelligent User
Interfaces (IUI).

Seuken, S.; Parkes, D. C.; Horvitz, E.; Jain, K.; Czerwinski, M.;
and Tan, D. S. 2012. Market user interface design. In ACM
Conference on Electronic Commerce, 898–915.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

Valtazanos, A., and Ramamoorthy, S. 2013. Evaluating the effects
of limited perception on interactive decisions in mixed robotic
environments. In HRI ’13: Proc. ACM/IEEE International Con-
ference on Human-Robot Interaction.

Zhang, H.; Chen, Y.; and Parkes, D. C. 2009. A general approach
to environment design with one agent. In IJCAI, 2002–2014.


