Analysing the effect of latent space mutation
strategies for PCGML

Kayleize Govender, Branden Ingram, Pravesh Ranchod
School of Computer Science and Applied Mathematics
University of the Witwatersrand
Johannesburg, South Africa
kayleize.govender @students.wits.ac.za
{branden.ingram, pravesh.ranchod} @wits.ac.za

Abstract—Procedural Content Generation Via Machine Learn-
ing (PCGML), describes an evolving area of research, that
incorporates the use of machine learning models in a generative
context. These innovative approaches accelerate the creation of
content while concurrently reducing the need for human inter-
vention. In particular, autoencoder models have been steadily
employed in collaboration with supporting algorithms to facilitate
the generation of novel game content. The standard autoen-
coder provides a means of replicating given data by learning
a lower dimensional embedding, called the latent representation.
Applying various operations to these representations can yield
uniquely diverse content. This paper offers a versatile and
robust framework for game level generation using a standard
autoencoder for level generation and a denoising autoencoder
for level repair and enhancement. Additionally, the integration
of clustering techniques effectively identifies the core components
that make up the various types of levels in a Rogue-like game
domain. The essence of this approach lies in harnessing the
knowledge within the clusters to guide the mutation phase
of the level’s latent spaces. This refined methodology provides
significant insights on level analysis, generation and repair,
highlighting how autoencoders can be used as a basis for game
development.

Index Terms—PCGML, Supervised Learning, Level Genera-
tion

I. INTRODUCTION

Content generation in the field of game-level development
has been a topic of interest to academic researchers for over a
decade and is made up of many varied techniques [1]. These
approaches are becoming increasingly crucial in modern video
games due to their ability to enhance scalability, increase
diversity, and offer personalization, which improves player en-
gagement at a more affordable cost [2], [3]. Procedural Content
Generation via Machine Learning (PCGML) represents one of
these methodologies, which involves the training of models on
pre-existing, human-curated datasets of game levels. It is this
learned model which is then utilised to generate new levels
that exhibit analogous characteristics [4].

While this method still necessitates the involvement of
human designers, it proves significantly more intuitive com-
pared to search-based PCG methods or constraint-based ap-

979-8-3503-5067-8/24/$31.00 ©2024 IEEE

proaches. These latter methods demand the development of
fitness/reward or constraint functions, respectively, to direct the
generation process. Such functions often result in unforeseen
outcomes [5].

The field of PCGML is not limited to generation, but the
methods of modelling content can be extended to the areas of
compression, repair, recognition and analysis [4]. Many differ-
ent techniques have been explored for level generation, such
as neural networks [4], Markov models [6], Long Short-Term
Memory Recurrent Neural Networks as shown by Summerville
and Mateas (2016) [7], as well as clustering [4]. The task
of game-level generation is becoming increasingly complex.
Today, game levels can span a large state space, making
the process of obtaining smaller and more compact repre-
sentations a necessity. The natural ability of an autoencoder
is dimensionality reduction. Combining this strength with
intuitive algorithms forms the foundation for level generation
through autoencoders. A frequently employed variant of the
autoencoder is the variational autoencoder (VAE), renowned
for its generative capabilities. VAEs have played a key role
in controllable level blending, as demonstrated in the works
of [8], [9], and [10]. Past research has notably focused
on optimizing the reconstruction loss of the autoencoder to
promote learning of a “good” latent space embedding such
that “good” levels can be sampled from this space [9].

In this paper, we propose different techniques for sampling
from a learned latent space, which we call “Latent Space
Mutation Strategies”. We investigate the effect of traditional
strategies which incorporate adding noise as well as novel
clustering-based mutation strategies. Clustering has long been
a useful technique in identifying patterns within a dataset, and
it is this feature that we look to leverage when sampling from
the latent space [11], [12]. Rather than simply adding noise
can you mutate a latent space vector based on some identified
patterns. To this end, we train a VAE autoencoder model which
is connected to a denoising autoencoder to repair generated
levels that suffer from “incompleteness” as in [13]. This model
is trained on a pre-existing dataset of levels generated in a
2.5D rogue-like grid environment. After this, we sample novel
latent space vectors and process them through our latent space
mutators. These mutated vectors are then processed through

the rest of the trained model to output a final level. The
generated and repaired levels are assigned a novelty score
measuring the similarity in comparison with the original levels,
to establish how effective the different mutation strategies are
in generating unique content.

II. RELATED WORK

The potential to reduce development costs, increase replaya-
bility and promote diverse gameplay experiences has led to a
significant amount of attention from both academia [14]-[16]
and commercially [17]-[21]. This has resulted in a number of
approaches namely; search-based [22], [23], constraint-based
[24], [25] and data-based algorithms [4], [13].

A. General PCG

Approaches which utilise a fitness or reward function in an
iterative training regime are usually considered to be search-
based approaches. However, this search process tends to be
computationally expensive and the design of the objective
function can be unintuitive [26]. Constraint-based approaches
rely more heavily on designed elements in the form of rules
which govern legal actions in a generation pipeline. In grid-
based domains, neighbourhood rules for cellular automata
have been used to generate cave systems [27]. Alternatively,
generative grammars utilised linguistic rules and formal lan-
guage representations to generate replacement rules [28].
This concept was expanded to graph structures to generate
dungeons where nodes represented rooms and edges its ad-
jacencies [29]. These approaches all suffer from enforcing
global constraints due to rules only enforcing local changes.
Hierarchical approaches have been applied to circumvent
issues related to this limitation [24], however, in doing so
incurs a greater design cost.

B. PCGML

Procedural content generation via machine learning
(PCGML) looks to avoid the need to construct appropriate
reward/fitness functions nor does it require expert knowledge
for the purpose of designing constraints [4]. Alternatively,
PCGML utilises large data sets of quality example content to
train a model to generate levels in a supervised setting. Jain et
al. (2016) constructed denoising autoencoders to overcome the
detriment of over-fitting when using a standard autoencoder
[13]. In this context, the autoencoder was trained on input that
contained random noise, while the original input was used as
the target data. Thakkar et al. (2019) extend this by using a
multi-channel encoding along with a variational autoencoder
and compared the results to the standard autoencoder [10]. The
generation takes place in two phases, using the autoencoder
twice. The first phase uses the autoencoder to create a gene
pool of 10,000 samples, by supplying random seeds into the
decoder. The next phase evolved the levels by applying an
evolutionary process. The evolutionary process first consisted
of applying the crossover and mutation function. The idea was
to combine two images by assigning different proportions of
each to a child image (crossover), then randomly modifying

its latent variable in the latent space of the autoencoder
(mutation). More recently, variational autoencoders have been
used to blend two existing levels [8]. Here Sarkar et al. (2020)
trained the autoencoder on encoded window segments from
each level instead of the entire level [8]. Here the previous
window acted as a prior to influence the generation of the
neighbouring window. Similarly, our clusters represent a prior
influencing the generation of a stand-alone level. Alternatively,
Gonzélez-Duque et al. (2022) utilised a differential geometry
approach for sampling from a learned latent space in Mario
to bias towards playable levels [30].

The above approaches highlight the main strategies that
influence the following generation methods.

III. AUTOENCODERS

The autoencoder model is based on the neural network
architecture. Many types of autoencoders differ mainly in their
composition and the process by which they learn to encode
and decode the given data. Standard autoencoders learn to
replicate the data it has been fed, while producing a lower
representation that holds its underlying characteristics [31].
Obtaining these representations allows for the application of
additional techniques and more explicitly, the use of mathe-
matical operations, to alter the original representations and in
turn create modified versions of them [13]. Contrasting this
technique to traditional approaches in which most, if not the
entire content space was examined and modified, provides a
more efficient way of “manipulating” existing levels to create
new levels. The additional benefit of a trained autoencoder
is that it can be decomposed into two independent parts. The
encoder is responsible for creating the lower dimensional code,
which resides in the hidden layer, connecting the encoder and
decoder. The decoder is then tasked with transforming this
lower-level data back into its original state. Once the model
has been trained, the decoder can be queried by feeding it
unseen vectors that match the dimension of the hidden layer.
A diagram showing how new levels can be generated is shown
in Figure 1

IV. METHODOLOGY

Our method uses both standard and clustering-based gen-
eration techniques alongside the usage of an autoencoder
architecture to produce video game levels.

A. Generation Process

To generate levels we train two separate variational autoen-
coder models. The first is trained to replicate input levels
from our level dataset and is called the “Generator”. The
second is trained on corrupted versions of these levels and
serves to repair this corruption from the level and is called
the “Denoiser”. This process of level repair incorporates a
variant of the denoising autoencoder used in [13], where the
aim was to add random noise to the training data. The decoder
from the “Generator” is combined with the “Denoiser” to
form the online generation pipeline. This pipeline is fed novel
inputs which are generated using multiple differing latent
space mutation strategies to generate novel levels.

Generator

Input Tensor_

Output

Latent Space
‘- . Representation . - °

Tensor

Denoiser

Repaired Output Tensor

I 1 ?

Bottleneck Decoder

Encoder

..)
—

Extract Learnt Modified
Latent Space Latent Sl_aace
Representation Strategies

Apply Mutation
Strategies

-
)

v
-
v
_—

Fig. 1: Generative pipeline, corresponding both training and inference modes. During training a level is converted to a tensor
which is then reduced to a lower dimensional latent space vector. This vector is then projected back up to the original size, the
difference between these forming the “Generator” reconstruction loss. The “Denoiser” is trained separately on corrupt versions
of the original dataset. During Inference both generators are combined we then sample an extracted latent space representation
from the “Generator” form which we apply a mutation strategy. This mutated representation is then passed through the rest of

the network producing a final level.

B. Latent Space Mutation Strategies

Building on past work of adding random noise and blending
levels, the following strategies are used to generate new game
levels.

1) Random Uniform Noise: Randomly sampling a vector
from a uniform distribution to pass through our pipeline.

2) Normal Distribution Sampling: Randomly sampling
each component of a vector from a normal distribution using
the mean and standard deviation from the corresponding
dimension of the learnt latent representations of the original
game levels:

Z = (Ni(p1,01), Na(p12,02), .. s Np(ptn, o). (1)

Here n represents the size of the latent vector and N; repre-
sents a normal distribution defined by u; and o; the mean and
variance corresponding to a particular feature i.

3) Addition Of Noise To Latent Vectors: Extracting the
learnt latent representations and adding a uniform noise vector
with the same dimension.

4) Random Latent Interpolation: Applying the Interpola-
tion formula between two existing, randomly selected latent
vectors L1 and Lo :

Ltended = @L1 4 (1 — o)Lz, where « € [0, 1]. ()

The interpolation formula is applied to all cluster-based meth-
ods with o = 0.5.

5) Same Cluster: Randomly Select two latent representa-
tions from the same cluster and interpolate between them.

6) Closest Clusters: Randomly choose and interpolate be-
tween two latent representations from clusters with centroids
that are nearby.

7) Furthest Clusters: Randomly choose and interpolate
between two latent representations from clusters with centroids
that are maximally distant.

8) Centroids: In addition to facilitating appropriate level
groupings, the clusters also feature centroids representing the
average of all latent representations within a cluster. These
centroids trivially capture the shared characteristics of the
latent vectors within their respective clusters.

V. EXPERIMENTS
A. Rogue-Like Dataset

848 Game levels represented as 2-D arrays are extracted
from a collection of text files. These levels were generated
by [24] and are similar to games used in prior works, such
as The Legend of Zelda [22]. The arrays consist of 28 x 28
tokens, where each token value corresponds to a specific
colour indicating the type of tile it is, e.g.* 0’ represents green
which symbolizes grass. The files include values from 0-9,
representing 10 different colours/classes of tiles. All levels are
one-hot-encoded to create a 28 x 28 x 10, 3-D tensor.

B. Data-Corruption

Corruption refers to selecting non-green tiles at random and
assigning them the integer 0, representing green tiles, shown
in Figure 2. This is to overcome the incomplete characteristics
of levels generated by the “Generator”.

C. Training

The “Generator” model is a 2-layer, fully connected encoder
and decoder using ReLU and softmax activations respectively.
The encoder transforms the flattened input 3-D tensor (28 x
28 x 10) into a vector of 392 dimensions, as seen in Figure

Original Level 1

Corrupted Level 1

Original Level 2

Corrupted Level 1

U
I
in

Fig. 2: Depiction of two levels with their corresponding
versions after apply 50% corruption.

1. The decoder then converts this 392 dimension vector back
into the 7840 vector. The output of the decoder is reshaped to
a 3-D tensor of shape 28 x 28 x 10, where the “argmax” is
taken and the final 2-D array of 28 x 28 representing the level,
is obtained. The model is trained using the Adam Optimizer
with a learning rate of 0.001 and the binary cross-entropy
function to compute the training loss [8]. Given the goal is to
generate new levels by constructing unseen vectors, the model
is trained, validated and tested with a split ratio of 60 : 20 :
20 respectively. The training and validation loss curves can
be seen in Figure 3. The mean similarity of the replicated
levels in the test data is approximately 67%, showing that the
standard autoencoder managed to capture a decent proportion
of the underlying level characteristics. To extract the latent
representations for analysis, mutation and blending, the model
is retrained on the entire dataset in batches of 256 for a total
of 100 epochs.

Using a split ratio of 80 : 20 for training and testing data, the
denoising autoencoder was evaluated on different corruption
percentages as seen in Table I. The mean similarity to the
original levels is computed, to evaluate the model’s ability to
reconstruct unseen corrupt levels. A corruption percentage of
50% is chosen for the final denoising autoencoder.

Corruption % | Mean Similarity %
30 66.06
40 64.98
50 63.18
60 63.11
70 61.92
80 60.67

TABLE I. Reconstructive similarity score based upon the
degree of level corruption.

D. Clustering

For the clustering component of the model, we utilised
k-means clustering. To choose the appropriate number of
clusters, different values of k were initially selected, however,
we later settled for 6 based on visualized tile distributions. To
visualize the clusters, the latent representations were projected
into two-dimensional space using Principal Component Anal-
ysis (PCA). For k-means, we fit our data using 100 restarts
and a maximum iteration of 10000. In addition, k-means used
a tolerance of 0.0001

Training and Validation Loss

—— Training Loss
Validation Loss

0.5 1

0.4 4

Loss

0.3

0.2 4

0.1

0 20 40 60 80 100
Epoch

Fig. 3: Binary cross entropy loss curves for “Generator” during
Level replication training.

Fig. 4: Levels generated using just the “Generator” part of the
pipeline depicting artefacts of “incompleteness”.

E. Performance Metric

Measuring the unique properties of the generated levels is
done using mean similarity. Mean Similarity is calculated by
comparing each generated level to all 848 existing levels and
computing the sum of equal tiles which is then averaged across
the number of generated levels. A common goal similarity
would lie between 55% and 75%, illustrating that the levels
portray characteristics of the data used to create it, but also
incorporate additional qualities that would describe it to be
unique.

VI. RESULTS AND DISCUSSION

This section presents our results from the standard offline
training process as well as the effects of the differing mutation
strategies.

A. Autoencoder Training Performance

In Figure 3 we observe that our model replicates all the
levels with 96% accuracy when measured using a Binary
Cross Entropy Loss but few of the structural entities were
“incomplete”, as seen in Figure 4 where roads, walls and
rivers are not connected. Additionally, we observe that after
“epoch 40” the validation loss converges while the training
loss continues to decline. This is indicative of the model
beginning to overfit to the training data. One approach to
mitigate this would be to incorporate early stopping, however,
we opted not to, since we are focused on measuring the impact
of the mutation strategies and not optimising the model’s
reconstruction performance.

Fig. 5: Reconstructed levels generated from passing through
randomly generated noisy latent space vectors through the
Decoder portion of the “Generator”.

Figure 5 shows randomly sampled latent vectors from a uni-
form distribution which are reconstructed by passing through
the standard decoder. The generated levels show similar traits
of incompleteness as the corrupted levels in Figure 2, with
partially observable entities and paths. This can be identified
as an over-fitting property of the “Generator”.

The design of the “Generator” to output a probability
distribution of all tiles paired with the property of the original
game levels that contain approximately 50% of green tiles,
confirms that the autoencoder most likely assigns that label “0”
in the case of uncertainty. Although the bottleneck sizes for
each autoencoder are the same, the encoder of the “Denoiser”
is used to obtain a suitable latent representation that the
decoder is familiar with. Figure 6a illustrates the capabilities
of the “Denoiser” on a partially generated level from uniform
random noise, obtained using the “Generator”.

B. Non-Cluster Based Latent Mutation

Figures 6a, 6b, 6¢ and 6d, were generated by selecting two
levels from a set of 20 levels generated for each strategy
mentioned above. The example levels were obtained using
the decoder portion of the “Generator” for generation and the
“Denoiser” for repair.

Generation Strategy
Uniform Noise
Sample Normal Distribution (mean,std)
Existing Latent + Uniform Noise
Random Interpolation

Mean Similarity %
47.26
40.46
47.11
39.30

Average Green Tile Density %
81.75
62.48
81.48
61.94

TABLE II: Evaluation Of non-cluster based level generation
strategies in terms of similarity to the original dataset and
density of green tiles.

Observing Table II and Figures 6a, 6b, 6¢, 6d, our model
shows excellent recall in completing enclosure entities al-
though struggles with forming coherent paths. Among the 4
non-cluster-based strategies, sampling from a normal distri-
bution and interpolating random latent vectors showed the
lowest mean similarity to the original levels. Although the
similarity percentage falls below 50%, the average tile density
falls within a descent range to the cluster proportions. Pro-
ducing more than 20 generated levels may result in a more
diverse set of levels that incorporate many of the existing
features. However, the results for non-cluster-based generation
showcase that basic mathematical operations define a natural
starting point for latent mutation.

Generator Output 1

Denoiser Output 1 Generator Output 2 Denoiser Output 1

(a) Random Uniform Noise.

Denoiser Output 1 Generator Output 2 Denoiser Output 1

el L

(b) Addition Of Noise To Latent Vectors.

Generator Output 1

Generator Output 1

Denoiser Output 1 Generator Output 2 Denoiser Output 1

(c) Normal Distribution Sampling

Generator Output 1 Denoiser Output 1 Generator Output 2 Denoiser Output 1

(d) Random Latent Interpolation.

Fig. 6: Combined Results for level generation using complete
pipeline when using non-cluster based latent mutation strate-
gies.

C. Cluster Based Latent Mutation

Clustering techniques demonstrate how the different levels
can be grouped together. Intuitively, this is a way to attain
more knowledge of the features that make up the levels.
Exploiting this knowledge allows for a controllable mutation
process over the level’s latent space. Figure 7 showcases the
centroids for each cluster generated using the standard decoder.
Visualizing these centroids suggests that levels are grouped
based on the presence of rectangular or square enclosures.
However, since these enclosures only constitute a portion of
a complete level, the latent vectors closest to the centroids in
terms of the shortest Euclidean distance, as depicted in Figure
8, are selected as the “chosen” centroids for blending. The
corresponding tile distributions for each cluster can be seen in
Figure 10. The key observation in the tile proportions is that
in all clusters the proportion of green tiles is approximately
50%. These distributions serve as a baseline for comparison
with the generated levels.

To use the “closest centroids” strategy we calculated the
pairs of the closest centroids, as listed in Table III, to
be [(1,5),(1,6),(2,6),(5,6)]. Similarly, we calculated the
pairs of the furthest centroids, as listed in Table III, to be

Cluster Centroid 1 Cluster Centroid 3

Cluster Centroid 2

Cluster Centroid 4 Cluster Centroid 5 Cluster Centroid 6

Fig. 7: Levels generated when passing latent centroid vector

as input through the whole pipeline starting at the Decoder of

the “Generator” network.

Closest to Centroid 1 Closest to Centroid 2 Closest to Centroid 3

Closest to Centroid 4 Closest to Centroid 5 Closest to Centroid 6

Fig. 8: Levels generated when passing the latent vector from
the original dataset which is closest to the corresponding
centroid vector as input through the whole pipeline starting
at the Decoder of the “Generator” network.

[(1,3),(2,3),(3,5), (3,6)].

Figures 11a, 11b, 11c and 12, were blended using a = 0.5,
allowing equal proportions of each level to contribute to the
blended level. Figure 11b and 11c show examples of levels
obtained from using the closest and furthest centroid pairs
respectively. 5 levels were generated For each of the 4 pairs,
by randomly selecting latent vectors in the relevant cluster
pairings. Figure 11b shows examples of levels obtained from
using the latent vectors closest to the respective centroid. Each
of these vectors was interpolated with every other centroid
vector, resulting in a set of 15 generated levels.

Clusters (k = 2) Clusters (k = 3) Clusters (k = 4)

LEVELS IN EACH CLUSTER

@ Cluster 1: 163
@ Cluster 2: 117
@ Cluster 3: 30
@ Cluster 4: 87
@® Cluster 5: 119

Cluster 6: 333

Fig. 9: K-Means clusters of latent representations of all
original levels in 2-D space for k € [2,6] and corresponding
number of levels in each cluster for k£ = 6.

0,7
0.6 —p HClusterl |
05 + ® Cluster2 |
E = Cluster 3
B 04 -
H m Cluster 4
o
E 0,3 ® Cluster5 |
.
0,2 + = Cluster6 [

Grass Road Wall

Path Gate Entry River Exit Stone Pool
Tile Numbers

Fig. 10: Tile distributions of original levels in each cluster.

Blended Generation Strategy | Mean Similarity % | Average Green Tile Density %
Same Cluster (a = 0.5) 38.54 60.52
Closest Cluster 38.52 59.69
Furthest Cluster 37.76 56.35
Centroids 40.62 67.35

TABLE IV: Evaluation Of cluster based level generation
strategies in terms of similarity to the original dataset and
density of green tiles.

Table IV shows the mean similarity and green tile den-
sity for the cluster-based methods. Overall, the similarity
percentages are much lower than that of the non-cluster-
based strategies. The example Figures 11a, 11b, 11c and 12,
showcase more diverse range levels among the 4 strategies.
Observing the tile proportion plots in Figure 13, the green tile
density closely resembles the original density for the cluster
tile proportions in Figure 10. The proportion of blue, black and
maroon tiles, representing rivers, walls and paths, are lower
than the cluster proportions, but the wall and path proportions
appear to be evenly distributed among the generated levels.
The use of alternate clustering strategies could provide more

Centroids | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6
Cluster 1 - 65.42 83.76 62.71 48.65 46.6
Cluster 2 - - 86.34 69.91 65.04 45.78
Cluster 3 - - - 71.71 87.53 76.84
Cluster 4 - - - - 67.51 56.78
Cluster 5 - - - - - 46.36
Cluster 6 - - - - - -

TABLE III: Euclidean distances between cluster centroids.

Cluster 3 Cluster 3 Standard

Denoising

Cluster 1 Cluster 1 Standard

Denoising

J—I‘I.—.nl

(a) Same Cluster

Cluster 1 Cluster 6 Standard

Denoising

Cluster 6

-
[
M

(b) Closest Clusters
Cluster 3 Standard

Cluster 2 Denoising

Cluster 3 Cluster 6 Standard

HE

(c) Furthest Clusters

Fig. 11: Combined Results for level generation using complete
pipeline when using cluster based latent mutation strategies.

refined groupings.

VII. FUTURE WORK

The interpolation formula for all blending strategies uses
an equal blending proportion for each level, this could be
optimized by allocating a larger proportion of the blending
ratio to the more dense level or vice-versa, allowing for
less stochasticity during blending. The simultaneous lack of

Centroids From Clusters
0and 5

Centroids From Clusters
3and 4

Centroids From Clusters
1and 4

Centroids From Clusters
1and 5

Fig. 12: Centroids.

§ Centroid

u Closest |

Furthest |

u Same

Proportion

Path Gate Entry River

Exit Stone Pool

Grass Road Wall

Tile Numbers

Fig. 13: Average tile proportions for each blending strategy.

diversity and similarity can be attributed to numerous de-
sign decisions within the frame. The simple structure of the
autoencoders provides a straightforward implementation and
generation process, however results in less authentic levels.
The use of more complex architectures could improve the
amount of complex information retained by the autoencoder.
The results for the various strategies showcase the need for
techniques that make use of the information residing in the
latent representations. Although considered a trivial way of
mutation, the simple addition of noise or vectors disregards
their contents. Using search or fitness functions to evolve the
latent vectors would incorporate more of the learned patterns
leading to novel insights.

VIII. CONCLUSION

The work has presented a comprehensive framework for
game-level generation using autoencoders and clustering tech-
niques by highlighting their capabilities and limitations. The

pipeline of level replication, analysis and repair can be adapted
and transformed for various use cases. Although the generated
levels were not up to standard under the metric criteria,
the visual examples exhibit the model’s ability to introduce
variations to existing levels. In general, autoencoders are not

the

trivial choice for level generation but have proven to

be a sufficient foundation for further complex techniques.
Future areas of exploration include generating levels with
set objectives and rules, to examine how the autoencoder
can handle generating content under given constraints. The
integration of more sophisticated mutation strategies, such as
genetic algorithms, incorporates the vital elements captured in
the latent representations.

[1]

[2]
[3]

[4]

[5]

[6]
[7]
[8]

[10]

[11]

(12]

[13]

[14]

[15]

REFERENCES

M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, feb 2013. [Online]. Available:
https://doi.org/10.1145/2422956.2422957

G. Smith, “Procedural content generation: An overview,” Level Design
Processes and Experiences, pp. 159-183, 2017.

O. Korn, M. Blatz, A. Rees, J. Schaal, V. Schwind, and D. Gorlich,
“Procedural content generation for game props? A study on the effects
on user experience,” Comput. Entertain., vol. 15, no. 2, pp. 1:1-1:15,
2017. [Online]. Available: https://doi.org/10.1145/2974026

A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgard, A. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257-270, 2018.

J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley, “Procedural Content Generation: Goals,
Challenges and Actionable Steps,” in Artificial and Computational
Intelligence in Games, ser. Dagstuhl Follow-Ups, S. M. Lucas,
M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds. Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013,
vol. 6, pp. 61-75. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2013/4336

S. Snodgrass, Markov models for procedural content generation. Drexel
University, 2018.

A. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via Istms,” arXiv preprint arXiv:1603.00930, 2016.

A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blend-
ing between games using variational autoencoders,” arXiv preprint
arXiv:2002.11869, 2020.

A. Sarkar and S. Cooper, “Sequential segment-based level generation
and blending using variational autoencoders,” in Proceedings of the 15th
International Conference on the Foundations of Digital Games, 2020,
pp. 1-9.

S. Thakkar, C. Cao, L. Wang, T. Choi, and J. Togelius, “Autoencoder
and evolutionary algorithm for level generation in lode runner,” in 2079
IEEE Conference on Games (CoG). IEEE, 2019, pp. 1-4.

B. Ingram, C. van Alten, R. Klein, and B. Rosman, “Generating inter-
pretable play-style descriptions through deep unsupervised clustering of
trajectories,” IEEE Transactions on Games, 2023.

M. Guzdial and M. Riedl, “Game level generation from gameplay
videos,” in Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 12, no. 1, 2016, pp. 44-50.
R. Jain, A. Isaksen, C. Holmgard, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
workshop on computational creativity and games, vol. 9, 2016.

J. Dormans, “Adventures in level design: generating missions and
spaces for action adventure games,” in Workshop on procedural content
generation in games, 2010.

J. Dormans and S. Leijnen, “Combinatorial and exploratory creativity
in procedural content generation,” in Workshop on Procedural Content
Generation for Games, 2013.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgard, A. K.
Hoover, A. Isaksen, A. Nealen, and J. Togelius, “Procedural
content generation via machine learning (PCGML),” IEEE Trans.
Games, vol. 10, no. 3, pp. 257-270, 2018. [Online]. Available:
https://doi.org/10.1109/TG.2018.2846639

T. Adams and Z. Adams, “Dwarf fortress,” http://www.bayl2games.
com/dwarves/, 2006, accessed: 2023-02-01.

D. Yu, “Spelunky,” https://spelunkyworld.com/, 2008, accessed: 2023-
02-01.

J. Dormans, “Cyclic generation,” in Procedural Generation in Game
Design. AK Peters/CRC Press, 2017, pp. 83-96.

Ludomotion, “Unexplored,” https://store.steampowered.com/app/
506870/Unexplored/, 2017, accessed: 2023-02-01.

T. Adams, “Emergent narrative in dwarf fortress,” in Procedural story-
telling in game design. AK Peters/CRC Press, 2019, pp. 149-158.

A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Procedural
content generation via reinforcement learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital En-
tertainment, vol. 16, no. 1, 2020, pp. 95-101.

Z. Jiang, S. Earle, M. Green, and J. Togelius, “Learning controllable 3d
level generators,” in Proceedings of the 17th International Conference
on the Foundations of Digital Games, 2022, pp. 1-9.

M. Beukman, B. Ingram, I. Liu, and B. Rosman, “Hierarchical wave-
function collapse,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 19, no. 1, 2023,
pp. 23-33.

R. Van Der Linden, R. Lopes, and R. Bidarra, “Procedural generation
of dungeons,” IEEE Transactions on Computational Intelligence and Al
in Games, vol. 6, no. 1, pp. 78-89, 2013.

D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre, “Level-
based analysis of genetic algorithms and other search processes,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 5, pp. 707-719,
2017.

L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata for
real-time generation of infinite cave levels,” in Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 2010, pp. 1-4.
N. Chomsky, Language and mind. Cambridge University Press, 2006.
D. Adams et al, “Automatic generation of dungeons for computer
games,” Bachelor thesis, University of Sheffield, UK. DOI= http://www.
dcs. shef. ac. uk/intranet/teaching/projects/archive/ug2002/pdf/u9da. pdf,
2002.

M. Gonzilez-Duque, R. B. Palm, S. Hauberg, and S. Risi, “Mario plays
on a manifold: Generating functional content in latent space through
differential geometry,” in 2022 IEEE Conference on Games (CoG).
IEEE, 2022, pp. 385-392.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
Ist ed. MIT Press, 2016, ch. 14, pp. 502-525. [Online]. Available:
http://www.deeplearningbook.org

