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ABSTRACT
We propose an architecture as a robot’s decision-making mecha-
nism to anticipate a human’s state of mind, and so plan accordingly
during a human-robot collaboration task. At the core of the archi-
tecture lies a novel stochastic decision-making mechanism that
implements a partially observable Markov decision process antici-
pating a human’s state of mind in two-stages. In the first stage it
anticipates the human’s task related availability, intent (motivation),
and capability during the collaboration. In the second, it further
reasons about these states to anticipate the human’s true need for
help. Our contribution lies in the ability of our model to handle
these unexpected conditions: 1) when the human’s intention is es-
timated to be irrelevant to the assigned task and may be unknown
to the robot, e.g., motivation is lost, another assignment is received,
onset of tiredness, and 2) when the human’s intention is relevant
but the human doesn’t want the robot’s assistance in the given
context, e.g., because of the human’s changing emotional states or
the human’s task-relevant distrust for the robot. Our results show
that integrating this model into a robot’s decision-making process
increases the efficiency and naturalness of the collaboration.

KEYWORDS
Human-Robot Collaboration; Anticipatory Decision-Making; Intent
Inference

ACM Reference Format:
O. Can Görür, Benjamin Rosman, Fikret Sivrikaya, and Sahin Albayrak. 2018.
Social Cobots: Anticipatory Decision-Making for Collaborative Robots In-
corporating Unexpected Human Behaviors. In HRI ’18: 2018 ACM/IEEE Inter-
national Conference on Human-Robot Interaction, March 5–8, 2018, Chicago,
IL, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3171221.
3171256

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HRI ’18, March 5–8, 2018, Chicago, IL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4953-6/18/03. . . $15.00
https://doi.org/10.1145/3171221.3171256

1 INTRODUCTION
Robots that are capable of physically interacting with humans are
in the process of revolutionizing industry, with these robots envi-
sioned as active companions that are capable of interpreting human
behaviors and adapting to them [16]. For an efficient human-robot
collaboration (HRC), robots should not only consider the environ-
ment and monitor the human partner’s actions, but also process
those actions to anticipate the human’s knowledge, state of mind
and contribution to the collaborative task [10, 11, 17]. The use of
such anticipated knowledge in a robot’s decision-making mecha-
nism is dependent on the adaptation of these collaborative robots
(cobots) to various types of humans, their dynamic behaviors and
needs. Realizing such adaptivity would result in cobots working
more efficiently and seamlessly with their human partners, increas-
ing overall productivity [8, 9, 13, 19, 20].

There is a large body of research focusing on adopting the abil-
ity of humans to interpret and predict others’ mental states into
robotics in order to anticipate human intentions and plans from
observed actions, e.g., [1, 12, 24]. A handful of recent studies have
extended them to explicitly use these human states in adaptive plan
generation and execution, e.g., [6, 13]. These studies are built on the
following requirements of collaboration: the agents have a common
intention, i.e., commitment to a shared goal along with a common
belief about the goal state [5], as well as mutual awareness and
mutual support, i.e., the willingness to accept support [10]. In gen-
eral, the aim of the field has so far been to prove that anticipatory
planning increases efficiency in HRC scenarios, but this assumes
that these basic requirements hold during the collaboration, and as
a result, implicitly makes two common assumptions:

i) All of the actions a human executes are relevant to a goal or
an intention that is known to the cobot [1, 6, 7, 12, 13, 19],

ii) Humans always accept the robot’s assistance when offered
[6, 13, 22].

In reality, a human’s dynamic desires and emotional states could
result in stochastic intentions, behaviors and expectations over the
course of repeated interactions. Therefore, a robot making these
assumptions might misinterpret human actions, which may result
in unreasonable and intrusive robot behaviors, limiting its reliability
and applicability in real-life scenarios. As an example, a robot may
infer that a human needs an object if it detects the human’s gaze
on it. However, the human’s mental state behind this gaze could
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Figure 1: Simulation of an HRC at a conveyor belt for the
task of product inspection and storing.

be any other task-irrelevant intention (in contrast to assumption i).
Moreover, even if the human wants the object, she may not want
the robot to pick it up, for any of several reasons such as a distrust
in the robot and the belief that it could damage the object or a
desire to remain autonomous (in contrast to assumption ii). We
refer to such human behaviors as “unexpected” in the context of
the given assumptions. The premise of this study is, for the first time
to the best of our knowledge, to devise an architecture that aims to
remove these assumptions and model the HRC over the course of
repeated interactions to be able to reason about such “unexpected
cases” that could affect the performance of the collaboration.

For this purpose, we propose an autonomous robotic architec-
ture, at the core of which lies a novel anticipatory HRC planner: a
partially observable Markov decision process (POMDP) with two
stages of human state of mind anticipation. In the first stage, the
planner incorporates the variability of the human’s state of mind
during the collaboration, which in our case is the human’s task
related availability, intent (motivation) and capability. Then, in the
second stage, through these first anticipated states, it tries to esti-
mate if the human needs help and whether the robot should inter-
vene. While doing so, the planner’s goal is to increase the efficiency
and the reliability of the collaboration, ensuring the safety and the
autonomy of the human partner. Our contribution lies in the ability
of our model to effectively handle such unexpected conditions:

(1) When the human’s intention is irrelevant to the assigned
task and may be unknown to the robot, e.g. motivation lost,
another assignment is received, becoming tired.

(2) When the human’s intention is relevant to the task, but the
human does not want the robot’s assistance, e.g. because of
the human’s changing emotional states or the human’s task
relevant distrust for the robot.

Our goal is to demonstrate that anticipating and taking into
account such human variability increases the overall efficiency
(increased success rate over a shorter time) and the naturalness
(less warnings received from the human, hence less intrusive robot
behaviors) of an HRC. In order to exemplify and validate our ap-
proach, we focus on a smart factory environment in this study. We
consider an HRC scenario at a conveyor belt for the task of inspect-
ing and storing various 3D-printed products, as illustrated in Figure
1). We model different types of human workers and let the models

interact autonomously with two different robot planners, one of
which incorporates the conditions (1) and (2) through this two-stage
anticipation (Section 3). Finally, we present our results and analysis
of the effects of our robot model on the overall productivity and
naturalness of collaboration (Section 4).

2 RELATEDWORK
Studies in HRC have generated significant results on low-level
(functional) planning for robots having safe and productive phys-
ical interactions with humans. However, as it has been recently
stated by Lasota et al. [17], alongside safe control and motion plan-
ning, significant importance should still be given to develop more
generalized predictive and anticipatory planning solutions for in-
creased safety and efficiency of the collaboration. Previous work on
reasoning over human mental states has mainly focused on visual
perspective taking and belief management in understanding the
world from the interacting person’s point of view [2, 24]. Utiliza-
tion of this information has been shown to improve human-robot
teamwork significantly, leading to more effective and natural col-
laboration [9, 25]. There is a large body of research focusing on
adopting the concept of human Theory of Mind (ToM) into robotics
[24]. More recent approaches have focused on reverse engineering
ToM, where they show that a human’s intentions and plans can be
inferred by observing the human’s actions [1, 12]. However, these
are mostly limited to the recognition of human states, and are yet
to extend to adaptively making decisions based on these states.

It has recently been stated that there is still a gap between the
estimation of such human mental states and their explicit use in
adaptive high-level (shared task-level) plan generation and execu-
tion in HRC [6]. Several approaches have been proposed targeting
this gap, where a robot estimates its human partner’s belief over the
state of a shared table cleaning task [6], and a robot adapts to a hu-
man’s knowledge level in a cooking task [19] during the execution
of the tasks to adapt to the changing human-robot work division.
Although these approaches inspire our study, they assume that the
belief estimation is a fully observable and deterministic process.
There have been several studies applying stochastic planning ap-
proaches to robot decision-making during social HRI. For example,
a robot car uses a POMDP to decipher the intention of the human
driver and adapts to it in a driving task [3, 4], a robot is guided by a
user while it uses a MOMDP model to anticipate unstable guiding
and take some control in a shared autonomy task [21], and a robot
with an anticipatory motion planner serves a human based on her
desires anticipated from her gaze [13].

Unexpected human actions are partly considered in [15] and [9];
however, the actions are still assumed to be toward fulfilling a task,
possibly in a way that differs from the expected plan. Therefore, all
these reviewed studies still assume the human is committed to a
given goal and focus the collaboration more on the task execution
level rather than the higher-level problems like the two conditions
mentioned in Section 1. In the long-term, humans’ diversity and
various mental states emerge as significant factors that impact hu-
man actions [18]. Particularly in a repeated HRC over some tedious
tasks, it is more likely that the human performs behaviors over
time that are not even related to the task itself but implicitly af-
fects her performance, e.g., due to fatigue [14]. The robots should



Figure 2: Overall framework of our autonomous system

be aware of and adapt to such unexpected behaviors of humans,
which to the best of our knowledge, represents a largely unexplored
area of research. For this purpose, we propose our POMDP mech-
anism, inspired by the aforementioned intent detection POMDPs,
as a complementary solution to the existing motion planners and
as an alternative to the existing high-level decision-makers, that
additionally incorporates unexpected human behaviors.

3 METHODOLOGY
3.1 General Framework
In our general HRC framework, we let both the robot and the human
intervene and assist each other when needed, where the robot’s
ultimate goal is to estimate correctly and non-intrusively when to
intervene and assist the human. To facilitate this, we present an
architecture consisting of three main building blocks, as depicted
in Figure 2: Task Scheduler, Human Simulator, and Robot Simulator.
Each HRC scenario starts by receiving a task of inspecting and
storing 3D-printed products (see Figure 1) assigned initially either
to the human or to the robot. The human takes an action decision,
as elaborated in Section 3.3, which is then actuated within the
simulation environment in our setup. Although robot perception
is not the focus of our contribution, we equip the robot with a
human sensing capability, through recognizing distinct human
gestures, to achieve a more realistic implementation (Section 4.1).
These observations are then fed to our robot planner model to
estimate the human’s belief and take action decisions accordingly,
as explained next.

3.2 Robot Models
For the purpose of clearly showing the advantages of using our an-
ticipatory planning approach, we design two robot models where
one is intended to handle the two conditions stated in Section 1
while the other cannot. We name these the proactive and reactive
models, respectively. Our goal is to examine the additional effects
of the stochastic interpretation of a human’s need for assistance

(condition (ii)) and the anticipation of a human’s changing availabil-
ity, motivation and capability (condition (i)) on the overall efficiency
and naturalness of the HRC.
The reactive robot model is introduced as a base model for the
comparative evaluation of our proactive robot. It is a Markov Deci-
sion Process (MDP), as shown in Figure 3, with a tuple

{
S,A,T ,R,γ

}
:

S comprises the state of the human collaborator’s need for help
from the robot’s perspective, the global success and failure states
that define the result of the task (terminal states), the states of a
new task assigned to the human or to the robot (initial states), and
a state when the robot receives a warning from the human for any
reason; A is the robot actions listed in Figure 3; T is the state tran-
sition probabilities; R is the immediate reward the robot receives;
γ is the discount factor for delayed rewards. Positive rewards are
acquired when the global success state is reached (the task has been
accomplished by some agent). Negative rewards are assigned when
the global fail state is reached, or when warnings are received from
the human to encourage the planning to be less intrusive, i.e., the
robot will not offer help unless it is deemed part of the optimal
policy. We solve the MDPmodel for a robot policy, π , that is optimal
with respect to the robot’s expected total reward.

In the reactive model the states are directly observable to the
robot through the list of observations listed in Figure 3. How these
observations are obtained is given in Section 4. Toward our goal of
examining the effect of handling condition (ii), the state of human
needs help is fully observable in the reactive model, reflecting the
assumption mentioned in Section 1, namely that humans accept
the robot’s help right away. In other words, the MDP treats the
human’s need for help as a directly observable (deterministic) state.
In general, the reactive behavior of the robot is expressed through
the robot directly taking over the task no matter what the human’s
actual internal state is (i.e., ignoring the two conditions). The robot
assumes the human needs help deterministically when (i) a certain
time duration has passed with no success achieved (i.e., leaving
enough time for the robot to realize the task before its time limit
is reached in a continuous process), (ii) the human is not detected
around the work place, or (iii) the human takes a task-related action
but no success is detected (e.g., the human failed to grasp and lift
in our case).
The proactive robot model is a POMDP inspired by available
human-intent based POMDP planners, e.g. [4]. The model is a tuple{
S,A,T ,R,Ω,O,γ

}
. The five elements, S,A,T ,R,γ , have the same

interpretations as in the reactive model, while Ω is the set of ob-
servations as listed in Figure 3 and O represents the conditional
observation probabilities. We also solve the POMDP model for an
optimal robot policy, π . Both the proactive and reactive models
share the same immediate reward assignments and receive the
same observations from the world. As mentioned, we keep their
differences to the level of handling the two unexpected conditions.
These differences are twofold: (1) although they share the same
rules for the detection of a human’s need for help (as visualized
in Figure 3), the proactive model is not deterministically bound
to these rules through its partial observability (as opposed to as-
sumption (ii) in Section 1); (2) the proactive model has more belief
states than the reactive one, as visualized in Figure 3, to be able to
anticipate human’s changing availability, motivation and capability



Figure 3: Reactive and proactive state-action connection models. The observables that are input to both of the systems are
listed. The states added to the proactive model which incorporate the further reasoning (anticipation) layer of the robot are
shown in light green.

contrary to assumption i). For the purpose, in our implementation
wemodel the human states of being distracted, tired and not capable
of fulfilling a task. In the reactive model, such intermediate states of
the human that give unexpected behaviors are encapsulated under
human needs help whereas those are all handled separately in the
proactive case.

In the proactive model, we distribute these states to the two
stages of anticipation. The anticipation stage-1, as shown in Figure
3, is an additional stage in the proactive model consisting of hidden
human states of availability, motivation and capability. We believe
that it is necessary for the robot to be able to account for the
so-called unexpected human behaviors given in condition (1) in
Section 1. Having such a hierarchical anticipation phase also helps
the robot to reason about if the human does not need help, see in
the anticipation stage-2 in Figure 3. We put this condition as another
state which adds uncertainty to the robot’s previous estimation in
the anticipation stage-1. This gives the robot the ability to reason
that it was actually wrong when the observation gathered from the
human changes accordingly. This prevents the direct conclusion of
taking over the human task when it should not, or when changes
occur during the interaction. As a result, it is expected to decrease
the number of warnings the robot receives from the human. For
clarity and brevity of presentation, only the most prominent state
transitions of the proactive model are visualized in Figure 3. For
example, the transitions from anticipation stage-1 to the Global
Success or Global Fail with the Planning action is not shown (i.e.,
the human has already ended the task or it failed). Similarly, we
provide only some examples of the observations emitted from the
proactive model states in the figure. From these examples, we point
out that it is not trivial to estimate the states in the anticipation
stage-1 due to their similar observations emitted.

Such a hierarchical approach also provides some additional ca-
pabilities to the robot’s reasoning that are expected to contribute to
the fluency of the collaboration. For example, as depicted in Figure 3,
the robot has some additional action decisions such as planning and
pointing to remind as a result of the additional states in the proactive
model. In the planning action, which is a necessary step for any
other action to be taken, the robot starts to plan its motion (e.g., for
grasping: find the grasping points and plan for moving the grippers)
right after any state in the anticipation stage-1 is estimated. In the
cases where the human really needs help, this behavior is expected
to save the robot a significant amount of time to execute the action,
in our case grasping. In addition, after estimating that the human
may be distracted, e.g., detected looking around action for a time,
the robot may take the decision of pointing toward the object to
draw the human’s attention to it rather than directly taking it. The
human states we include in our proactive model are intended to
reflect on the general possible human states in a work environment.
As shown in Figure 3, such human states and so robot capabilities
can be extended by adding more states to the anticipation stage-1
and some relevant robot decisions to the stage-2.

Some general remarks that apply to the robot models are pro-
vided below.

i) The models are designed generically to comply with various
HRC scenarios. For better clarification we use grasp as the
action to achieve our specific task but in general any action
that a task requires can replace it, making themodel adaptable
to different use-cases.

ii) Both models start with the task assignment states. If the task
is assigned to the human, the robot first remains idle and
observes the human (see idle action in Figure 3).



Figure 4: Human model: human state-action transitions

iii) Since our focus remains on the human states of mind that
have a direct impact on the progress of the task, we do not
consider the internal states of the robot (e.g., its battery level).
We assume that the robot action of grasping always leads to
global success, global failure or warnings from the human.

iv) The exact reason for a warning is hidden to the robot but it
may be due to the human’s task related distrust to the robot,
the desire to remain autonomous, an incorrect estimation of
the robot about the human’s need for help, the robot realizing
the task incorrectly, etc.

v) After a warning is received, the robot cancels its action for
the safety and autonomy of the human.

3.3 Human Models
As a proof of concept, we devise experiments where we control
the degree to which the human displays these unexpected random
behaviors. Evaluating these behaviors with the corresponding robot
responses would be difficult with real human subjects in experi-
ments (in an uncontrolled environment) as they depend on the
personality of the human and are likely to be observed over the
course of longer interactions in the workplace [14]. In simulation,
through modeled humans, we scale the experiments to emulate
many different combinations of such behaviors to rigorously test
our robot model’s capability to estimate, avoid and respond to such
cases (e.g., a human stubbornly rejecting the robot’s help, getting
tired fast, being distracted easily). We are agnostic to the exact
implementation of the human models (i.e., the states, actions, tran-
sitions) while our goal remains creating use-cases where a human
worker follows the aforementioned two conditions and occasionally
performs unexpected behaviors.

For our purposes, the representative proof of concept example
model is implemented using an MDP as shown in Figure 4. We note
again that only the transitions with non-negligible probabilities are

shown in the figure for the clarity of presentation. The MDP is a
tuple

{
S,A,T ,R,γ

}
where S is the human states of mind, A is the

human actions, and T is the state transition probabilities and R is
the immediate rewards received based on the result of the task and
the type of the human to encourage that type of behavior, e.g. a dis-
tracted person receives positive rewards in the global success and no
attention states. Through changing T and R and solving for various
policies, π , the model induces random but goal-oriented dynamics
for the human collaborator and is used to automate the testing of
our robot reasoning under various hard-to-predict conditions.

While this is not necessarily an accurate human model, the
states (e.g., no attention, tired) are inspired by the available studies
analyzing human workers operating on repeated tedious tasks, e.g.
[14]. During the operation the human first selects an action. Then,
a state transition occurs randomly (if the task does not succeed
or fail), reflecting normal and unexpected human states of mind.
In normal behavior the human first evaluates the task, grasps the
product, and inspects and places it into the adjacent container (see
Figure 5a). The rest of the state transitions reflect the unexpected
behaviors through the given examples in Section 1. In the cases
when the robot incorrectly estimates the human’s need for help
(detailed in Section 4.1), the human may transit to the warn the
robot state, which may resemble the trust in the robot of the human
in a given task. The warning state is followed by a human action of
gesturing to stop the robot action (see in Figure 5d).

Keeping the same scheme given in Figure 4, different state tran-
sition probabilities and rewards lead to different human types. We
use four of them, referred to as i) normal, ii) stubborn, iii) distracted
and iv) tired. Referring to the states shown in Figure 4, the type-i
model is most likely to succeed after a short period of evaluation
of the task. The type-ii is more likely to fail the task, in our case
the human fails to grasp, e.g., it is too heavy to lift for that person.
In this case, the robot should intervene to assist before a global fail
occurs. However, the human may want to try once again, iterating
between evaluating and failing phases. The type-iii human mostly
looks around resembling lost attention, or stalls more in the eval-
uating phase. Finally, type-iv is observed also through stalling in
the evaluating phase and most likely ending up being exhausted,
which then forces the human to leave the workspace for a recovery.
The similarities in different types are expected to result in making
anticipation difficult for the robot since, for example, staying idle
or looking around could indicate the human states of evaluating,
no attention or exhausted.

4 EVALUATION
4.1 Experiments
We implement the proposed architecture in the Robot Operating
System (ROS) and simulate our smart factory scenario with a con-
veyor belt by using the MORSE environment, utilizing the available
human and PR2 robot models. All scenarios consist of several se-
quential task assignments for the purpose of simulating long-term
collaboration. Each task of product inspection and storing starts
with an initial assignment to either the robot or the human based
on the product’s weight and fragility. We consider only the cases
where the task is assigned to the human, in order to keep our focus
on anticipating the human’s states and need for assistance. If the



Figure 5: Our HRC scenario. (a) Idle human and robot, with
containers shown; (b) Human grasps the product; (c) Human
goes to the rest room (walks away); (d) Robot takes over the
task and human gestures to stop the robot (warns the robot).

product is eventually inspected either by the human or by the ro-
bot, it is placed into one of the inspected-product containers (green
containers in Figure 5) resulting in the Global Success state of all
Markov models. Since the collaboration is a continuous process, we
set a maximum allowed processing time for each product inspec-
tion, tmax . The conveyor belt waits when a package is between the
human-robot team for tmax or for the package to be successfully
processed, before starting a new task. If the product is not processed
before tmax , it falls into the uninspected-product container (red
container in Figure 5a) interpreted as a Global Fail.

At this phase of the study both the reactive and proactive robot
models are hand-coded addressing the points discussed. In order
not to bias the robot models, they are trained agnostic to the state
transitions inherent in the human models, i.e., no data generated
by the human models is used in training the robot models. During
the experiments, we measure the state estimation accuracy using
the human models as the ground truth. Our goal at this stage is to
match the ground truth and do the tests against rather unexpectedly
acting human models unknown to the robots.

The observations the robot receives are the 3D human body joints
that are always available directly from the simulated human model
and the proximity sensors placed inside the containers to monitor
the task status as succeeded, failed or ongoing (listed in Figure
3). A state-of-the-art human activity recognition (HAR) module,
inspired by existing studies, e.g., [23], has been implemented to
recognize the constrained and distinct simulated human gestures
from the body joints available. These are: the human is looking
around (from the body pose), attempting to grasp (see in Figure
5b), warning the robot (a special stop gesture shown in Figure
5d), idle (inactive) and walking away (see Figure 5c). The robot
then uses these observations in both of the reactive and proactive

models to estimate the next state (the human belief). We note that
as our focus is in showing the effect of handling such unexpected
human behaviors on the collaboration performance, we use the
same observation conditions for both models and our insights from
the performance comparisons are agnostic to the HAR component
that is used.

In each scenario consisting of several tasks, a human is first
created as the normal type (referring to the human types intro-
duced in Section 3.3), while the other types (i.e., the policies of
the stubborn, distracted and tired MDP models) are then executed
on the human during the scenario randomly, but becoming more
likely as more tasks are assigned. By doing so, in each scenario
the robot models interact with a human with changing levels of
stubbornness, tiredness, and distraction. This induces more occur-
rences of the aforementioned unexpected human behaviors over
the course of the collaboration as the number of task repetitions
increase. Additionally, the human may warn the robot when the
robot estimates the human’s need for help incorrectly. It would be
correct in the case when the human is tired. In a distracted case the
human approves the help proportional to the time of the distraction.
Moreover, when the human tries and fails to lift the object, it is
more likely to approve the robot’s taking over the task unless the
human is still trying to grasp. These cases are hard coded and the
next state observations are input to the human MDP model execu-
tor by the system. The decision of a next state is random if there
is no update of the task status or an action from the robot. This
allows us to observe various scenarios of the humans randomly
transitioning between the states.

To evaluate how our proactive model covering such human
conditions contributes to the naturalness and the efficiency of the
collaboration, we gather the objective measures below during our
experiments:

• Human state distributions: To show on average which
states the human models have selected (based on the state
transitions given in Figure 4) and how the state transitions
change over time.

• Estimation accuracy: To compare how accurately both
models estimate the human’s true need for help, and to show
how our proactive robot model performs in estimating hu-
man belief states in general (taking the interacted human
models as the ground-truth).

• Success rate: The comparison of the success rates of a task
with a human alone, a human and a reactive robot collabo-
rating, and a human and a proactive robot collaborating.

• Rewards gathered: To show the change of overall rewards
gathered over time, and to compare how many warnings the
robot receives from the human (also in line with the wrong
estimations of the need for help) in reactive and proactive
mode. This hints at the naturalness of the collaboration.

• Time tofinish the task:To compare the average time taken
to complete a task with the reactive and the proactive models.

We use an updated version of the DESPOT online POMDP plan-
ner [26] to solve for both the POMDP and the MDP models, and
execute them in real-time while interfacing the ROS environment
through the Planner components as demonstrated in Figure 2.



Figure 6: 2D scatter data of the states of the human models
over the course of the tasks assigned (referring to Figure 4).
A nonlinear curve fit over the data shows the overall trend
of the average time spent in these states.

4.2 Results
We run 5 different scenarios for each of the reactive and proactive ro-
botmodels. Each scenario consists of 40 sequential task assignments.
As mentioned, the humans exhibit the two unexpected conditions
listed in Section 1 randomly but with increasing likelihood over
repeated task assignments. This is also shown in Figure 6, which
plots the average time a human spent in the given states over the
simulation steps (i.e., task assignments). In particular, concerning
condition (1), as more tasks are assigned the humans stall more in
the thinking phase (depicted as evaluating), are more distracted
(depicted as no attention), are more likely to fail to grasp, become
tired, or lose motivation. Such states are all summed and depicted
as the sum of all unexpected behaviors in Figure 6. Concerning con-
dition (2), as more unexpected behaviors are performed the robot
is increasingly convinced of the human’s need for help and takes
over the tasks. This leads to more warnings from the human in the
case of wrong estimates (depicted as warning the robot in Figure 6).

Table 1 shows the results obtained from the experiments with the
reactive and proactive robot models whereas Figure 7 demonstrates
the change in the measured values over the simulation time. As is
demonstrated in the figure, in the first 10 tasks there is no significant
difference between the two robot models. The tasks are mostly
succeeded by the humans conveying normal behaviors regardless
of the robot models (see Figure 7b); therefore, the robots in these
tasks constantly receive the maximum rewards (Figure 7a) and the
tasks are completed efficiently (Figure 7d). However, as more tasks
are assigned, the average success rate falls and the differences in
the performance of the two models are enhanced. This is directly
in line with the increased likelihood of observing the unexpected
human behaviors over the simulation time. Before beginning the
comparison of the twomodels, we show in Figure 7b that the success
rate of such a human model alone is worse in the long-term than a
collaboration with any of the robot models. Thereby we underscore
the importance of such cobots collaborating with humans in tedious
tasks.

The negative rewards are acquired from the task failures and the
warnings received from the human, the former having more impact
than the latter. The positive rewards are received only when the

Figure 7: Comparison of the proactive and reactive robot
models over the task assignments: cumulative (a) rewards ac-
quired; (b)moving average of the success rates; (c) number of
warnings received; (d) moving average of the task durations
in seconds; (e) moving average of human belief estimation
accuracy of the proactive model. Each result obtained from
proactive and reactive robots are averaged over 5 trials.

task succeeds. Therefore, the change in the accumulated rewards is
directly in line with the changes in the success rate and the number
of warnings received (Figure 7b and 7c, respectively). After the 30th
task in Figure 7b, the average success rate keeps decreasing in the
reactive case whereas it stabilizes in the proactive model to a rate
of around 87% (see Table 1). Additionally, in the reactive case the
robot continues to receive warnings during the collaboration while
in the proactive model this amount is kept low. These two together
contribute to a gradual decline in the increase of the accumulated
reward in the reactive case (see Figure7a). On the other hand, as
shown in the same graph, the accumulated reward for the proactive
case is affected much less by the changing human conditions.

The proactive model copes well with the unexpected human be-
haviors mainly due to the model’s significantly better performance
in estimating the human’s true need for help, as indicated by the
anticipation stage-2 estimation accuracies in Table1. Recall that
the robot’s anticipation of the human beliefs is divided into two
stages, where stage-1 involves reasoning about conditions such



Table 1: Proactive Robot vs. Reactive Robot Final Results

Type Reactive Proactive
Rewards (Avg.) 2.10 4.37
Number ofWarnings
per Scenario (Avg.)

13.8 1.6

Anticipation Stage-1
Estimation Accuracy

Not Applicable 79.26%

Anticipation Stage-2
Estimation Accuracy

44.69% 71.37%

Success Rate 0.73 0.87
Task Duration 24.77secs 21.40secs

as the human being tired, distracted or incapable, and stage-2 is
to further estimate the human’s need for help possibly as a result
of the stage-1 anticipation. In the reactive model the robot takes
over the task through the given deterministic conditions without
anticipating the stage-1 conditions (see Section 3.2). Therefore, it
is often either too late to judge the human’s need for help or the
robot’s interference ends up with the human warning the robot,
which results in the poor stage-2 estimation accuracy of the reactive
model (44.69%). As mentioned in Section 4.1, if the robot intervenes
when the human is still trying to grasp, is only distracted for a short
time, or is still evaluating, then the human stochastically rejects
the robot’s offer for help in line with condition (2). Since these con-
ditions are anticipated by the proactive model in the first phase, the
proactive robot stochastically ends up estimating that the human
may not yet need help or that the human needs to be reminded
when she is distracted, rather than directly taking over the task
based on the continuous observations received.

The average estimation accuracy of the proactive robot in the
anticipation stage-1 is about 79.26%, which has a direct influence
on the stage-2 estimation that is about 71.37%. Although we use a
simulation environment and the human has a finite set of states
and actions, we observe that it is still nontrivial for the robot to
estimate the states given under stage-1. As we demonstrate in
Figure 7e, the average human belief estimation accuracy of the
proactive model decreases over the task steps, being subjected to
the higher frequency of unexpected human behaviors. The model
often confuses the states of human may be distracted with human
may be tired, as expected, which is due to these two conditions
causing similar human actions, i.e., looking around and staying
idle longer. Such wrong estimations lead to task failures since, for
example, the robot points out the object to remind rather than
offering help when the human is really tired.

We also measure the average task durations in both models
(whether it succeeded or failed). As shown in Table 1 the proactive
model improves the time a task takes over the reactive case by about
14%, i.e., 3.37 seconds. This can be thought of a significant change
especially in an industry with mass production. The improvement is
again driven by the hierarchical anticipation in the proactive robots.
First of all, a successful estimation of a state in the anticipation
stage-1 allows the proactive robot to estimate the human’s need
for help faster, whereas in the reactive case this needs to wait until
observing the human failing to grasp and giving up. Secondly, the
robot starts the planning in the stage-1 (see Figure 3) while it still

observes for stage-2, the estimation of which then leads to a direct
execution of the grasp. In the reactive case, however, even though
the robot’s taking over the task is approved by the human, the robot
still needs to plan for its grasping motion execution.

Finally, our basic HAR system works with approximately 10%
noise, which emerges from the misclassification of human actions,
especially for warning the robot and grasping gestures producing
similar observations (see Figure 5). To understand the effect of
this noise on the human belief estimation accuracy, we also tested
providing the actual human actions as direct inputs to the robot,
thereby taking HAR out of the loop. In this case the estimation
accuracy of the proactive model increased, as expected, to around
85%. For an actual deployment in a noisy real-life environment,
where the observations of the hidden human states are not limited to
a small set of human actions as in our simulation, belief estimation
accuracies are likely to be lower, mainly due to lower accuracies in
the HAR system.

In conclusion, we show that the common human conditions of
(1) intention being irrelevant to the assigned task (e.g., due to mo-
tivation loss or tiredness), and (2) disapproval of the robot’s help
(e.g., no trust in the task, not needing/desiring the robot’s help)
lead to a drastic decrease in the overall success rate of the collabo-
rative tasks. Since these conditions are expected in long-term HRC
scenarios, we show in simulation that cobots that can anticipate
and handle these conditions yield more efficient (i.e., increased suc-
cess rate, lower task duration) and more natural (i.e., less intrusive)
collaboration when the collaborating human demonstrates these
behaviors. We show the feasibility and effectiveness of this concept
through our two-stage anticipatory decision-maker, hierarchically
and stochastically reasoning about such human behaviors.

5 CONCLUSION
This study examines the effects of a robot’s anticipation and re-
sponse to the unexpected human behaviors that could be observed
in a long-term collaboration. In this study, as a proof of concept of
our novel anticipatory modeling scheme, we use simulated human
models in our experiments, which provide a more robust setup to
test such various unexpected conditions rather than expecting real
human feedback in the long-term. We are aware of the possible
biases in the experiments which could be introduced by the sim-
ulated humans due to their limited reflections (limited actions) of
the hidden human states and the fact that they are hand-coded.
We stress that these are not necessarily accurate models; however,
the abstracted states in our design are expected to be observed
in a real human. Our model has generated promising results, en-
couraging us to move towards validating these results with real
human experiments through a similar model design but training
with real human data. This will also provide us with the chance to
consider real humans’ trust building in the robot over the course of
the collaboration, which in our current setup we assume random,
thereby creating a more difficult experimental case.
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