
Toward Integrating Theory of Mind into Adaptive Decision-
Making of Social Robots to Understand Human Intention 

 Abstract — We propose an architecture that integrates 
Theory of Mind into a robot’s decision-making to infer a human’s 
intention and adapt to it. The architecture implements human-
robot collaborative decision-making for a robot incorporating 
human variability in their emotional and intentional states. This 
research first implements a mechanism for stochastically 
estimating a human’s belief over the state of the actions that the 
human could possibly be executing. Then, we integrate this 
information into a novel stochastic human-robot shared planner 
that models the human’s preferred plan. Our contribution lies in 
the ability of our model to handle the conditions: 1) when the 
human’s intention is estimated incorrectly and the true intention 
may be unknown to the robot, and 2) when the human’s intention 
is estimated correctly but the human doesn’t want the robot’s 
assistance in the given context. A robot integrating this model 
into its decision-making process would better understand a 
human’s need for assistance and therefore adapt to behave less 
intrusively and more reasonably in assisting its human 
companion. 

I. INTRODUCTION 
Social robots should understand personal needs and 

preferences of individuals, and adaptively and non-intrusively 
assist in order to meet those needs and support the longevity of 
their usage [1]. However, studies have shown that robots have 
deficient capacity to adapt to humans’ changing affective and 
motivational states (to empathize), which results in a failure to 
keep users engaged over repeated and long-term interactions 
[2]. For the purpose of reasoning over humans’ mental states, 
a Theory of Mind (ToM) approach, being the ability to attribute 
mental states such as intentions, beliefs and desires to others 
and take them into account, have received significant attention 
[3]. Previous work on ToM in robotics has mainly focused on 
visual perspective taking and belief management in 
understanding the world from the interacting person’s point of 
view [3], [4]. Utilization of this information has been shown to 
improve human-robot teamwork significantly, leading to more 
effective and natural collaboration [5], [6].   

In human-robot collaboration tasks with a shared goal, it is 
crucial to infer the human’s plan in order for the robot to 
quickly adapt to observed behaviors. For this purpose, more 
recent approaches have focused on reverse engineering human 
ToM, where they show that a human’s intents and plans can be 
inferred by observing the human’s actions [7], [8]. However, 
they are mostly limited to the recognition of human states, and 
are yet to extend to adaptively making decisions based on these 
states. It has recently been stated that there is still a gap 
between the estimation of human mental states, e.g., intentions, 
beliefs, plans etc., and their explicit use in shared plan 
execution in human robot collaboration [9]. A new approach 

has been proposed targeting this gap [9], where the robot 
estimates its human partner’s belief on the state of joint actions 
of a shared plan during the execution, so as to decipher and 
adapt to the changing human-robot work division. Although 
this approach inspires our study, it assumes that the human is 
committed to the given goal and the belief estimation is a fully 
observable and deterministic process. In general, most of the 
available approaches on the modeling of a human plan make 
two common assumptions:  

i) All of the actions a human executes are relevant to a 
goal or an intention that is known to the experimenter 
(or the robot) [7]–[11],  

ii) Humans always accept a robot’s assistance when 
offered [9], [12].  

In reality, a human’s various desires along with their 
dynamic emotional states could result in stochastic intentions, 
behaviors and expectations over the course of repeated 
interactions. Therefore, a robot making these assumptions 
could misinterpret human actions, which may result in 
unreasonable and intrusive robot behaviors. As an example, a 
robot may infer that a human needs an object and offer 
assistance if it catches the human’s gaze on that object. 
However, in reality the human’s mental state behind this gaze 
could be, in contrast to assumption i, any intention related to 
the object other than taking it, or could even be irrelevant to 
that object. Moreover, even if the human wants the object, they 
may not want the robot to pick it up, for any of several reasons 
such as a distrust for the robot and belief that it could damage 
the object (in contrast to assumption ii). The premise of this 
study is, for the first time to the best of our knowledge, to 
devise an architecture that is able to reason about these cases.  

Our study aims to target this gap in the literature by 
removing the given assumptions i and ii in modeling a human’s 
plan over the course of repeated human-robot collaboration. 
We incorporate human variability in their emotional and 
intentional states into estimating a human’s belief on the state 
of their own actions and plans towards shared goals. The 
contribution of this model is the ability to handle the following 
two conditions:  

1) When the human’s intention is estimated incorrectly 
and the true intention may be unknown to the robot’s 
knowledge base, and  

2) When the human’s intention is estimated correctly but 
the human doesn’t want the robot’s assistance in the  
current context, i.e., changing emotional states or the 
human’s task relevant distrust for the robot.  
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  In developing our model, this research first describes a 
mechanism for stochastically estimating a human belief over 
the state of all actions that the human could possibly be 
executing (targeting condition 1) while also incorporating 
human emotional states into the process as reactions to 
evaluate these estimates (targeting condition 2). We then 
integrate this information into a novel stochastic human-robot 
shared planner that models the human’s preferred plan. In this 
short paper, we make the limiting assumption that all 
observations  are discrete, and directly available to the system 
(through a sensing component) in order to focus on the 
modeling of human mental states and their effects on actions 
and plans. Finally, this model is integrated into a simulated 
robot’s decision-making process to show its value in the 
robot’s understanding of a human’s true need for assistance 
more accurately, and in so doing adapt to behave less 
intrusively and more reasonably in assisting its human 
companion. 

II. METHODOLOGY 
We propose an architecture, shown in Fig.1, consisting of 

three main building blocks, which are Sensing, Action State 
Estimation (ASE) and the Human-Robot Shared Planner 
(HRSP). The architecture takes raw sensory data and generates 
stochastic policies as human-robot shared decisions from the 
robot’s point of view. Although the focus of this work is on the 
ASE and HRSP components, which together form the core of 
our ToM approach, the Sensing component is also shown under 
Fig.1 as it provides the input which drives the remainder of the 
architecture. Our core intuition in this architecture is that 
estimating the intention of the human based solely on a single 
snapshot of activity, that is, taking the human’s positional and 
visual perspective, is insufficient to handle the two conditions 
described in Section I. Loosely inspired by Devin and Alami 
[9], we hypothesize that one must track the human activity and 
estimate a belief over the state of the actions the human could 
possibly be doing. These action states considered in our study 
are: “ready”, “not ready”, “in progress”, “help needed”, 
“aborted”, “done”. In addition, we introduce the novel 
approach of integrating human emotional states into the 
process, in the form of the reactions of the human to the robot’s 

judgements on each action. By doing so, as the human action 
progresses and interacts with the robot over the course of a 
nondeterministic plan, the robot is able to reason about hidden 
human mental states with more confidence.  

The architecture, through the ASE component, first 
estimates the states of possible actions the human could be 
executing (modeled as a belief distribution in the HRSP) using 
the observations from the world. Then, in the HRSP, these are 
used to further reason about the human’s dynamic plans by 
estimating which action the human actually needs help with, or 
which action the human is capable of executing towards 
achieving their intentions. Starting with the ASE component, 
we first construct an observation vector for each action to 
estimate its state. As shown in Fig.1, this is done in parallel to 
track each possible action the human could be executing. By 
doing so, we preserve dynamic and stochastic nature of human 
intentions behind these observed actions as well as the 
uncertainties available in the observations, which are modelled 
in the HRSP. As an example of the observation uncertainties, 
a computer vision system may unable to determine if a human 
gaze is on the glasses or on the TV remote (defining two 
different actions in our system) when they lie very close to each 
other.  
Table 1 The observation vector for action state estimation 

Feature # Descriptions Values 
1 If preconditions are met {0: No,1; Yes} 
2 Emotional state of the person as 

reactions to the robot 

{0: Neutral, 
-1:Disapproval, 
1: Approval} 

3 If currently recognized action 
type is relevant 

{0: Inactive, 
-1:Irrelevant, 
1:Relevant} 

4 If action effects are observed {0:No, 1:Yes} 
 

The observation vectors, as detailed in Table 1, are 
obtained from the inputs in the Sensing component, and are 
described by the World States which provide the physical 
world state from the human’s perspective. The World State 
values are semantically compared with each of the actions’ 
(i.e., the actions that are known to the robot) relevant 

Fig. 1.  System architecture of human-robot shared planning 



descriptions to construct the action specific observation 
vectors. As an example, the construction of an observation 
vector of ac2, an action that defines the human taking an 
object, is given in Fig.1. The observation features #1 and #4 
correspond to the basic semantic descriptors of an action, 
which check if preconditions of the action are met and the 
effects of the action are observed, respectively. The feature #3, 
on the other hand, compares the detected body states of the 
human (see the World States in Fig.1) with the physical activity 
type an action requires during its process. For example, if the 
momentary body state of a human is detected as “gazing at a 
TV remote”, the feature #3 of the action “human taking the 
glasses” will be “irrelevant”. As an example, given the possible 
action states, which are also demonstrated in Action State 
Estimator in Fig.1, a robot might estimate that an action is “in 
progress” if feature #1 is “yes” and feature #3 is “relevant”.  

Since our ultimate goal is to estimate in which actions a 
human needs help or does not want a robot’s help, feature #2 
is incorporated so as to evaluate the robot’s inference about the 
human’s desire for help with an action. This evaluation is 
realized from the emotional reactions of the person to the 
robot’s behavior. This feature mainly contributes to the 
reasoning of the robot on the two conditions mentioned, i.e., 
when the intention is estimated incorrectly, or when the 
estimation is correct but the human doesn’t want help. The 
robot always assumes feature #2 is “neutral” before interacting 
with the human. Then, following a possible estimation of an 
action’s state as “help needed” (as shown under Action State 
Estimator in Fig.1), the robot would offer its assistance on that 
action, as a policy generated from the HRSP, and receives 
feedback from the human. If the human says “no” it is reflected 
in feature #2 as a “disapproval”, which may lead to the action 
state changing to “aborted” (modeled as “human intention is 
something different” under the HRSP, targeting condition 1) or 
“in progress” (modeled as “human wants to do it on his/her 
own” under the HRSP, targeting condition 2). It is worth noting 
that the estimation of “help needed” for an action does not 
necessarily result in the robot offering its assistance. As stated, 
the HRSP has a belief distribution on the possible human 
actions and it plans for being non-intrusive, i.e., negative 
rewards are acquired from the human disapprovals, therefore 
the robot needs to be highly certain on the human’s need for 
help before offering its assistance. 

We devise a Hidden Markov Model (HMM), shown as 
Action State Estimator in Fig.1, for the action state estimation 
mainly because it is a stochastic state transition model. An 
HMM is suitable for this purpose since the action states 
correspond to the hidden intentions of the human, such that the 
robot can only observe them indirectly. Moreover, the states 
possess the Markov property (i.e., the future is independent of 
the past given the present) and we do not predict the future 
states of the action. The possible states of an action in our 
model are: {ready, not ready, in progress, help needed, aborted, 
done}. We use “aborted” instead of “failed” as it contains the 
information of either a possible failure or a wrong estimation 
of the robot from the beginning, i.e., the human was not 
executing that action at all. Simply put, “aborted” tells us that 
the human does not want to realize this action.  

An example of action state estimation from an observation 
sequence that has vectors structured as given in Table 1 is 

shown in Table 2, where the first bit of each observation is 
feature #1. We note that the observation sequence and the 
corresponding states given in the table is generated by the early 
implementation of our Action State Estimator (HMM). In this 
example, in time step 1 an action is estimated as “not ready” as 
the preconditions are not met from the human’s perspective. 
However, the observation in time step 2 states that the robot 
saw a relevant action, which leads to the inference of the action 
as “in progress”. Given that the preconditions are still not met 
in time step 3 and 4, the state is estimated as “help needed”, 
where the robot offers its assistance for this action. Following 
this offer, the emotional state of the human, which was neutral 
in step 4, has changed to “disapproval” in the observations 
received in time step 5. This leads to the estimation of the state 
as “aborted”, since the observation vector shows the human is 
not doing something relevant to the action and has already 
rejected the robot’s help. Finally, the robot reasons that this 
was not the action human was intending to do. Using the 
model, we generated 100 different observation sequences, such 
as the one given in Table 2, each having 100 sequences and 
used them as ground truth data throughout the tests. Playing 
these back, we then obtained 94% accuracy in estimating the 
state with the HMM. Although a synthetic experiment, this 
shows that our initial implementation of Action State Estimator 
is consistent. 
Table 2 An observation sequence and estimated states for an action.  
Time Step 1 2 3 4 5 
Sequence 0,0,-1,0 0,0,1,0 0,0,1,0 0,0,1,0 0,-1,0,0 
States not_ready in_progress in_progress help_needed aborted 

 

ASE estimates the state of each action in the human’s mind 
separately, yet does not take into account their correlations for 
an overall intention. This is done by our adaptive human-robot 
shared planner (HRSP). The states of actions are all estimated 
in parallel and this information is then integrated into the 
HRSP, as shown in Fig.1. Our novel approach explicitly 
incorporates these estimated human action states, which also 
involve emotional states as reactions, into the human-robot 
shared planner. The planner estimates a human’s belief on the 
state of their plan and stochastically determines the optimal 
policy for the robot through accomplishing the human goals in 
the human’s preferred manner. This policy generation is 
through the understanding of a human’s true intention and the 
need for assistance. Both of these factors are assumed in our 
experiments to be dynamic and randomly changing. Therefore, 
the planner must additionally be able to model the irrelevant 
human intentions that are unknown to the model (targeting the 
condition 1) and the human’s potential unwillingness to take 
assistance from the robot (targeting condition 2). For these 
purposes, we propose using a stochastic planner for the HRSP, 
in particular a Partially Observable Markov Decision Process 
(POMDP), inspired by Baker and Tenenbaum [7]. This has 
states as the human’s beliefs on a plan through a goal, e.g., 
“needs help in finding the object”, “knows where the object 
is”, etc. The actions of the POMDP model are the human and 
the robot actions and the rewards are introduced in the form of 
human emotional reactions to the robot (i.e., approval or 
disapproval). Finally, as a contribution, the POMDP model 
takes the estimated states of all actions as observations in order 
to calculate a belief distribution on the state of the plan a human 
may be realizing (see Fig.1).  



An example implementation of this model is included in 
Fig.1, which shows a model of a human’s desire for an object 
and the process of acquiring it. As shown in the figure, 
although the states defined refer to a human’s mental states 
regarding the object, the states that are labeled “doesn’t know 
where and doesn’t have the object” and “knows where and 
doesn’t have the object” could also model the human’s 
intention for which that object may be irrelevant. In other 
words, as long as the robot estimates these two states and 
observes that the human is realizing some action irrelevant to 
the targeted object (e.g. gazing at another object), the robot 
may reason that the human’s intention is not relevant to the 
object and unknown to this specific model (targeting condition 
1). To better describe the role of the action states in the HRSP, 
in Fig.1 we give some example action states from the ASE to 
the HRSP compoment. In the example, the state of action ac2, 
which defines the human taking the object, is given as “in 
progress” whereas ac1, which defines the human looking for 
the object, is given as “done”. Given these observations, the 
belief state of the human in the example model in Fig.1 will 
more likely be estimated as the state “knows where and doesn’t 
have the object”. This means the human knows where the 
object, but is still trying to acquire it. Afterwards, if the state 
for ac2 is estimated as “done”, the belief state will make a 
transition to the state of “has the object” in the model.  

Some example policies that are expected from the HRSP 
are: 1) If the human intention is unknown or known but the 
human rejected the offer for help, the robot stays and expects 
the human to act; 2) If the human intention is known and the 
human needs help, the robot acts. Positive rewards for the 
POMDP model are acquired through receiving positive human 
reactions (i.e., approvals) to the robot’s correct offers for help 
and when the human reaches his goal. Additionally, we 
introduce negative rewards for the negative reactions to 
encourage the planning to be less intrusive, i.e., the robot will 
not offer help unless it is deemed part of the optimal policy. 
Therefore, the POMDP solver takes human reactions as 
rewards and allows the robot to learn on which action the 
human usually approved the robot’s assistance so as to in the 
future act to assist the human in a personalized manner. 

III. CONCLUSION 
We propose an architecture, given in Fig.1, that models the 

human-robot shared plan as estimated from the perspective of 
the human, which incorporates the human’s variability in their 
intentional (condition 1) and emotional states (condition 2). 
Currently, we make the assumption that the Sensing 
component is available to the system (and provides pre-defined 
predicates), so as to particularly focus on our proposed HRSP 
component through modeling a human’s intention for taking 
an object and its integration to our ASE component. Our first 
goal is to examine our initial claim, that the estimation of the 
human’s belief over their action states should be treated as 
observations in modeling human plans instead of using only 
the human’s visual, positional and postural perspective-taking 
in order to handle the specified two conditions. For these 
purposes, we will develop the HRSP model only using 
human’s positional and visual perspective-taking as 
observations (connecting the World States block to the HRSP 
directly, omitting the ASE), and only using the action states as 
observations (the complete architecture in Fig.1) and compare 

their accuracy in estimating the two conditions. In future work, 
the proposed model will be tested on real human data.  
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