
Real-time Motion Planning in Changing Environments Using
Topology-based Encoding of Past Knowledge

Richard Fisher1, Benjamin Rosman1,2 and Vladimir Ivan3

Abstract— Trajectory planning and replanning in complex
environments often reuses very little information from the pre-
vious solutions. This is particularly evident when the motion is
repeated multiple times with only a limited amount of variation
between each run. To address this issue, we propose the DRM-
connect algorithm, a combination of dynamic reachability maps
(DRM) with lazy collision checking and a fallback strategy
based on the RRT-connect algorithm which is used to repair
the roadmap through further exploration. This fallback allows
us to use much sparser roadmaps. Furthermore, we investigate
using an approximate Reeb graph to capture the topology-
persistent features of the past solutions of the problem utilising
this sparsity. We evaluate DRM-connect with a Reeb graph on
reaching tasks, and we compare it to state-of-the-art methods.
We show that the proposed method outperforms both RRT-
connect and BKPIECE algorithms in the number of collision
checks required and we show that our method has the potential
to scale to systems with higher number degrees of freedom.

I. INTRODUCTION

Dexterous and mobile robots are widely used for perform-
ing repetitive tasks, such as mapping, inspection, cleaning
and pick-and-place. While the environment, or any number
of the parameters of the task, may vary between executions,
the repetitive nature of these problems suggests that at
some (possibly abstract) level, all instances of the problems
share a common structure. In this case, we could repeat the
task during an offline training process, store the obtained
knowledge and then reuse it online, when the robot computes
a new motion. There are three key aspects of this problem
that we will address: 1) how to represent and efficiently store
the prior knowledge so that it generalises across the task
domain, 2) how to efficiently retrieve and use this knowledge
online, and 3) how to recover and adapt the solution when the
prior knowledge conflicts with the state of the environment at
runtime. We focus particularly on the problem of knowledge
representation and its efficient usage online (problems 1 and
2).

When the task structure is known, we can train models
to represent the prior knowledge. For this, some form of a
metric is required. However, if we don’t have a candidate
metric, modelling becomes difficult. Instead, we propose

*This work was supported by EU H2020 project Memory of Motion
(MEMMO, project ID: 780684) and by UKIERI project Learning Robotic
Motor Skills, Visual Control and Perception for Warehouse Automation
(UKIERI-DST 2016-17-0152).

1 School of Computer Science and Applied Mathemat-
ics, University of the Witwatersrand, Johannesburg, SA
richard.fisher@students.wits.ac.za

2 Mobile Intelligent Autonomous Systems, Council for Scientific and
Industrial Research, Pretoria, SA brosman@csir.co.za

3 School of Informatics, University of Edinburgh, Edinburgh, UK
v.ivan@ed.ac.uk

Fig. 1: Visualisation of example trajectory stored using
the Reeb graph, executed on a 7DOF KUKA LWR-3 arm
avoiding the green bar.

to exploit the topology of the solution space. Trajectories
of motion that can successfully complete the task form a
manifold in the state space of the robot. This manifold
contains voids representing infeasible or suboptimal regions.
Tools from topology, such as Reeb graphs, can be used
to extract a representation of this manifold that captures
the topology of the underlying task. An embedding of this
representation in the state space of the robot can then be
used to build a sparse graph that can be efficiently searched
to perform motion planning (see Fig. 1). Adding a fallback
strategy in case of a failure then addresses the 3rd problem.

In this paper, we present a scalable probabilistic graph-
based motion planning algorithm we call the Dynamic Road
Map -connect (DRM-connect). This algorithm is an exten-
sion of the Probabilistic Roadmap (PRM) and a variant of
the Rapidly-exploring random tree algorithm (RRT-connect).
Our main contribution is to construct the roadmap using past
solutions of the problem and to reduce its complexity by only
storing an embedding of the Reeb graph of the successful
solutions. We assume that the demonstrated successful trajec-
tories may be optimal with respect to some arbitrary criteria,
however, our method only attempts to compute feasible
solutions. Our aim is to efficiently compute collision-free
kinematic trajectories and to show that our method scales
well to higher dimensional systems. We describe the related
methods in the following section, then proceed to defining
DRM-connect, and finally, we analyse its performance.

II. BACKGROUND

Sample-based planning methods probe the free areas of the
configuration space without the need for explicit construction
of obstacles (which is infeasible for environments with
complex obstacles or kinematics). These methods concern
themselves only with the random selection of states to query
under the assumption that each state can be checked for
validity (e.g. collisions). Common sampling-based planners
(SBP) either build a tree (online) or a graph (offline) which
span the configuration space. These structures are then used
to compute feasible or optimal paths [1].

Rapidly-exploring random trees (RRT) are a popular
single-query unidirectional path planning algorithm which
constructs a search tree over the configuration space by
randomly sampling from it [1]. Many variants of RRT
attempt to improve performance by biasing the sampled
points in a way that leverages past information [2], [3], [4],
[5]. Other single-query methods include RRT-connect [6], a
bidirectional extension of RRT with specialised heuristics to
improve the efficiency of the exploration and BKPIECE [7]
which exploits discretisation of low dimensional projections
of the state space to drive the exploration.

Asymptotically optimal extensions to RRT and RRT-
connect exist as RRT* [8] and RRT*-connect [9], offering
this optimality with a constant factor increase in solve time.

In situations where many queries are expected in the
same environment, offline pre-computation can be valuable.
Algorithms of this type are called multiple-query methods.
The Probabilistic Roadmap planner (PRM) [10] is a multiple-
query planner which builds a graph of connected regions in
the configuration space offline and then performs a graph
search to compute the shortest path online. The density of
the roadmap can be specified, which affects the robustness
and speed of planning, but this roadmap does not adapt to
changing environments.

Extensions to both single- and multiple-query methods
exist for replanning. RRT has been extended to Execution-
extended RRT [2], Dynamic RRT [3], Lazy Reconfiguration
Forests [4], Multipartite RRTs [5] and RRTx [11], amongst
others. All of these attempt to retain information from either
prior tasks or the currently executing path to speed up
replanning.

PRM has been extended for dynamic replanning as Dy-
namic Roadmap Planning [12], [13], iDRM [14] which
inverts the frame of reference and computes the location of
the floating base and HDRM [15] which exploits hierarchical
encoding and symmetries to store a dense roadmap providing
resolution completeness guarantees at the cost of allowing
only one joint to move at a time. All these methods allow
multiple queries when the environment stays static and an
efficient way to update the roadmap when it does change.
However, the roadmap-based methods all lack efficient en-
coding of past experience for similar tasks in the same or
similar environments.

One way of capturing important information about the
structure of the tasks is to consider the topology of the

x
yz

f

a

X Rf (X)
Φ

Φ(z) Φ(x) = Φ(y)

Fig. 2: An example of a Reeb graph (right) of the blue vol-
ume (left). The clear and solid circles on the left correspond
to critical points and level sets of the continuous function f
used to construct the Reeb graph (e.g. the height function).

task manifold. In cases where replanning due to dynamic
obstacles is required, the appearance of an obstacle could
have one of two effects. We would either require minor
changes to the planned path (such as a person stepping
around an unexpected chair) or major changes to the path
(such as a locked door – the person has to find a path through
another room). From a topological perspective, this can be
treated by reasoning about trajectory equivalence classes.
Equivalence classes (or homotopy equivalence classes) are
collections of all trajectories, such that no trajectory from
one class can be continuously deformed to any trajectory in
any other class [16]. The difference, then, between these two
scenarios mentioned above is that the closed door invalidates
an entire homotopy equivalence class of trajectories, while
the chair may split an equivalence class, but (probably) leaves
many paths through the current trajectory class still valid.

Pokorny et al. [16] propose an approach to recover these
trajectory classes for path replanning and trajectory optimi-
sation. Samples from the free space are used to estimate
the path-connectedness of the configuration space using
filtrations of simplicial complexes1. Persistent homology is
used to find an optimal scale factor ε for the filtrations.

Reeb graphs are another representation of topological con-
nectedness, but describe volume connectedness rather than
path connectedness. A Reeb graph is an abstract graph which
describes the evolution of level sets of a continuous function
f defined on some volume [18]. This is the 1-skeleton of the
volume (and can be thought of as it’s contraction onto a set
of arcs through the “centre” of it). An example of a volume
and its corresponding Reeb graph is shown in Figure 2. The
function Φ maps the volume X to the Reeb graph Rf (X).
This abstract graph could then be embedded back into the
volume to create a compact description of it.

Constructing Reeb graphs from successful trajectories of
a robot is of particular interest. In their query phases,
algorithms such as DRM and PRM can use any kind of
embedded graph, such as an embedded Reeb graph.

III. GRAPH-BASED REPLANNING

1For a full treatment of computational topology in path planning, see
Carlsson [17], Edelsbrunner [18] and LaValle [1].

Let C ∈ RN be the configuration space of a N -DoF
robot and q ∈ C be a state in configuration space. Let Cobs
represent the obstacles and Cfree = C\Cobs the collision-free
region. A classical probabilistic roadmap (PRM) contains
a connected graph G = (V, E), where V ∈ Cfree are the
vertices (robot configurations) and E ⊂ Cfree are the edges
(trajectory segments) that connect two neighboring vertices.
These vertices and edges are generated during an offline
pre-processing phase. During the online planning phase,
given start and goal states qs, qg , we first find two vertices
Vs and Vg that are closest to the start and goal states
respectively. Then, a graph search algorithm, such as A* [19],
is deployed to find a path in the roadmap connecting Vs
and Vg . However, the pre-generated vertices and edges may
not be valid in an unknown and non-static environment. The
validity of the stored vertices and edges must be checked,
and in many cases we need to sample new collision-free
configurations during the on-line phase.

To address this, PRM was extended for dynamic replan-
ning scenarios by maintaining and repairing the roadmap
[12], [13] in what is termed dynamic roadmap planning
(DRM). Similar to PRM, the first step of DRM is a pre-
planning stage where a probabilistic roadmap is built, as-
suming no obstacles. A rectangular cell decomposition of
the workspace is then computed, and each cell is mapped
to the nodes and edges of the roadmap which correspond
to collisions in these decomposed cells. When obstacles in
the workspace appear, move or disappear, they may intersect
with different parts of the discretised workspce. The mapping
to the edges and vertices of the roadmap makes it efficient to
infer which edges and nodes are affected by the change in the
environment. Online, when responding to planning queries,
nodes and edges are temporarily invalidated when obstacles
move through their mapped cells. Queries are then carried
out as A*-style graph searches. The graph has to densely
cover the configuration space for this approach to be able
to solve queries with any reasonable success rate. However,
sparsity in the graph decreases the computational cost as a
smaller graph has to be maintained.

A. Planning with sparse roadmaps

In a sparse graph, some parts of the state space may
become entirely unreachable, especially after invalidating
parts of the graph due to collisions. We propose to modify
DRM to repair the graph if no path through the graph is
found. Our algorithm, called DRM-connect (Alg. 1) uses an
approach similar to RRT-connect to repair and expand the
roadmap if no path exists through it due to obstructions.

The task is to find a path between a start and goal (qs
and qg respectively) using a graph G. If either the start or
end point do not exist in G (e.g. if the start or end point
has moved due to sensor errors, replanning, or if this is a
new task), then these are added as unconnected nodes to G
(lines 1 to 6). Then, a search is conducted on the graph for
the shortest path (line 7), checking collisions lazily, using
the DRM-lazy algorithm (discussed below). If this fails to
return a valid path, the graph is repaired (line 9) using RRT-

Algorithm 1 DRM-CONNECT (G, qs, qg)

1: if qs /∈ V (G) then
2: G.add node(qs)
3: end if
4: if qg /∈ V (G) then
5: G.add node(qg)
6: end if
7: returnF lag, p← DRM-LAZY();
8: while not returnF lag do
9: G ← RRT-CONNECT();

10: p← DRM-LAZY();
11: end while
12: return p

connect by adding the tree nodes to the graph, after which
DRM-lazy is called again (line 10). This is repeated until a
valid path is found.

RRT-connect in line 9 is modified slightly to operate
on disconnected graphs. It maintains 3 graphs (containing
qs, qg and all other disconnected points respectively) rather
than two trees. The two terminal graphs are grown towards
random points with the same greedy heuristic present in
standard RRT-connect, except that the graphs are also biased
to grow towards the graph of disconnected points.

DRM-connect generalises both RRT-connect and DRM.
If no prior knowledge is used (G is empty), then DRM-
connect simplifies to RRT-connect, where the start and end
points are used as the roots for the trees which grow to
connect to one another. Assuming then that the knowledge
provided is useful in solving the task, the performance of
DRM-connect should be at worst the same as RRT-connect.
If the path repair algorithm (DRM-lazy) is removed or there
exists a collision-free path, then DRM-connect is equivalent
to DRM. Thus (ignoring the time for collision checking),
DRM-connect will match the performance of DRM in cases
where DRM would succeed – namely when the start and end
points lie on G and there are no collisions on the shortest
path.

DRM-connect differs from DRM in that if a path is not
found through the graph, a repair process is carried out to join
the subgraphs, rather than using RRT-connect from scratch.
It is expected that this (rather than an RRT-connect fallback)
should reduce the replanning time if obstacles appear which
split the graph into disjoint subgraphs, since the motions
encoded by these subgraphs can be reused.

DRM-lazy (line 7) attempts a graph search on the supplied
graph, with lazy collision checking, removing invalid edges
and repeating until either a valid path is found or qs and qg
lie in disconnected subgraphs.

Currently, no workspace-configuration space mapping is
used to invalidate edges, but rather lazy collision checking.
Since collision checking is typically the largest contributor
to query time, the mapping (which allows collisions to be
checked using a lookup) can significantly improve replanning
times, especially when the number of edges to check is large.

However, the graphs tested here are fairly sparse. For larger
graphs, the mapping would confer greater benefits.

The completeness of DRM-connect can be inferred from
the following scenarios. If a path exists through the graph G,
DRM-connect finds a solution and returns it in finite time,
which satisfies the requirements for completeness. If a path
doesn’t exist through the graph, RRT-connect is called. Since
RRT-connect is probabilistically complete, DRM-connect is
expected also to be probabilistically complete.

The DRM-connect algorithm can be used with any kind
of roadmap. However, the fallback strategy of RRT-connect
allows us to utilise sparse roadmaps which may better capture
task-specific prior knowledge.

IV. MOTION REPRESENTATION USING EMBEDDED REEB
GRAPHS

We now explore using an embedded Reeb graph as a
representation of the set of trajectories which form the prior
experience of a task or environment.

Given a height function f , a Reeb graph describes the
1-connectivity of a space. From samples along successful
trajectories, and ignoring spurious loops, this is the graph on
which the contraction of all trajectory equivalence classes
must lie. Thus the Reeb graph can be interpreted as a
compact representation of all trajectory classes [18].

Our approach to creating a Reeb graph is based on the
following procedure:

1) The manifold is swept in order of increasing function
value f(ui), where ui is the ith vertex of the triangu-
lation of the manifold.

2) Whenever an appearing, disappearing, bifurcating or
merging volume is found, the Reeb graph being con-
structed is updated accordingly, by creating a node and
joining it to other present nodes, according to the type
of critical point encountered.

Our approach follows the technique proposed in [20] to
embed the Reeb graph into the configuration space. The
nodes of each of the set of training paths p are extracted
and the pairwise distance between these points is calculated.
A graph (Gadjacency) is constructed by connecting all points
with a pairwise distance less than or equal to a parameter
ε. Height values are then assigned to each node in the
graph, using GET-HEIGHT-MAP (Alg. 2). The graph is then
contracted into an embedded Reeb graph by BUILD-REEB-
GRAPH.

The requirements we impose on GET-HEIGHT-MAP are
simply that the heights along the shortest path from any point
to qg are increasing. Additionally, an advantage would be to
have these node heights fairly uniformly spread, so that the
sweep of heights during BUILD-REEB-GRAPH (see below)
encounters the nodes spaced out evenly across the range of
height values. GET-HEIGHT-MAP satisfies this criteria by
finding the shortest path between the start and goal, spreading
height values along this path, and repeating this for the nodes
with minimum and maximum height values, removing nodes
with known heights which are not adjacent to nodes with
unknown heights.

Algorithm 2 GET-HEIGHT-MAP(G, qs, qg)
1: h(qs)← 0; h(qg)← 1; Gconn ← G
2: while (any h unassigned) do
3: for all Gsub in SUBGRAPH(Gconn) do
4: q0, h0 ← MIN(h(Gsub))
5: q1, h1 ← MAX(h(Gsub))
6: p← SHORTEST-PATH(Gsub, q0, q1)
7: h(q0 : q1)← ASSIGN-HEIGHTS(p, h0, h1)
8: REMOVE-EDGES(Gconn, p)
9: end for

10: end while
11: return h

0 2 4 6 8 10

0

2

4

6

8

10

(a) Input trajectories. Grey lines
show the full RRTs, and black
lines the solution paths.

0 2 4 6 8 10

0

2

4

6

8

10

(b) Embedded Reeb graph. Note
the representation of distinct tra-
jectory classes.

Fig. 3: Reeb graph generation in the 2-D DOORS domain.

BUILD-REEB-GRAPH then generates an approximate
embedded Reeb graph (Gembedded reeb) by segmenting the
nodes in G into bands of uniform width, according to the
height values h (7 bands are used here). The vertex closest
to the geometric midpoint of each connected subgraph in
each band is assigned as a seed-node. These are connected
together (where possible) by finding the shortest path through
G. The number of bands can be varied depending on the
volume of data points in the adjacency graph and the com-
putational requirements. The approach used here guarantees
that the embedded Reeb graph is a subgraph of Gadjacency
above.

Embedded Reeb graphs (with the right selection of ε) are
sparse representations of data volumes, and we use them as
roadmaps for DRM-connect.

V. EVALUATION

A. Reeb graph evaluation

We validate the use of a Reeb graph as a representation of
the prior knowledge in the 2-D DOORS domain (shown in
Fig. 3). The red lines are fixed obstacles, while the blue lines
are transient obstacles (which appear and disappear between
tasks). We generate 12 paths using RRT (Fig. 3a), for the
task with qs = (0.5, 0.5) and qg = (9.5, 9.5). These 12
trajectories are contracted into an approximate Reeb graph,
with ε = 0.19 (Fig. 3b).

(a) ε = 0.11 (b) ε = 0.2 (c) ε = 0.5 (d) ε = 1 (e) ε = 2

Fig. 4: Effect of the ε parameter on the graph complexity.

The effect of varying ε in the DOORS domain is shown in
Fig. 4. As the value of ε increases, the Reeb graph becomes
more compact, with increasingly fewer loops. Additionally,
some of the edges in the Reeb graph begin to be in collision,
since ε is larger than the minimum size of the obstacles. For
smaller values of ε the Reeb graph successfully captures the
task manifold in 2-D. As this value increases, the graph may
become too coarse and oversimplify the embedding. Further
exploration of selecting a value for ε is left for future work.

B. Benchmarking on reaching task

This section presents experimental results in three 7-D
domains, shown in Fig. 5. Here, the domain complexity
increases from left to right. In each environment, the robot
arm has to move from the start point qs to the end point qg
while avoiding obstacles.

We test the performance of DRM-connect against RRT-
connect and BKPIECE using the number of collisions
checked as the performance metric. We have used the im-
plementation in the EXOTica library [21]. As the imple-
mentations may vary, this metric serves as a measure of
computation time irrespective of the computer or collision
checking algorithm used.

Five unique start poses are uniformly sampled from the
configuration space of each domain. The end point is always
qg = [π2 ,

π
2 , 0, 0, 0, 0, 0]. For each of these, the start point,

end point and obstacles are perturbed 10 times by adding
noise with σ = π

64 to each configuration and noise with
σ = 5mm to each obstacle. We build a Reeb graph for
each of these, using 12 trajectories from RRT-connect. We
use DRM-connect to solve each of these 50 tasks. If any of
these are unsolvable (using RRT-connect) these are discarded
and replaced.

During the execution, we interrupt motion at intervals of
10% of the distance between the start and end configuration
d defined as:

d = (pc − ps) ·
pg − ps

||pg − ps||2
, (1)

where ps, pc and pg are the coordinates of the start, current
and goal points respectively. This is just the projection of
the current path extent onto the vector from the start point
to the end point. The path is interrupted with a ball of radius
0.1m (approximately the size of the end effector).

Each of the tested algorithms is tasked with replanning
from the last valid state to qg .

Figs. 6, 7 and 8 show the performance of DRM-connect
compared to the other benchmark algorithms in the BAR,

Fig. 5: The three test environments (domains) used in the
evaluation (a) BAR domain – a single bar shaped obstace is
present, (b) CUP domain – the goal is placed inside a C-
shaped obstacle, and (c) BOX domain – the goal is inside a
box-shaped obstacle. The 7DOF KUKA LWR3 arm has to
reach from the start to the goal configuration.

Fig. 6: No. of collision checks for DRM-connect, RRT-
connect and BKPIECE in the BAR domain.

CUP and BOX domains respectively. In each figure the x-
axis shows how far into the execution of the path the robot
is obstructed (see Eq. 1). The results shown are the median
values over 50 runs, with the shaded regions representing the
interquartile range (50 sets of example paths, Reeb graphs
and obstructions). Note that the y-axes are plotted using a
log-scale.

Using DRM-connect with a Reeb graph provides a sig-
nificant runtime benefit over RRT-connect and BKPIECE
in all domains, due to collisions checked along the Reeb
graph, a sparse representation of prior experience on the
task manifold. In the BAR domain, the advantage is limited
(approximately 5 times fewer collisions than RRT-connect
and 10 times fewer than BKPIECE on average), since the
domain itself has many redundancies. As the task complexity
increases (the CUP and BOX domains), the improvement
of DRM-connect becomes more pronounced (around 10-
100 times fewer collisions than RRT-connect/BKPIECE). For
these domains, when the path is interrupted near the goal,
this typically increases the task complexity further, since the
inserted obstacle will further constrain access to the goal.
In these cases there is a trade-off between BKPIECE/RRT-
connect and DRM-connect, yet DRM-connect still outper-
forms both.

Fig. 7: No. of collision checks for DRM-connect, RRT-
connect and BKPIECE in the CUP domain.

Fig. 8: No. of collision checks for DRM-connect, RRT-
connect and BKPIECE in the BOX domain.

VI. CONCLUSION

We have presented a graph-based motion planning method
that exploits the previous solutions of the problem. To
achieve this, we combined the DRM method with a fallback
strategy using the RRT-connect algorithm. The resulting
DRM-connect method is capable of solving motion planning
queries efficiently while using very sparse, task specific
roadmaps. We then constructed such roadmaps using an
embedded Reeb graph. Our evaluation of the Reeb graph
showed that the representation is suitable and that the open
parameters can be tuned to achieve optimal roadmap com-
plexity. In our future work, we will explore how to automate
the tuning of the complexity using tools from persistent
homology to compute an optimal value of the ε parameter
robustly. This will be of particular interest when the state
space dimensionality increases. While our experiments have
shown promising results on 2-D (navigation) and 7-D (fixed
base robot reaching motion) problems, a sparse Reeb graph
may be able to scale to high dimensional spaces, such as
humanoid whole body motion planning (∼30-D state space).

The effect of the curse of dimensionality and high degree of
redundancy on the utility of the Reeb graph representation
will also be the focus of our future work. Finally, we
construct the Reeb graph using all the sample data available
offline. A life-long-learning approach to storing the prior
knowledge by recomputing the Reeb graph may be possible.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[2] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, 2002, pp. 2383–2388.

[3] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
IEEE International Conference on Robotics and Automation, 2006,
pp. 1243–1248.

[4] R. Gayle, K. R. Klinger, and P. G. Xavier, “Lazy reconfiguration
forest: An approach for planning with multiple tasks in dynamic
environments,” IEEE Transactions on Robotics and Automation, pp.
1316–1323, 2007.

[5] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
rapid replanning in dynamic environments,” in IEEE International
Conference on Robotics and Automation, 2007, pp. 1603–1609.

[6] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, vol. 2, 2000, pp. 995–1001.

[7] I. A. Şucan and L. E. Kavraki, Kinodynamic motion planning by
interior-exterior cell exploration. Springer, 2009.

[8] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, p. 2, 2010.

[9] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring
random trees,” 2013.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces,” in IEEE International Conference on Robotics and
Automation, vol. 12, no. 4, 1996, pp. 566–580.

[11] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-
query sampling-based motion planning with quick replanning,” The
International Journal of Robotics Research, vol. 35, pp. 797–822,
2016.

[12] P. Leven and S. Hutchinson, “Toward real-time path planning in
changing environments,” in International Workshop on the Algorithmic
Foundations of Robotics, no. 9, 2000, pp. 363–376.

[13] L. Jaillet and T. Siméon, “A PRM-based motion planner for dynami-
cally changing environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 2, 2004, pp. 1606–1611.

[14] Y. Yang, V. Ivan, Z. Li, M. Fallon, and S. Vijayakumar, “iDRM:
Humanoid motion planning with realtime end-pose selection in com-
plex environments,” in 2016 IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2016, pp. 271–278.

[15] Y. Yang, W. Merkt, V. Ivan, Z. Li, and S. Vijayakumar, “HDRM:
A Resolution Complete Dynamic Roadmap for Real-Time Motion
Planning in Complex Scenes,” IEEE Robotics and Automation Letters,
vol. 3, no. 1, pp. 551–558, 2018.

[16] F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, “Topological
trajectory classification with filtrations of simplicial complexes and
persistent homology,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 204–223, 2016.

[17] G. Carlsson, “Topology and data,” Bulletin of the American Mathe-
matical Society, vol. 46, no. 2, pp. 255–308, 2009.

[18] H. Edelsbrunner and J. Harer, Computational topology: an introduc-
tion. American Mathematical Society, 2010.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[20] X. Ge, I. Safa, M. Belkin, and Y. Wang, “Data skeletonization via
Reeb graphs,” Advances in Neural Information Processing Systems,
pp. 837 – 845, 2011.

[21] V. Ivan, Y. Yang, W. Merkt, M. P. Camilleri, and S. Vijayakumar,
EXOTica: An Extensible Optimization Toolset for Prototyping and
Benchmarking Motion Planning and Control. Springer International
Publishing, 2019, pp. 211–240.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=1041624
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=1041624
https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf
https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf
http://ioan.sucan.ro/files/pubs/wafr2008.pdf
http://ioan.sucan.ro/files/pubs/wafr2008.pdf
http://www.cs.uu.nl/docs/vakken/mpp/papers/3.pdf
http://www.cs.uu.nl/docs/vakken/mpp/papers/3.pdf
http://www.leonardjaillet.com/Research{_}files/Iros04{_}Jaillet{_}PlanChangEnv.pdf
http://www.leonardjaillet.com/Research{_}files/Iros04{_}Jaillet{_}PlanChangEnv.pdf
http://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01249-X/S0273-0979-09-01249-X.pdf
http://www.ee.oulu.fi/research/imag/courses/Vaccarino/Edels{_}Book.pdf
http://www.ee.oulu.fi/research/imag/courses/Vaccarino/Edels{_}Book.pdf
http://web.cse.ohio-state.edu/{~}wang.1016/papers/reeb-skeleton-full.pdf
http://web.cse.ohio-state.edu/{~}wang.1016/papers/reeb-skeleton-full.pdf
https://github.com/ipab-slmc/exotica
https://github.com/ipab-slmc/exotica

	Introduction
	Background
	Graph-based Replanning
	Planning with sparse roadmaps

	Motion Representation using Embedded Reeb Graphs
	Evaluation
	Reeb graph evaluation
	Benchmarking on reaching task

	Conclusion
	References

