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Abstract. Planning is a computationally expensive process, which can
limit the reactivity of autonomous agents. Planning problems are usually
solved in isolation, independently of similar, previously solved problems.
The depth of search that a planner requires to find a solution, known as
the planning horizon, is a critical factor when integrating planners into
reactive agents. We consider the case of an agent repeatedly carrying out
a task from different initial states. We propose a combination of classical
planning and model-free reinforcement learning to reduce the planning
horizon over time. Control is smoothly transferred from the planner to
the model-free policy as the agent compiles the planner’s policy into
a value function. Local exploration of the model-free policy allows the
agent to adapt to the environment and eventually overcome model inac-
curacies. We evaluate the efficacy of our framework on symbolic PDDL
domains and a stochastic grid world environment and show that we are
able to significantly reduce the planning horizon while improving upon
model inaccuracies.
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1 Introduction

Planning is a notoriously complex problem, with propositional planning shown
to be PSPACE-complete [5]. The planning horizon is the maximum depth that a
planner must search before finding a solution, and the number of paths through
the search graph grows exponentially with a deepening planning horizon. This
exponential growth makes graphs with an even moderate branching factor slow
to traverse. Furthermore, frequent replanning when solving such problems limits
the reactivity of agents, making it challenging to incorporate planning into real-
time applications.
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Machine learning is increasingly used to take advantage of previously solved
planning instances to guide the search and plan faster [12]. Much of the work has
focused on using plans from simpler problems to learn generalised heuristics for
larger problems [30, 31, 20]; however, even with improved heuristics the planning
horizon is left untouched, leaving the problem prohibitively expensive in general.
Methods that learn a policy from a set of plans [1, 23, 3] have been studied to
compile the deliberative behaviour of the planner into a reactive policy. Such
methods can be highly effective, but rely on large training sets of plans, and are
not suitable for online learning.

Our work is inspired by psychological experiments, which have shown that
humans have two distinct decision making systems, commonly known as the
habit/stimulus-response system and the goal-directed system [6, 14, 25]. Early
work thought these two systems were in competition for resources, but Gershman
et al. [8] showed that these systems exhibit a more cooperative architecture,
where a model-based system was used to train a model-free system that acted
on the environment. With this inspiration, we model the goal-directed system
as a classical planner with access to a model, and the habit-based system as a
model-free reinforcement learning (RL) algorithm.

In this paper, we propose the Plan Compilation Framework (PCF), a frame-
work that uses model-free RL to compile the plans of a classical planner into
a reactive policy. We target an agent that repeatedly executes a task, learning
to plan less and less as the agent accumulates experience. Our method can be
used online as the agent faces the task, does not require a training set to be ini-
tialised, and is agnostic to the type of planner used. Eventually, the behaviour
becomes completely reactive and model-free, with the added benefit that it can
leverage reinforcement learning to further optimize the policy beyond what can
be planned on the model.

2 Background

In this section we introduce the notation and background on planning and RL
that we will use throughout the paper.

2.1 Planning

We consider discrete planning problems, consisting of a tuple 〈S,A, T̃ , C̃, s0,SG〉
where S is a finite set of states,A is a finite set of actions, T̃ : S×A×S → {0, 1} is
a deterministic transition function that models the environment, C̃ : S×A×S →
R is the model’s cost function, s0 is an initial state and SG ⊆ S is a set of goal
states. Planning produces a plan P (s0)

.
= [a0, a1, . . . an], a sequence of actions

that transforms s0 into a goal state sn+1 ∈ SG when applied sequentially.
Planners can be seen as executing a simple abstract algorithm: from the initial

state, choose a next state si according to some strategy, check if si ∈ SG and exit
with the plan if true, otherwise expand the state into its successors using the
model, and loop until a goal is found. Our work only requires changing the goal
test logic of existing planners, which affords extensive integration opportunities.
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2.2 Reinforcement Learning

A reinforcement learning problem is modelled as a Markov Decision Process
(MDP), a tuple 〈S,A, T ,R, γ〉 where S is a finite set of states, A is a finite
set of actions, T : S × A × S → [0, 1] is the environment’s transition function,
R : S ×A× S → [rmin, rmax] is a reward function and γ is a discount factor.

A policy π (a | s) is a probability distribution over actions conditioned on the
current state s ∈ S. The returnGt=

∑∞
k=0 γ

krt+k+1 is the cumulative discounted
reward obtained from time step t. The expected return when starting in state
s, taking action a and following policy π is known as the state-action value
function:

Qπ (s, a) =̇Eπ
[∑∞

k=0
γkrt+k+1

∣∣∣ st = s, at = a
]
. (1)

The value function is bounded by [qmin, qmax] where qmin = rmin/(1 − γ) and
qmax= rmax/(1 − γ). The goal of RL is to find an optimal policy π∗ that max-
imises Qπ (s, a) ,∀s, a. Two central methods for learning a value function are
Monte-Carlo methods and temporal difference learning [27].

Monte-Carlo Methods Constant-α Monte Carlo [27] uses the actual return
Gt as the target when updating the value function:

Q (st, at)← Q (st, at) + α [Gt −Q (st, at)] . (2)

This produces an unbiased but high variance estimate of the value function,
which we leverage to allow our agent to initially favour actions specified by the
planner, as discussed in Sec 4.1.

Temporal Difference Learning Q-learning [28] is a common single-step al-
gorithm, whose update target is rt+1 + γmaxaQ (st+1, a), which replaces the
return in Eq. 2. Methods can also look further than one step ahead, with the
n-step return defined as

Gt:t+n=̇ rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnVt+n−1(st+n), (3)

where Vt+n−1(st+n) is the value of state st+n and can be approximated by
maxaQ (st+n, a). This allows the agent to blend actual returns generated by
environmental interactions with bootstrapping estimates further into the future.

2.3 Distances Between Distributions

In this work we use the concept of a distance between distributions to categorise
when the policy for a particular state has stabilised. A common way to quantify
the difference between two probability distributions P (x) and Q(x) is the relative
entropy, also known as the Kullback-Leibler Divergence (KLD) [17]:

DKL (P ||Q ) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (4)
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A related measure, which, unlike the KLD, is a distance metric, is known as the
Jenson-Shannon Divergence (JSD): [19]

DJS (P ||Q ) =
DKL (P ||M )

2
+
DKL (Q ||M )

2
(5)

whereM= 1
2 (P +Q). This measure allows us to quantify the change in our policy

when we update the value function for a state, as detailed in Sec 4.2.

3 Related Work

Gershman et al. [8] showed that a simple implementation of the DYNA archi-
tecture [26] was able to replicate their psychological findings, lending credence
to the idea of a cooperative model-based and model-free system. In DYNA, a
model-free algorithm chooses actions, and a model-based algorithm trains the
model-free values. While a model can be specified as prior knowledge, generally
the agent learns a model of the environment through interactions. Even if a
model is specified, DYNA would be unable to initially prefer the actions from
this model, as our work does. This negates some of the benefits of pre-specified
models, namely fast and reliable goal achievement. DYNA also requires that the
model be able to generate accurate rewards, as they are incorporated into the
value function from which the model-free algorithm chooses its actions. We re-
quire only that the planner generate a plan to achieve the goal, which allows us
to use classical planning.

Other techniques for reducing the planning time include Lifelong Planning
A* (LPA*) and D* Lite [15], which are incremental heuristic search methods.
LPA* repeatedly calculates the shortest distances from the start state to the
goal state as the edge costs of the graph change. D* Lite considers the opposing
problem and searches from the goal to the current state. This formulation allows
the start state to change without needing to recompute the entire search graph.
In D* Lite the planning horizon is effectively shortened by the agent moving
towards the goal during plan enactment, but for any particular state the horizon
does not change. Both LPA* and D* Lite require access to a predecessor model
which is often harder to specify than a successor model. We could leverage these
planners in our work, but we find the dependence on a predecessor model too
limiting.

Our concept of a learnt state (Sec. 4.2) is similar to the known state from
Explicit Explore or Exploit (E3) [13]. In E3 a state becomes known when it has
been visited and the actions tried sufficiently often to produce an estimate of
the transitions and pay-offs with high probability. They use the concept of the
known state to partition the MDP into known and unknown regions, learning
to exploit the current known states or to explore the unknown states. They need
to explicitly learn the model of the transition and reward probabilities, which
can be slow and require visiting many states that are irrelevant to the current
goal. We similarly partition the MDP into learnt and unlearnt states, but we
leverage the prior knowledge of the planner to initialise the learnt states, thereby
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reducing the environmental interactions while making sure to achieve the goal,
as well as providing a more relevant exploration frontier. We also reduce our
dependence on the planner over time, moving to efficient model-free learning,
while E3 continues to maintain and update its model estimates, which could
become costly in the long-term.

The work by Grounds and Kudenko [9] and Grzes and Kudenko [10] use
planning to shape [22, 29] the rewards received by learning algorithms. Grounds
and Kudenko [9] learn a low-level Q-learning behaviour for each STRIPS oper-
ator by using the STRIPS planner to generate plans from which they derive a
shaping value. Grzes and Kudenko [10] use a similar technique, but instead use
the generated high-level plan to shape the reward of a single Q-learner. They use
the step number of the plan to provide a potential field for shaping. This guides
the Q-learner to choose actions that would lead the agent along the planner’s
path. Although shaping provides suggestions to the agent, it is unable to enforce
which actions are chosen. This means the agent can very quickly start behaving
like pure Q-learning if the shaping and environmental reward are mismatched.
Our goal in this work is to utilise the information contained in the planner as
effectively as possibly, preventing Q-learning-like exploration which can leave the
agent goal-impoverished while trying to explore the entire state space.

The work most similar to ours is Learning Real-Time-A* (LRTA*) [16], which
is generalised by Real-Time Dynamic Programming (RTDP) [2]. LRTA* aims
to bring planning to real-time applications by performing local search within a
limited horizon and stores the results in an evaluation function which is updated
over successive trials. RTDP was subsequently developed as a form of asyn-
chronous dynamic programming [4] that uses Bellman backups to obtain the
values of states. RTDP operates under the same horizon and time constraints
as LRTA*, making it also suitable for real-time applications. Both LRTA* and
RTDP require a perfect model to backup values accurately through the state
space. Where our work differs is that LRTA* and RTDP will eventually con-
verge to the optimal values for the possible policies afforded by their models.
Through repeated trials they will converge to the model-optimal values, but
the search horizon is never reduced, nor is actual environmental information
incorporated into the search. Our framework instead leverages the information
contained in the planner’s model during the initial phase of operation, and grad-
ually cedes control to the model-free learning algorithm. This means the planner
will at some point never be called, and the model-free learner will be completely
responsible for choosing actions, incorporating real environmental feedback and
adapting as necessary.

4 Plan Compilation Framework

We now propose the Plan Compilation Framework with the Plan Compiler (PC)
agent, the goal of which is to leverage reinforcement learning to reduce the plan-
ning time of a classical planner when repeatedly solving a problem from dif-
ferent initial states, eventually becoming purely reactive. The classical planner
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produces plans that take the agent to the goal, while model-free RL learns to
compile the planner’s behaviour into a value function online. Once the model-
free policy of a state has stabilised through successive value function updates, we
consider it learnt and the planner is no longer required for that state, ceding con-
trol to the model-free RL algorithm. We then augment the goal set of the planner
with the learnt states, generating plans to the goal, or to a learnt state, where
the model-free RL algorithm can take over and react accordingly. This process
reduces the planning horizon through repeated interactions, as well as leverages
the ability of model-free RL to explore and improve upon the performance of
the planner’s model.

The PC agent’s algorithm is shown in Alg. 1. It is a classical RL agent
computing actions based on the current state and learning from the observed
next state and reward. The key elements are described in the following sections.

4.1 Compiling the Planner’s Policy

The planner induces a policy πpln over the state space by virtue of being able to
generate a plan P (s) and returning the first action from that plan. We use model-
free RL to compile this policy into a value function Q by learning to ascribe
higher value to the actions chosen by πpln in the initial phases of operation.
Q-value initialisation, as shown by Matignon et al. [21], plays a crucial role in
the initial behaviour of the agent. We want to replicate the behaviour of the
planner, not explore every action. We therefore pessimistically initialise our Q-
values, qinit ← qmin − δ, driving the agent to prefer states and actions it has
previously visited. This requires knowing the lower bound of return we expect
to receive while following the planner, which is always possible when rmin is
known.

The biased nature of bootstrapping TD updates learn to favour actions not
in πpln in the early phases of operation. The total change to the state-action
value during update is

δQ(s, a)← α[r′ + γmax
a′

Q (s′, a′)−Q(s, a)], (6)

which, when all Q-values are uniformly initialised to qinit, is dominated by r′ due
to γmaxa′ Q (s′, a′)−Q(s, a)= γqinit− qinit≈ 0 on the first update. Any nega-
tive reward therefore lowers an action’s value, pushing the policy away from
πpln. We want, initially, the actions suggested by the planner, regardless of re-
ward sign, to be preferred over all other actions. To do this, we leverage the
unbiased Monte Carlo update (Sec. 2.2), which uses the return as the target
rather than a biased bootstrapped value. This, coupled with the pessimistic ini-
tialisation, preserves the desired action preferences when learning to replicate
πpln, as seen in Alg. 1, Ln. 25, 28.

4.2 Relinquishing Control to the Learner

Once the agent has learnt to replicate the planner’s policy in a state, it can query
the model-free learner for the action rather than the computationally expensive
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Algorithm 1: Plan Compiler Agent
Input:

ε, εexp, α, αl, τD, τl, ζ
∀s, a, Q(s, a)← qmin − δ
∀s, a, Qexp(s, a)← qmax + δ
e← 0

1 for each episode do
2 Initialise s
3 repeat
4 a← act (s) #Ln. 10
5 Take action a, observe r′, s′

6 learn (s, a, r′, s′) #Ln. 21
7 s← s′

8 until terminal (s)
9 end

10 def act (s):
11 if e ≤ 0 then #Not Exploring
12 if !learnt (s) then
13 return action from planner
14 else if rand() < εexp then #Start Exploring
15 v ← argmaxaQ(s, a)
16 e← ξ|v|
17 else
18 return ε-greedy action from Q

19 return ε-greedy action from Qexp #Exploring
20 end

21 def learn (s, a, r′, s′):
22 if learnt (s) and learnt (s′) then
23 bootstrap (Q, (s, a, r′, s′))
24 else
25 traj.append(s, a, r′, s′)
26


Update Q

27 if terminal (s′) then
28 monte_carlo (Q, traj)
29 else if learnt (s′) then
30 n_step (Q, traj)

31 bootstrap (Qexp, (s, a, r
′, s′))

}
Update Qexp

32 if e > 0 then
33 e← e− |r′| #Eq. 11
34 end

planner. We define a state as being learnt when its policy stabilises through
successive Q-value updates. We compute the JSD distance (Eq. 5) between the
state’s policy before πpre and after πpost performing the Q-value update. We
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introduce a function l : S → [0, 1] that quantifies how stable the policy is for a
particular state, akin to anomaly detection [7]. We track the stability estimate
with an exponential recency-weighted average

l(s)← l(s) + αl [ul − l(s)] (7)

where αl is the stability learning rate, and ul is the update target. The target
is binary, and computes whether the update caused a policy change above a
threshold τD5:

ul =

{
1, if DJS (πpre ||πpost ) < τD
0, otherwise. (8)

When l(s) is above a threshold τl ∈ (0, 1), meaning the policy for state s has
stabilised, we consider s learnt:

learnt(s) =

{
True, if l(s) > τl
False, otherwise. (9)

Once a state is considered learnt, and the agent next encounters it, the learner
chooses an action from Q, without the need to invoke the planner. We prevent
the state from reverting to unlearnt by setting ul(s) ← 1 for all subsequent
stability updates. The learner can now exploit the planner’s policy or can choose
to explore alternate actions to potentially improve upon the planner’s policy.

Once states are considered learnt, the negative effect of the bootstrapping
bias is reduced, and the agent can update the value function with TD learning,
which allows online updates during the episode. The update procedure is detailed
in Alg. 1, Ln. 22-30. The control flow of action selection is shown in Fig. 1 and
detailed in Alg. 1, Ln. 10-20.

Planner Learner

learnt(s)

!learnt(s)

!learnt(s) learnt(s)

exploring

Fig. 1: Control flow of Plan Compiler action selection: the planner has initial
control while states are !learnt(s), once a state becomes learnt(s), control passes
to the learner. The learner maintains control while successive states are learnt(s),
transferring control back to the planner if a state is !learnt(s). The learner also
maintains control while exploring, either keeping control or giving control back
to the planner once the quota is depleted, depending on the state’s learnt status.

5 This can be prespecified or adapted online as per the work of De Klerk et al. [7].
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4.3 Exploration

We facilitate local exploration around the paths provided by the planner with
the aim to improve upon its performance without incurring drastic exploration
costs. The pessimistically initialised Q-values continuously drive the agent back
onto the paths preferred by the planner, preventing exploration.

To enable controlled exploration while deviating from the planner’s behaviour
we take two steps: (1) we introduce a second value function Qexp, which is
optimistically initialised; (2) we establish an exploration budget based on state
values and interrupt exploration when the budget is spent. Qexp is updated
online with bootstrapping as seen in Alg. 1, Ln. 31.

When in a learnt state, with some small probability εexp the agent begins
exploring, choosing actions from the optimistic value function Qexp. The state’s
current pessimistic value V (s)← maxaQ (s, a) is an estimate of how much return
the agent expects to receive from that point onwards, which we use to bound
the amount of exploration the agent is allowed. Using this value, we calculate
an exploration quota et, which is proportional to V (s)

et ← ξ|V (st)|, (10)

where ξ ≥ 0 determines how far, in terms of value, we are willing to explore away
from the planner’s paths. The agent then exclusively chooses actions from Qexp
which takes the agent into unexplored regions of the state space. The exploration
behaviour is shown in Alg. 1, Ln. 14-16, 19.

While exploring, we reduce the exploration quota by the reward received

et+1 ← et − |rt+1|, (11)

shown in Alg. 1, Ln. 33. When the quota drops to or below zero, exploration ends,
at which point the agent will be in an unlearnt state, choosing an action from the
planner, or in a learnt state, choosing an action from Q. The quota has the effect
of preventing the agent from straying too far from the learnt regions, thereby
maintaining reactivity, preventing excessive exploration, and making sure the
agent achieves the goal regularly and reliably. The two parameters εexp and ξ
are tunable to specify how often and how far the agent is allowed to travel from
the paths generated by the planner.

4.4 Reducing the Planning Horizon

Once a state has become learnt, we can reduce the planning horizon by aug-
menting the goal set of the planner:

S ′G ← SG ∪ {s | learnt(s)}. (12)

The planner is then able to plan to states for which the learner has a stable
policy, from which it can react accordingly. Through repeated interactions with
the environment, more states become learnt, shortening the planning horizon
until the planner is rarely invoked.
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Initially, we may pay a path-length cost due to planning to learnt states
as opposed to goal states, or due to pernicious initial state distributions. Over
time, as the agent explores locally around the planner’s paths, the model-free
algorithm learns the true state-action values and undoes the reward penalty.
Additionally, decoupling the model-free learner from the planner, in the way
PCF does, allows the use of deterministic planners in stochastic domains as an
alternative to computationally expensive sampling-based stochastic planners.
Learning overcomes the inaccurate model used for planning, as shown in the
DARLING system [18].

5 Experiments

We designed two experiments to evaluate the properties of our method. In the
first experiment we show the trade off between the reduction in the number of
states expanded by the planner and its cost in terms of sub-optimality of the
reward. We use three PDDL domains from the International Planning Competi-
tion (IPC)6 and FastDownward [11] as the planner. In the second experiment we
show how, through reinforcement learning, our system can improve over plan-
ning with an inaccurate model. For this experiment we cannot use IPC domains,
since these do not incorporate any modeling error. Therefore, we use a grid world
whose parameters we can control so as to diverge from the model.7

5.1 PDDL Domains

Depot is a logistics-like domain where crates are trucked between depots and
stacked in specific orders using hoists, with resource constraints on the hoists
and trucks. 15-Puzzle is a classic planning domain with 15 unique tiles in a 4x4
grid that can exchange places with a single blank tile, the objective being to
arrange the tiles in ascending order. 15-Blocks is a domain with 15 blocks that
can be stacked atop a table or one another, and the goal is to create a particular
pattern of stacked blocks. For all three domains, the agent receives -1 reward for
every action taken in the environment.

We use two settings of FastDownward, called FD-G and FD-GFF, using the
Context Enhanced Additive heuristic and the FastForward heuristic respectively,
both of which are non-admissible and produce sub-optimal plans. We chose the
faster setting per environment. We show that we can integrate our Plan Compiler
agent with these planners, which we label PC-FD-G and PC-FD-GFF. Our Q
and Qexp are tables using hashed PDDL states and actions to store the values.
The results are averaged over 5 runs of 20k episodes with random initial states.
The PC parameters used were: ε=0.1, α=1, αl=1, τD=0.01, τl=0.9, ξ=0, εexp=0.

6 Implemented by PDDLGym [24]
7 Code at https://github.com/logan-dunbar/plan_compilation_framework
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(a) Depot: expanded states per episode
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(b) Depot: reward per episode
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(c) 15-Puzzle: expanded states per episode
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(d) 15-Puzzle: reward per episode
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(e) 15-Blocks: expanded states per episode
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(f) 15-Blocks: reward per episode

Fig. 2: PDDL domains results

Results The results for the PDDL experiments are shown in Fig. 2. The num-
ber of states expanded per episode is shown for each domain in Figs. 2a,c,e. The
graphs clearly show a large reduction in the number of states expanded during
each episode, noting the logarithmic scale for Depot and 15-Puzzle. For Depot,
the number of states expanded is reduced by an order of magnitude after approx-
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imately 1k episodes, with 25x fewer expansions after 5k episodes. The results are
similar for 15-Puzzle, with 5x fewer expansions after 2.5k episodes. This justifies
the potentially exponential reduction in computation achieved when reducing
the planning horizon, as alluded to in the introduction. For 15-Blocks, the num-
ber of state expansions is reduced by 20% after 5k episodes. The FastForward
heuristic performs extremely well in this domain, averaging only 250 states ex-
panded for solutions with average path length of 75, which is already close to
optimal.

Reward per episode is shown for each domain in Figs. 2b,d,f. In Depot, the
reward drops sharply in the very early episodes. However, the model-free RL
algorithm quickly begins exploring locally around the paths generated by the
planner, bringing the reward obtained to parity after 7.5k episodes, and begins
to outperform the planner from that point onward. This means that after 20k
episodes the system is both outperforming the planner in terms of reward and
has reduced the computational burden of the planner by over an order of magni-
tude. For 15-Puzzle, the characteristic drop-off in reward is present in the initial
episodes, after which there is a clear trend of improvement. In this domain, the
reward does not reach parity with the planner after 20k episodes, meaning that
the advantage in terms of planning time has a long-lasting cost in terms of re-
ward. However, the trend suggests that longer runtime will once again bring the
performance in line with the planner, and the near order of magnitude reduction
in number of states expanded might be considered a worthwhile trade-off for a
roughly 6% loss of reward performance. If optimality can be foregone, and a slight
reduction in reward tolerated, a large reduction in computational requirements
can be gained. In 15-Blocks, the reward received initially drops sharply, but then
stabilises 7% worse than just using the planner. The huge space and branching
factor seems to prevent the model-free algorithm from finding improved plans,
but this could also be due to FastForward providing excellent paths very close
to optimal, coupled with our constant cost of ε-greedy exploration.

5.2 Grid world

The grid world is a stochastic 50x50 maze-like world with walls, quicksand, ran-
dom initialisation and a fixed goal location. The grid for each run is randomly
generated to contain 20% walls, and 25% of the remaining free space is allocated
to be quicksand. Even rows and columns are twice as likely to receive quicksand.
This has the effect of creating maze-like paths which the agent can learn to tra-
verse. We operate under the assumption that the goal is reachable, and therefore
ensure that at least 50% of the non-wall locations can reach the goal, otherwise
we regenerate the grid. In each episode a random initial state is chosen from
the set of reachable states. Moving into a wall receives -5 reward, stepping into
quicksand receives -100 reward, and every other action receives -1 reward. The
agent can move in the 4 cardinal directions, and choosing to move in a direction
succeeds 80% of the time, with 20% chance to move in either of the neighbouring
directions. Q and Qexp are tables of hashed states and actions storing the values.
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The model used for planning is deterministic, and therefore incorrect. Fur-
thermore, the model has no cost, such that the planner aims to compute the
shortest path, which may not be optimal in terms of reward. We test our frame-
work against vanilla Q-learning (Q in Fig. 3), A* (A*) and RTDP (RTDP), and
we use both A* (PC-A*) and RTDP (PC-RTDP) as our Plan Compiler planners.
The results are averaged over 5 runs of 10k episodes. The PC parameters used
were: ε=0.1, α=0.1, αl=0.1, τD=0.01, τl=0.9, ξ=0.5, and εexp is linearly reduced
from 0.03 to 0 in 8k episodes.

The second part of this experiment showcases the effect of the exploration
quota ξ. Higher values of ξ should result in more exploration in the early phases
of operation with a commensurate loss in reward, while a lower ξ should remain
more faithful to the plans generated by the planner, achieving the goal more
regularly in the early phase but possibly losing out on finding better paths
in the long run. We use A* as our planner, vary the quota for six different
settings ξ={0.05, 0.1, 0.15, 0.3, 0.5, 1}, fix the remaining parameters to: ε=0.1,
α=0.1, αl=0.1, τD=0.01, τl=0.9, and εexp is linearly reduced from 0.03 to 0 in
8k episodes.

Results The results for the gridworld domain are shown in Fig. 3. Fig. 3a shows
a large reduction in the number of states expanded, where both PC-A* and PC-
RTDP have essentially reduced the planning horizon to 0 after 750 episodes.
This is possible due to the small state space allowing the agent to visit and
learn every state. RTDP also drops off rapidly, but as the planner has no way of
reducing the planning horizon to 0, it maintains a constant planning cost. This
could become prohibitive in larger environments with an open-loop planning
cycle such as implemented here, whereas our method will continue to reduce its
computational requirements over time. A* maintains a fairly large computational
burden as it has no way of incorporating the previous solutions.

The reward per episode is shown in Fig. 3b. Q-learning is known to be sample
inefficient and this can be seen in the asymptotic reward in the first few episodes.
This makes Q-learning impractical in real-world settings, because it would be too
costly for an agent or robot to explore as much as Q-learning requires. However,
the large amount of exploration does mean that Q-learning can find excellent
paths and we see this with the agent averaging -700 reward after 10k episodes.
A* and RTDP have no knowledge of the true transition function, nor of the
real reward function, nor any way to incorporate experience. This means they
will only be able to achieve what their models afford them. RTDP initially has
behaviour similar to that of Q-learning, as it computes its value function using
dynamic programming updates. It manages this quickly in this small world and
then reaches a steady state of reward of approximately -950. A* is much the same,
with the random initialisation and grids providing some small fluctuations. PC-
A* starts at the same performance level as A*, drops slightly until some states
become learnt and it can begin exploring. This can be seen in the drop off
between episodes 0-1k. The exploration begins to pay dividends at this point
and the agent improves until reaching parity with Q-learning, at -700 reward.
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Fig. 3: GridWorld results

This is remarkable considering the amount of exploration Q-learning required
versus that of PC-A*. This confirms that even suboptimal plans can be excellent
exploratory guides. PC-RTDP starts with RTDP’s characteristic Q-learning like
exploratory behaviour, with large variability in the early phases of operation.
But it too puts that exploration to good use and quickly outperforms all other
agents with an average of -600 reward after 10k episodes. This shows that we
can leverage the strengths of other approaches and even improve upon them.

The final experiment in Fig. 3c shows the effect the quota parameter ξ has
on exploration. A lower ξ results in less exploration, and this can clearly be seen
in the first 2k episodes. ξ=1 is the most exploratory, receiving large negative
reward as it traverses the state space, while ξ=0.05 is the least exploratory,
remaining truer to the planner’s paths. The rest are properly ordered between
the two extreme values of ξ. This reverses as the exploratory behaviour finds
better paths than what the planner could suggest, resulting in ξ=1 achieving the
highest long term reward, ξ=0.05 the lowest, and the rest ordered in between.
This demonstrates the flexibility a designer has when using the Plan Compilation
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Framework. Depending on the situation, one can vary ξ to either engage in
exploratory behaviour or to be faithful to the guiding planner and prefer reducing
the computational requirements of the planner.

6 Conclusions

In this paper we have designed and implemented the novel Plan Compilation
Framework that combines classical planning with model-free reinforcement learn-
ing in such a way as to compile the planner’s policy into a model-free RL value
function, dramatically reducing the planning horizon over time and improving
the long term computational efficiency of the system. We show by experiment
in PDDL domains that we are able to reduce the number of states expanded
by the FastDownward planner, and we show in a stochastic grid world that we
are able to reduce the planning horizon of A* and RTDP planners whilst also
improving upon an imperfect model. In future work we will look to introduce
the power of function approximation to be able to handle infinite state spaces
and robotic applications.
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