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Abstract. Different reinforcement learning (RL) methods exist to address 

the problem of combining multiple different learners to generate a superior 

learner. These existing methods usually assume that each learner uses the 

same algorithm and/or state representation. We propose an ensemble learner 

that combines a set of base learners and leverages the strengths of the 

different base learners online. We demonstrate the proposed ensemble 

learner’s ability to combine the strengths of multiple base learners and adapt 

to changes in base learner performance on various domains, including the 

Atari Breakout domain.  

1 Introduction 

In recent years, Reinforcement Learning (RL) has proven its ability to solve a variety of 

different problems, from superhuman game performance, to solving robotics tasks. Despite 

RL’s success in many areas, a designer is still faced with a choice of a plethora of different 

algorithms, each with many parameters to tune, in order to design an RL system capable of 

solving any given problem. 

 Selecting the best algorithm or parameters for an algorithm beforehand, or even 

combining the benefits of different approaches is challenging because of the different 

properties of each algorithm that often only become apparent after the task has been solved 

and the algorithm’s performance has been analysed. 

 More generally, given a few different learners (which could even have different state 

representations), some learners might perform better on some tasks while performing worse 

on other tasks due to the properties of the learner or algorithm. Consider, for example, a 

model-based learner and a model-free learner training on the same task. The model-based 

learner would usually have better sample complexity than the model-free learner, but if the 

model-based learner’s model was inaccurate, its performance or sample complexity would 

degrade, and the model-free learner would instead perform better. 

 Ensemble machine learning methods are those that use multiple base models and 

combine the results of the models to obtain improved outputs. Ensemble methods are used 

successfully in many machine learning applications, including in RL where they can be used 

to combine multiple policies or value functions to obtain an agent with improved 
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performance and/or sample complexity. A variety of methods can be used to determine which 

action the agent should take, from rank voting to Boltzmann multiplication [1] or even using 

TD-learning to learn weights to use when combining the action-value functions of the set of 

base agents [2]. Existing ensemble RL methods use a set of learners that use the same internal 

representations (all learners use action-value functions internally, for example) and the same 

state representations [3]. 

 We propose a novel algorithm, Adaptive Probabilistic Ensemble Learning (APEL), 

which is an ensemble learner capable of handling the more general case (handling learners 

with different state representations and learning mechanisms). APEL runs multiple base 

learners online and selects the base learners that have the best performance throughout 

training while only requiring base learners to be able to learn from off-policy experience and 

making no assumptions about the internal mechanics of base learners. APEL samples learners 

from a Dirichlet distribution which shifts probability mass to base learners that perform well, 

while still allowing periodic random exploration of other base learners to allow it to adapt to 

changes in the performance of the base learners over time. 

 We show that in tasks where base learners sometimes perform well and other times 

perform poorly, APEL performs better than any of the individual base learners on average, 

i.e. APEL’s average performance over multiple tasks is better than any of the base learners’ 

average performance over multiple tasks, and outperforms the only other ensemble learning 

method directly related to APEL. 

 The contribution of this work is an ensemble agent capable of: (1) outperforming any 

individual base learner on average over multiple tasks, (2) adapting to changing base learner 

performance, and (3) leveraging the strengths of multiple base learners online. This agent 

does not have potential negative societal impacts other than the potential negative impacts of 

the chosen learners provided to the agent. 

2 Background  

2.1 Ensemble learner setting 

We consider the case where a high-level learner has access to multiple base learners and 

needs to decide which base learner to use at each timestep. We call this high-level learner an 

ensemble learner in this work. In this setting, there are two timescales that are of interest: the 

base learner timescale, 𝑡, which denotes a timestep within an episode, and the ensemble 

learner timescale, 𝑒𝑡, which denotes an episode. Base learners make decisions and learn at 

each timestep 𝑡. The ensemble learner, on the other hand, only makes decisions and learns at 

the start of each episode 𝑒𝑡 (not at each timestep within the episode). 

 An ensemble learner is similar to bandit algorithms in the sense that it can take actions 

and receive rewards. It acts by selecting a base learner for an episode and the reward it 

observes is the episode’s return (the cumulative reward obtained by the selected base learner 

while acting over the entire episode). An ensemble learner can also keep track of certain state 

information to aid it in choosing base learners and in this case the ensemble learner is similar 

to a contextual bandit. 

2.2 Reinforcement Learning 

RL problems are often framed as Markov Decision Processes (MDPs), where an MDP, 𝑀, is 

a tuple (𝑆, 𝐴, 𝑅, 𝑃) [4]. 𝑆, and 𝐴 are the state and action spaces of the MDP. 𝑃(𝑠′|𝑠, 𝑎) is the 

probability of transitioning to state 𝑠′ if action 𝑎 is taken while the agent is in state 𝑠, and 

𝑅(𝑠, 𝑎, 𝑠′) is the reward 𝑟 obtained by the agent by taking action 𝑎 in state 𝑠 and subsequently 



transitioning to state 𝑠′. A trajectory, 𝜏, of length 𝑇 is a sequence of (state, action, reward) 

tuples, 𝜏 = 〈(𝑠1, 𝑎1, 𝑟1), … , (𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇)〉, generated by an agent through interaction with the 

MDP. 

 In this work we consider episodic MDPs, where an episode is terminated either when the 

agent reaches a terminal state, or when the agent has interacted with the MDP 𝑇 times. 

2.3 Different types of learners 

In this work, we propose an ensemble learner that remains agnostic to the inner workings of 

its base learners, where a learner’s inner workings are its learning mechanism and state/action 

representation. Here we give an overview of the different learning mechanisms and 

state/action representations that learners can use. 

 The learning mechanisms used by RL learners can be broadly divided into four classes: 

(1) algorithms that learn (action) value functions in order to determine a policy, such as Q-

learning [5] and DQN [6], (2) algorithms that learn policies directly through policy gradients, 

such as REINFORCE [7], (3) algorithms that combine the two through actor-critic methods, 

such as Soft Actor-Critic (SAC) [8] and Actor-Critic with Experience Replay (ACER) [9], 

and (4) algorithms that learn a model of the world and then use that model to learn a policy, 

e.g. Model-Based Policy Optimization (MBPO) [10]. Learners can use either discrete or 

continuous state spaces. Their action spaces can also be either discrete (Q-learning, DQN) or 

continuous (ACER, SAC). 

 When the learning mechanisms of different learners are the same, information can often 

be shared between the learners by, for example, averaging over the action-value functions of 

the learners or by sharing weights between neural networks. When these mechanisms are 

different, however, it becomes difficult to share information between learners. In the 

following section we detail our approach to sharing information between base learners while 

remaining agnostic to their inner workings. 

2.4 Learners as black boxes 

We take an approach similar to SSBAS [11] and share only trajectories between base learners 

(instead of sharing action-value functions, etc.). This allows the ensemble learner to consider 

base learners as black boxes and remain agnostic to the inner workings of the base learners. 

The ensemble learner is effectively invisible to the base learners since base learners are 

trained using standard environment interaction in the form of trajectories. Each base learner 

is then free to use any state representation and method of learning internally. 

3 Learning with an Ensemble of Learners 

Using an ensemble of RL algorithms or learners can yield improved performance over a 

single learner as well as better generalisation across tasks [1]. Existing methods, however, 

often make assumptions about the representations of the learners in the ensemble (requiring 

all learners to be Q-learners, for example). We consider an ensemble learner that can use a 

set of base learners while remaining agnostic to the learners’ inner workings. The ensemble 

learner selects different base learners for every episode and then uses the chosen base learner 

to choose actions to execute during the episode, as depicted in Figure 1. Although the 

ensemble learner only selects a base learner once per episode, it trains every base learner on 

each timestep during an episode and is therefore limited to using off-policy algorithms in an 

episodic setting. Off-policy algorithms are a large class of algorithms and restricting the 

ensemble learner to the use of off-policy algorithms is therefore not particularly onerous. 



 

 
Fig. 1. Diagram of ensemble learner’s interaction with base learners.  
 

We define the following as desirable properties for such an ensemble learner: 1. The 

ensemble learner should select the best performing base learner with high probability. 2. The 

performance of base learners is non-stationary, and the environment could be non-stationary 

as well, and therefore the ensemble learner should keep exploring the different base learners 

throughout training (the probability of selecting the best learner should not become so large 

that other learners are no longer selected). 

 We propose the Adaptive Probabilistic Ensemble Learning (APEL) algorithm as an 

ensemble learner that has the aforementioned properties. The APEL ensemble learner uses a 

Dirichlet distribution to keep a distribution over the probability of selecting each base learner. 

The Dirichlet distribution is sampled to obtain a probability distribution according to which 

a base learner is selected (see Section 3.1 for details). The Dirichlet distribution’s probability 

mass is then shifted to base learners that perform well by increasing their concentration 

parameters, as described in Section 3.2. Finally, the concentration parameters are decayed 

each time a base learner is selected (described in Section 3.3). The complete algorithm is 

described in Algorithm 1. 

 

Algorithm 1: Adaptive Probabilistic Ensemble Learning 

Require: base learners 𝐿1, … , 𝐿𝑛, decay parameter 𝜈 ∈ [0,1) 
1: 

 
 
 

Initialise performance estimates and concentration parameters for each 
base learner. 

𝒓̂ ← (𝑛𝑢𝑙𝑙, … , 𝑛𝑢𝑙𝑙), 𝜶 ← (1, … ,1) 

2: for each episode 𝑒𝑡 do 
3: 

 
 

    Select base learner 𝐿𝑡 
𝑝𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠  ~ 𝐷𝑖𝑟(𝛼), 𝐿𝑡  ~ 𝑝𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 

4:     Generate trajectory 𝜏 with cumulative reward 𝑅 using base learner 𝐿 
5:     Train all base learners on trajectory 𝜏 

6:      𝑟̂𝐿𝑡
← 𝑅 

7:     if  𝑟̂𝐿𝑡
> max (𝒓̂\ 𝑟̂𝐿𝑡

) then 

8:         𝛼𝐿𝑡
← 𝛼𝐿𝑡

+ 1 

9:     end if 
10: 

 
 

    Decay concentration parameters 
𝜶 ← max (𝜶 × (1 − 𝜈), 1) 

11: end for 



The concentration parameters of the Dirichlet distribution are initialised to 1, i.e., 𝜶 =
(1, … ,1), at the start of training to give all base learners equal probability of being selected. 

Prior knowledge about the performance of base learners at the start of training can be encoded 

by assigning different initial values to the concentration parameters corresponding to some 

of the base learners. 

3.1 Learner selection 

At the start of each episode et, the ensemble learner selects a base learner 𝐿𝑡 by sampling the 

Dirichlet distribution, 𝑝𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠  ~ 𝐷𝑖𝑟(𝜶), and then sampling the resulting distribution over 

base learners to obtain a base learner, 𝐿𝑡  ~ 𝑝𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠.  

3.2 Adjusting concentration parameters 

The ensemble learner keeps track of the performance of each base learner separately, by 

storing the latest performance estimate for each learner, denoted by the vector  𝒓̂. At the end 

of each episode, the performance estimate for the currently selected learner  𝑟̂𝐿𝑡
 is stored and 

compared to the stored performance estimates of the other learners. The concentration 

parameter corresponding to the selected base learner, 𝛼𝐿𝑡
, is updated as shown in Equation 1 

to increase the concentration if 𝐿𝑡 outperformed all the other base learners. Increasing the 

concentration parameters corresponding to good learners increases the probability of 

selecting these good learners and allows the ensemble learner to satisfy property 1. 
 

𝛼𝐿𝑡
= {

𝛼𝐿𝑡
+ 1, 𝑟̂𝐿𝑡

> max (𝒓̂\𝑟̂𝐿𝑡
)

𝛼𝐿𝑡
, 𝑟̂𝐿𝑡

≤ max (𝒓̂\𝑟̂𝐿𝑡
)

                                 (1) 

 

The Dirichlet distribution’s concentration parameters are not adjusted until all base learners 

have been selected at least once, to allow the ensemble learner to have an estimate of the 

performance of each base learner before it starts to adjust the probability of selecting learners. 

This is similar to multi-armed bandit algorithms, such as the Upper Confidence Bound (UCB) 

algorithm [12], where the algorithm is initialised by playing each arm once. In this work we 

use the cumulative reward obtained by a base learner over an entire episode as the 

performance of the learner, but other metrics (such as episode length) could also be used. 

3.3 Decaying concentration parameters 

On tasks where the agent needs to train for a long time to reach optimal performance (most 

non-trivial tasks), the agent experiences many episodes and this causes the concentration 

parameters of the Dirichlet distribution to grow without bound, which in turn causes the 

ensemble learner to become overly confident in a particular base learner (preventing it from 

still periodically exploring the other base learners). 

 The large concentration parameters and subsequent overconfidence is curbed by 

decaying the concentration parameters slightly, by updating the parameters 𝛼 ←
max (𝛼 × (1 − 𝜈), 1), each time after selecting a new base learner (at the start of every 

episode). The update rule also caps the concentration parameters at a minimum value of 1, 

to ensure that the probability of selecting any of the underperforming base learners does not 

become vanishingly small, thereby ensuring that these underperforming learners are still 

explored periodically. 

 Decaying the concentration parameters effectively caps the maximum value of the 

parameters which allows APEL to track non-stationary processes. The concentration 

parameter decay causes the ensemble learner to have a recency bias, by essentially assigning 



more weight to more recent observations of base learner performance than to older 

observations. This probabilistic learner selection mechanism along with the parameter decay 

allows the ensemble learner to periodically explore the other base learners (which addresses 

property 2), whereas a deterministic approach might settle on one base learner without further 

exploration of the other base learners. 

 The concentration decay parameter, 𝜈, can be used to trade off the speed at which the 

ensemble learner can adapt to changes in base learner performance or environment dynamics 

with the performance of the ensemble learner. A higher ν allows the ensemble learner to more 

quickly adapt to changes in base learner performance, while lowering the average 

performance of the ensemble learner (since suboptimal base learners are selected more 

frequently). 

3.4 Analysis of decay parameters 

Assuming, without loss of generality, that there are 𝑛 learners with one optimal learner 𝐿∗ 

whose concentration parameter is incremented at each ensemble learner timestep, then 𝐿∗’s 

concentration parameter at episode 𝑘 is given by Equation 2 and the steady-state value of the 

concentration parameter is given by Equation 3. 
 

𝛼𝑘 = (1 − 𝜈)𝑘 ⋅ (𝛼0 + 1) + ∑(1 − 𝜈)𝑖

𝑘−1

𝑖=1

                                                (2) 

𝛼𝑠𝑠 = lim
𝑘→∞

((1 − 𝜈)𝑘 ⋅ (𝛼0 + 1) + ∑(1 − 𝜈)𝑖

𝑘−1

𝑖=1

) =
1

𝜈
− 1                 (3) 

 

Using these equations, the value of ν can be determined according to different desired 

properties. For instance, an RL practitioner might want suboptimal base learners to be 

explored with some specified probability or might have a minimum required level of steady-

state performance that the ensemble learner must achieve (despite its exploration of 

suboptimal learners). Given such requirements the decay parameter can be selected according 

to the desired steady-state exploration probability or steady-state performance by using 

Equation 4 or 5 respectively. The mean probability of selecting 𝐿∗ is given by 𝜇𝐿∗
, 𝐸[𝐺] is 

the desired steady-state performance and 𝐺𝐿𝑁
 is the average return of each base learner. 

 

𝜈 =
𝜇𝐿∗

− 1

𝜇𝐿∗
⋅ (1 − ∑ 1) − 1𝑛−1

1

                                                                        (4) 

𝜈 =
𝐺𝐿∗

− 𝐸[𝐺]

𝐺𝐿∗
+ 𝐸[𝐺] ⋅ (𝑛 − 2) − ∑ 𝐺𝐿𝑖

𝑛
𝑖=2

                                                      (5) 

 

The decay parameter can also be selected according to the desired adaptation time, 𝑘, by 

solving Equation 6 for 𝜈. 
 

(
1

𝜈
− 1) ⋅ (1 − 𝜈)𝑘 = (1 − 𝜈)𝑘 ⋅ 2 + ∑(1 − 𝜈)𝑖

𝑘−1

𝑖=1

                                (6) 

4 Related work 

A concept related to our problem of using a set of learners to improve learning is reusing past 

policies to improve learning, instead of allowing all the policies to learn while training. Policy 

reuse methods are typically used in a transfer learning setting and are concerned with 



determining the best previous policy to use at each point in training to bootstrap training on 

a new task. 

 Policy Reuse in Q-learning (PRQL) [13], Context-Aware Policy Reuse (CAPS) [14] and 

Actor Critic with Teacher Ensembles (AC-Teach) [15] are examples of algorithms that reuse 

previous policies probabilistically for exploration while training a new policy. An alternative 

method, Bayesian Policy Reuse (BPR) [16], uses a Bayesian approach to select previous 

policies that maximise the acquisition of useful information about the current task, while 

minimising the amount of additional regret accumulated. 

 Instead of training an ensemble of learners on the full task, the original single-agent 

problem can instead be divided into different subtasks, with a different learner assigned to 

learning each subtask. Multi-Advisor Reinforcement Learning (MAd-RL) [17] divides a task 

by factorising the reward and assigning a learner to each source of reward. Divide-and-

conquer RL [18] instead partitions the state space into slices and then trains an ensemble of 

policies on these different slices, while gradually unifying the different policies into a single 

policy. 

 The only work that is directly related to our work and also considers the problem of 

selecting between different learners to optimise online performance while remaining agnostic 

to the internal mechanics of its base learners proposes two algorithms: Epochal Stochastic 

Bandit Algorithm Selection (ESBAS) and Sliding Stochastic Bandit Algorithm Selection 

(SSBAS) [11]. ESBAS uses a batch setting where base learners are not trained after each 

environment step, whereas SSBAS can be used in an online setting where base learners are 

trained after every environment step. Exploration and exploitation of base learners is 

balanced in SSBAS by using the UCB method. SSBAS uses a sliding window that becomes 

larger as training progresses to allow it to “forget” old evidence. This limits SSBAS’s ability 

to adapt to changes in base learner performance. We compare our approach (APEL) to 

SSBAS in our experiments. 

5 Experiments 

In the experimental evaluation, we evaluate APEL’s ability to: (1) outperform any individual 

base learner on average when run on multiple tasks (Section 5.1), (2) adapt to changing base 

learner performance (Section 5.2), (3) leverage the strengths of multiple base learners online 

(Section 5.3), and (4) analyse the effect that many additional base learners have on APEL’s 

performance (Section 5.4). 

 We use multiple different domains. The standard OpenAI Gym Half Cheetah (v2) and 

CartPole (v1) environments are used as well as the Gym Atari Breakout environment [19] 

(along with a custom version of the environment described in Section 5.3). We also use a 

maze domain, that is a 10 × 10 perfect maze, with wall positions that are randomised on each 

run of an experiment as well as random starting and goal locations. The maze domain 

experiments evaluate train time, 𝑒𝑇, which is the number of episodes it takes an agent to reach 

near-optimal performance. Concretely, 𝑒𝑇 is the episode at which the mean length of the last 

50 episodes is below 11.1 × 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ. CartPole is considered “solved” when the 

agent’s average reward is greater than 195.0, so for CartPole 𝑒𝑇 is the episode at which the 

mean reward of the last 50 episodes is greater than 195.0. 

 The hyperparameters for APEL and SSBAS were selected by performing a sweep over 

values and selecting a value that minimised both the train time and adaptation time. The 

ranges of the sweeps were [0.001, 0.3] and [0.01, 10] for 𝜈 and 𝜉 respectively. 



5.1 Outperforming individual learners on average 

In this experiment, we show that APEL reduces an RL practitioner’s design burden when 

training RL algorithms on new problems. Without prior knowledge about the different RL 

algorithms and the problem to be solved, an RL practitioner would not know which algorithm 

to use on a new problem. This experiment evaluates APEL’s ability to select the best 

algorithm while training when given a set of different base learners and faced with different 

problems. 

 APEL is given three learners as base learners: a tabular Q-learner [5], a DQN learner and 

an ACER learner. In each run of the experiment, the agent is placed in one of two domains 

at random: the maze domain or the Cartpole domain. The following hyperparameters are 

used: Q-learners: learning rate 𝛼 = 0.1, discount factor 𝛾 = 1, 𝜀 = 0.1, DQN learner: default 

hyperparameters used by OpenAI baselines implementation, ACER learner: 𝛼 = 2𝑒 − 4, 

𝑛_ℎ𝑖𝑑𝑑𝑒𝑛 = 256, 𝛾 = 0, APEL: 𝜈 = 0.01, SSBAS: 𝜉 = 4.921. The average training times 

for the different learners (Q-learner, DQN, ACER and APEL) for both domains are shown in 

Figure 2a, with the standard deviation shown as error bars. The results are averaged over 100 

runs. 

 Figure 2a shows that APEL outperforms all the base learners, when averaging over all 

runs from both domains, since different learners perform well on the different tasks. This 

confirms that APEL can be provided with a set of different types of base learners and it will 

select the most appropriate learner for a given task while training, allowing it to outperform 

the base learners on average over different tasks and removing the need for an RL practitioner 

to select the best algorithm beforehand. SSBAS also outperforms all the base learners, but in 

the next section we show that APEL is much more adept at handling shifting environment 

dynamics. 

5.2 Adapting to changing learner performance 

This experiment evaluates APEL’s ability to adapt to changing base learner performance by 

providing two base learners, one which performs better initially and one that performs better 

after episode es, at which point the environment dynamics changes. We examine the time it 

takes APEL to adapt after the dynamics have shifted by using the maze domain with two 

tabular Q-learners, that use ε-greedy exploration, as base learners and simulating the 

switching environment dynamics by varying the amount of exploration done by the two 

learners by changing their exploration parameters, 𝜀, at the switch point, 𝑒𝑠, and keeping 

them fixed otherwise. The base learners start with 𝜀1  =  0.4, 𝜀2  =  0.8 and then at 𝑒𝑠 the 

second learner changes to 𝜀2  =  0.01. The time (number of episodes) it takes the ensemble 

learner to adapt (switch to selecting the better learner, except when exploring), 𝑒𝑎  =  𝑒𝑇  −
 𝑒𝑠, is analysed. The time the ensemble learner takes to adapt, 𝑒𝑎, is shown for different switch 

points, 𝑒𝑠, in Figure 2b, with the shaded region showing the standard deviation. The results 

are averaged over 100 runs. 

 Figure 2b shows that APEL is able to adapt to changes in base learner performance 

relatively quickly and adapts to changes quicker than SSBAS on average and with 

significantly less variance in the time it takes to adapt. Even more significant than APEL’s 

ability to adapt quicker than SSBAS on average, is its ability to adapt to changes in base 

learner performance in constant time regardless of the switch point. This is in contrast to 

SSBAS that takes longer to adapt the later the switch comes and shows that APEL is more 

suitable for complex problems (like Atari or Mujoco domains) where it takes many thousands 

of episodes of training to converge to near-optimal performance and one of the base learners 

might only start outperforming the others after many thousands of episodes. 

 



  
(a) Mean train time for learners, averaged over 

both domains. 
(b) Time to adapt to base learner changes for 

different switch points. 
Fig. 2. Diagram of ensemble learner’s interaction with base learners. 

5.3 Leveraging the strengths of multiple learners online 

In this experiment, we evaluate APEL’s ability to optimise online performance by selecting 

the best base learner throughout training, not just in the limit. APEL’s performance is 

compared to its base learners’ performance throughout training to determine if APEL 

achieves the same performance as the best base learner throughout training. Two different 

domains are used to evaluate APEL’s online performance: Atari Breakout and Mujoco Half 

Cheetah. 

5.3.1 Atari Breakout 

We use the Breakout domain with two base learners: a tabular Q-learner and a DQN learner. 

The DQN learner uses the normal (pixel) representation of Breakout and the Q-learner uses 

a handcrafted representation to simplify learning. The handcrafted reward is simply +1 when 

the paddle hits the ball (instead of +1 when a brick is broken). The handcrafted state space 

has the following state variables: ball position relative to paddle, ball direction and whether 

the ball is in the upper or lower half of the screen. The OpenAI baselines [20] DQN 

implementation is used and the default hyperparameters (for Atari) are used except for the 

exploration time and exploration fraction, which are 5𝑒6 and 0.2 respectively. The Q-learner 

uses the following hyperparameters: 𝜀 = 0.9, 𝜀𝑑𝑒𝑐𝑎𝑦 = 7500, α = 0.05, γ = 0.9. We use 

𝜈 =  0.01 for APEL and 𝜉 =  4.921 for SSBAS. The performance (mean 100 episode 

reward) of both base learners, APEL and SSBAS is shown throughout training in Figure 3a, 

with the shaded region showing the standard deviation. The results are averaged over 10 

runs. 

 Importantly, we show here that APEL is able to select between base learners that are 

completely different, i.e. not just two instantiations of the same algorithm using different 

hyperparameters, but two different algorithms with different state spaces and learning 

mechanisms. We also compare APEL’s learning curves to SSBAS’s learning curves when 

using the same base learners. 

 The learning curves show that the handcrafted Q-learner quickly converges to mediocre 

performance, whereas the DQN learner performs much better but takes much longer to reach 

that level of performance. APEL’s learning curve follows the handcrafted Q-learner for the 

first part of training (where the handcrafted Q-learner performs better) and follows the DQN 

for the second part of training (where the DQN performs better), showing that APEL is able 

to leverage the strengths of multiple base learners online. There is a small delay between the 



DQN starting to perform better than the handcrafted Q-learner and APEL selecting the DQN 

instead of the handcrafted Q-learner. This delay is caused by APEL being relatively certain 

that the handcrafted Q-learner is the best base learner and having to shift the probability mass 

to the DQN instead once it explores the DQN and observes that its performance is now higher 

than the handcrafted Q-learner. The delay is relatively small, however, and confirms Section 

5.2’s results: APEL is able to adapt to changes in base learner performance relatively quickly 

even after having selected one base learner for a long time. 

 SSBAS’s performance is similar to APEL’s: it also starts out by selecting the handcrafted 

Q-learner and then later switches to the DQN-learner, but it takes much longer to switch to 

the DQN-learner once it starts outperforming the handcrafted Q-learner. This delay is 

consistent with previous results and therefore this lag would, presumably, be greater the later 

the switch happened. 

5.3.2 Mujoco Half Cheetah 

We also run APEL and SSBAS on the Mujoco Half Cheetah domain with a SAC base learner 

and a MBPO base learner. The authors’ implementation of the MBPO algorithm is used with 

their hyperparameters and the stable baselines [21] implementation is used for the SAC 

algorithm. MBPO is only allowed to train for 100,000 timesteps after which its training is 

frozen due to its training being very computationally expensive (compared to SAC). Training 

is frozen at 100,000 timesteps since the performance does not improve much beyond this 

point. The learning curves of the learners are shown in Figure 3b with the shaded region 

showing the standard deviation. The results are averaged over 5 runs. 

 The results show that APEL and SSBAS correctly select MBPO as the best-performing 

learner and do not switch to SAC since it never (in the 10 million timesteps) starts 

outperforming MBPO. This result confirms that APEL is capable of leveraging model-based 

learners alongside model-free learners and also shows that APEL will select the best base 

learner online without prior knowledge about the characteristics of each base learner. 

5.4 Effect of additional learners on performance 

This experiment analyses the effect that adding many redundant base learners has on APEL’s 

performance. We use two configurations for the base learners: many good learners, where 

the ensemble learner has one bad learner (that is unable to finish the task) and n good learners 

(that are able to finish the task), and many bad learners, which is the inverse. The experiment 

is run on the maze domain and the Cartpole domain. The maze domain’s “good” learners are 

the tabular Q-learners and its “bad” learners are ACER learners with small networks (16 

hidden units). Conversely, the “good” learners on Cartpole are the ACER learners and the 

“bad” learners are tabular Q-learners which use a very coarse quantisation of Cartpole’s 

continuous state space, rendering them unable to solve the task. APEL’s train time for 

different values of n (averaged over 100 runs) is shown in Figure 4, with the maze domain’s 

results on the left and the Cartpole domain’s results on the right. The standard deviation is 

shown by the shaded regions. 

 Figure 4 shows that there is barely any degradation in APEL’s performance when many 

“good” learners are used, and approximately linear degradation in APEL’s performance when 

many “bad” learners are used, which is a small price to pay for the benefits provided by 

APEL. 



  
(a) Breakout domain. (b) Mujoco Half Cheetah domain. 

Fig. 3. Learning curves of different base and ensemble learners on different domains. 

 

 
Fig. 4. Effect of additional learner on APEL’s train time. Left: maze domain, right: Cartpole. 

6 Conclusion 

We have presented APEL, an ensemble learner that selects between base learners online by 

using a Dirichlet distribution to shift probability mass to base learners that perform well. 

APEL is capable of outperforming individual base learners on average, adapting to changing 

base learner performance and leveraging the strengths of multiple base learners online. 

Unlike existing methods in the ensemble RL space, APEL is adept at handling learners that 

have different internal mechanics. 

 We showed that, compared to SSBAS, the most similar related method that is also 

agnostic to the inner workings of its base learners, APEL has similar performance when 

evaluated on its ability to outperform individual base learners on average, and is able to adapt 

to changes in base learner performance quicker than SSBAS. Furthermore, APEL’s 

adaptation time stays constant regardless of the number of episodes the agent has 

experienced, whereas SSBAS’s adaptation time scales linearly with the number of episodes 

the agent has experienced. We also show that APEL is able to leverage the strengths of 

multiple different types of base learners (from value-based learners to actor-critic and model-

based learners) online by evaluating the learning curves of two different base learners and 

APEL on the Atari Breakout domain and the Mujoco Half Cheetah domain respectively. 
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