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Abstract. The ability to generate synthetic data has a variety of use cases across 

different domains. In education research, there is a growing need to have access 

to synthetic data to test certain concepts and ideas. In recent years, several deep 

learning architectures were used to aid in the generation of synthetic data – but 

with varying results. In the education context, the sophistication of implementing 

different models requiring large datasets is becoming very important. This study 

aims to compare the application of synthetic tabular data generation between a 

probabilistic model specifically a Bayesian Network, and a deep learning model, 

specifically a Generative Adversarial Network using a classification task. The 

results of this study indicate that synthetic tabular data generation is better suited 

for the education context using probabilistic models (overall accuracy of 75%) 

than deep learning architecture (overall accuracy of 38%) because of probabilis-

tic interdependence. Lastly, we recommend that other data types, should be ex-

plored and evaluated for their application in generating synthetic data for educa-

tion use cases. 

Keywords: Education, Synthetic Data, Bayesian Network, Generative Adver-

sarial Network. 

1 Introduction 

The ability to generate synthetic data has a variety of use cases across different domains 

[1, 2]. Traditionally, synthetic data generation was computationally implemented using 

different types of probabilistic models [3, 4, 5]. However, in recent years, several deep 

learning architectures were used to aid in the generation of synthetic data – but with 

varying results [6, 7]. The need for synthetic data generation is becoming more im-

portant. This is, firstly, because large training datasets are hard to come by for every 

specific use case. Secondly, the implementation of different models requires large da-

tasets to examine its efficacy [8, 9]. This study aims to compare the application of syn-
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thetic tabular data generation between a Bayesian Network (BN), and a Generative Ad-

versarial Network (GAN) using descriptive statistics, and an evaluation of machine 

learning accuracy scores [10 - 13]. The ability to create usable synthetic data from a 

small sample of information is of growing importance in a variety of different domains 

such as medicine, education, engineering, language, and business - to name a few. Fur-

thermore, once the correct models have been created to generate synthetic data for a 

specific use case, the costs of running experiments and simulations are reduced because 

the data can be generated in place of such experimentation [14, 15]. Within the context 

of higher education, finding relevant data remains a challenge [16]. These challenges 

specifically relate to the way in which the data is shared, and less with the availability 

of the data itself, as such, generating synthetic data for higher education is of im-

portance for higher education use cases. A lot of this information is driven by the need 

to improve the accuracy of digital twin technology. Digital twinning refers to a virtual 

equivalent of a realworld application or system that functions on the same logic and 

rules of nature as the physical counterpart [17, 18]. An application of digital twin for 

education could mean the generation of infinite student data within a higher education 

simulation. It is estimated that digital twin technology will drastically reduce the cost 

of physical experimentation and that this type of technology will increase the techno-

logical development of products as experimentation will become faster and more robust 

before production of any product [19]. As promising as these technological advance-

ments are, there are still concerns with some of the underlying fundamental processes 

associated with these technologies [20].  

Deep learning models have been widely used to generate synthetic data [7]. One 

such example is a GAN [21]. GANs have been used to generate synthetic image and 

audio data, especially in creating large training datasets for the use case of facial recog-

nition and speech detection machine learning models [22]. Another example is the in-

herent bias that is created in visual classification tasks, whereby there exists a balance 

between the bias and variance generated within the models [23, 24]. As a result, GANs 

have been shown to work either very well, or not at all at generating useful synthetic 

data for a specific machine learning task, such as classification using labelled training 

data [25].  

The general architecture of a GAN can be seen below (Fig. 1). As shown in the 

diagram, a GAN starts with random latent variables about the data it wants to simulate. 

Thereafter, a generator creates multiple instances of the latent variables based on the 

observed ranges of the variables. These generated variables are then actuated into a 

discriminator. At the same time, real data is also moved into the discriminator. The 

purpose of the discriminator is to differentiate between real and simulated data. Both 

the simulated and real information is then moved into a condition function. The purpose 

of the function is to evaluate how well the model can differentiate between the real and 

the synthetic data. If a data type was classified as fake, then fine tuning on the synthetic 

data is performed, and the generator updates the synthetic data generation component 

of the model and moves new synthetic data into the discriminator. This process is re-

peated for each of the latent variables until the desired amount of data generated through 

the GAN is achieved [21 – 25]. 
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Fig. 1. General structure of a Generative Adversarial Network (GAN) adapted from1  

 

A BN works with categorical variables where the probabilistic distribution is dependent 

on the conditional probabilities of a given category within a set of variables. The gen-

eral probabilistic structure implies that an independent probability is denoted by P(𝑥) 

and a conditional probability denoted as the P(𝑥|y1….,yi). Therefore, x is a function of 

independent probability, and y a function of conditional probability. As such, probabil-

ities (conditional and independent) can be denoted by the following equation (eq. 1)  

 

(𝑃(x1 . . . . , x𝑛 ) = ∏ 𝑖=1  𝑃(x𝑖 | y (x𝑖)).    (1) 

 

Thus, we can apply a BN to a case study where, for example, Exam Level, IQ level, 

Marks, Aptitude Score leads to a probability of final Admission. If we consider that the 

following five variables are prevalent within the BN whereby P[𝑒𝑙] is the probability 

of Exam Level, P(𝑖𝑞𝑙) the probability of IQ Level, P(𝑎𝑠|𝑖𝑞𝑙) is the conditional proba-

bility of Aptitude Score given IQ Level, P(𝑚|𝑒𝑙,𝑖𝑞𝑙) the conditional probability of 

Marks given IQ Level and Exam Level, and P(𝑎|𝑚) the conditional probability of Ad-

mission given Marks, then we can create a probabilistic model by which we can calcu-

late the admission score of a candidate (eq. 2) 

 

𝑃(𝑒𝑙, 𝑖𝑞𝑙, 𝑎𝑠, 𝑚, 𝑎) = P(𝑒𝑙) ∗ P(𝑖𝑞𝑙) ∗ P(𝑎𝑠|𝑖𝑞𝑙) ∗ P(𝑚|𝑒𝑙, 𝑖𝑞𝑙) ∗ P(𝑎|𝑚). (2) 

 

Once the probabilistic distributions are known, these networks can be represented using 

a direct acyclic graph [DAG] (Example: Fig. 2). 

 

 
1https://www.geeksforgeeks.org/generative-adversarial-network-gan/  

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Fig. 2. Example of a DAG and probabilistic structure for education2 

 

Synthetic data can therefore be generated using different methods and models. Further-

more, simulating tabular data using these approaches is still not widely used in machine 

learning classification tasks specific to education data. Therefore, the purpose of this 

article is to compare synthetic tabular data generated from a GAN to those generated 

from a BN and evaluate the accuracy of this using a machine learning classification 

task. 

 

2 Methodology 

Open-source tabular data for the education domain was used in this study3. Variables 

within the dataset were transformed into discrete categorical variables from their orig-

inal data types4. From this data, an expertly defined BN was constructed from the da-

taset used, and the GAN was applied on the same transformed categorical variables as 

the BN. The GAN and a BN was used to generate a synthetic dataset for each of the 

models, containing 10,000 different users’ information. The synthetic dataset was gen-

erated from an original dataset containing 3029 different samples. The samples as well 

 
2 https://uol.de/en/lcs/probabilistic-programming/webchurch-andopenbugs/example-5-bayesian-

network-student-model [last accessed 15 October 2022] 
3 https://github.com/dsfsi/Higher_Education_EDA/tree/main/ opendata [last accessed 15 Octo-

ber 2022] 
4https://github.com/dsfsi/Higher_Educa-

tion_EDA/tree/main/synthetic_data_generation/synthetic_data [last accessed 15 October 

2022] 

https://uol.de/en/lcs/probabilistic-programming/webchurch-andopenbugs/example-5-bayesian-network-student-model
https://uol.de/en/lcs/probabilistic-programming/webchurch-andopenbugs/example-5-bayesian-network-student-model
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as the dataset contained information about the grade point average (GPA) of students 

spanning over three years of tertiary education, plus one variable summarizing their 

GPA for high school. For each of the variables in the dataset, the descriptive statistics 

were compiled [28]. Each of the variables in the synthetic dataset was compared to the 

original variable within the primary dataset for both the GAN and the BN by looking 

at their distribution, cumulative sums and density. Furthermore, a machine learning 

classification algorithm, k-Nearest Neighbour (kNN) was used to predict the target var-

iable in each of the datasets. The kNN algorithm was chosen on the premise of its ap-

plication to tabular higher education data, but the authors note that several other models 

could also be used for such an experiment. The kNN algorithm expresses variable fea-

tures such as Euclidean distances and measures their relevance to one another [29]. A 

confusion matrix was created based on the classifications made by kNN for each target 

variable and was further used to evaluate the models for each simulation in the study. 

A confusion matrix is a means to measure the predicted outcome against the actual 

outcomes of a given dataset. The results involve comparing the actual ground-truth out-

comes from the test dataset to the outcomes predicted based on the trained models. To 

do so, four primary variables were assessed: true positive results (TP), false positive 

results (FP), true negative results (TN), and false negative results (FN). Results of the 

comparison that are labelled as FP are also called type I errors, and outcomes that are 

listed as FN are also referred to as type II errors. The overall accuracy of the model is 

the sum of true positive and true negative results divided by the sum of the true results 

and type I and type II errors (eq. 4) 

 

 

        (4) 

 

To illustrate the impact of the underlying data on the performance of the algorithm, a 

learning curve was used to visualise the results of the prediction classification task. A 

learning curve is a visualisation technique that shows the performance of a model’s 

accuracy as the training dataset increases. Included in the learning curve is a training 

score and a cross validation score. A training score can be defined as a measurement of 

how well the model generalised to fit the training data used. A cross validation score 

can be defined as a technique used to evaluate kNN model accuracy by training the 

model on subsets of the training data. The training test split was done on 75% of the 

synthetic dataset (n = 10000). A total of 10-fold cross validations were used. The au-

thors note that this in not the optimal number of cross fold validations, as the purpose 

of this experiment was to compare the differences between the two methodologies. The 

original dataset contained 3029 samples. The synthetic data contained both features and 

the labels associated with the final outcome of the student university degree. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 



6 

3 Results 

The first set of results related to the descriptive statistics of each variable in the dataset 

showed the differences in the standard deviations (SD) produced by the different mod-

els (Table 1). 

 

Table 1: Descriptive statistics of the variables in the dataset 
Variable name Mean BN SD BN Mean 

GAN 

SD GAN 

V1C1 0.7055 0.455848 0.6037 0.489153 
V1C2 0.2945 0.455848 0.3963 0.489153 

V2C1 0.6844 0.464778 0.5884 0.492148 

V2C2 0.3156 0.464778 0.4116 0.492148 
V3C1 0.8001 0.399945 0.5673 0.495475 

V3C2 0.1999 0.399945 0.4327 0.495475 

V4C1 0.6917 0.461814 0.5506 0.497458 
V4C2 0.3083 0.461814 0.5555 0.506372 

*V = variable  

*C = category 

As seen from table 1, the overall means of the BN and the GAN differed from one 

another. Furthermore, the standard deviations of the BN were less than the GAN. This 

difference implies that the distribution of the data for the BN was more centralized 

toward the mean of the distribution than the GAN. In figure 3, the distribution of the 

cumulative sums of each of the four features in the experiment dataset were shown. For 

the synthetic tabular data generated from the GAN, the overall cumulative sum distri-

bution between the generated and the real data has the highest discrepancy between 

category 1 and 2 in terms of variable 1, whereas the BN had the highest between 0 and 

1. There were slight differences observed between synthetic data produced from GAN 

and BN. 
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Fig. 3. Cumulative sum between GAN and BN for each of the variables. 

 

The density distribution per feature for each of the synthetic datasets were closely re-

lated to the primary datasets except where relational interdependence between the var-

iables were important. The parent variables for variable 3 (variable 3 = final mark), 

were both variable 1 (the first assessment opportunity) and variable 2 (second assess-

ment opportunity). Variable 3 for GAN had the lowest density. Based on these results, 

the synthetic data generated between the GAN and BN are similar in structure and dis-

tribution for each of the variables in terms of the cumulative sums as well as the density 

distribution (Fig. 4).  
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Fig. 4. Density distribution of each variable for GAN and BN in the dataset 

 

To illustrate the value of the interdependence that was still maintained between the data 

generated from the GAN against that of the BN, a classification task was applied on the 

dataset. The overall accuracy of the classification task for the GAN was at least 20% 

lower than that of the BN (Fig. 5). 

 

 
Fig. 5. kNN classification task performed on synthetic datasets 

 

Overall, the BN produced not only synthetic data that had lower standard deviations, 

and a better density distribution between the real and synthetic data, but also produced 

data that could be used with a relatively high accuracy (62 - 70%) for a classification 
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task. The synthetic data generated from a BN could therefore be used to simulate pre-

diction tasks based on classification algorithms. These results have a variety of potential 

use cases for education as not only can quantitative data be simulated using this ap-

proach, but also processes that require mapping out the student journey, predicting stu-

dent success rates, and modelling student learning pathways [1, 5, 16]. 

4 Conclusion 

Although deep learning architectures are popular for the generation of synthetic data, 

fundamental probabilistic models have a use case in this regard. Furthermore, if syn-

thetic data needs to be generated for the purpose of machine learning, probabilistic 

models seem to be a better fit for synthetic tabular data generation than generative deep 

learning models, such as a GAN. This is because the probabilistic models seem to have 

higher accuracy scores for classification tasks based on our results. We acknowledge 

that with complex datasets, a lot of the nuance of what we illustrate in this paper will 

be lost under the complex interpretation of the latent variables that may or may not be 

present (as with visual, sound or even text data). Furthermore, we acknowledge that 

there are a variety of probabilistic and deep learning models that still need to be further 

explored in terms of their contribution to the creation of synthetic data that display 

variable associations that are important for this type of variable interdependence. It is 

also relatively easy to insert expert specific knowledge about a probabilistic distribu-

tion. We therefore recommend that other models and other data types be further ex-

plored for the creation of synthetic data to identify the limitation of both approaches for 

synthetic data generation used in education. 
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