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Abstract
We propose a framework that learns to execute natural lan-
guage instructions in an environment consisting of goal-
reaching tasks that share components of their task descrip-
tions. Our approach leverages the compositionality of both
value functions and language, with the aim of reducing the
sample complexity of learning novel tasks. First, we train a
reinforcement learning agent to learn value functions that can
be subsequently composed through a Boolean algebra to solve
novel tasks. Second, we fine-tune a seq2seq model pretrained
on web-scale corpora to map language to logical expressions
that specify the required value function compositions. Evaluat-
ing our agent in the BabyAI domain, we observe a decrease of
86% in the number of training steps needed to learn a second
task after mastering a single task. Results from ablation stud-
ies further indicate that it is the combination of compositional
value functions and language representations that allows the
agent to quickly generalize to new tasks.

Introduction
Natural language provides an intuitive way for people to
specify tasks and instructions to satisfy goals. However, in-
struction following is a difficult problem for artificial agents
because they need to simultaneously learn the (a) meaning
of the instructions to solve the task, (b) representation of the
world in which the task is to be solved, and (c) sequence of
actions that will lead to task completion. Learning to follow
instructions is even more challenging in the multitask setting,
where an agent must also acquire knowledge that will allow
it to generalize to new, unseen tasks.

One of the most common approaches to this problem is to
encode a language command into a real-valued vector embed-
ding. The language embedding, together with the agent’s cur-
rent state, is then used to parametrize the policy that controls
the agent (Blukis et al. 2019; Chaplot et al. 2018; Tambwekar
et al. 2021). These end-to-end methods succeed in the pres-
ence of a simulator, but require large amounts of data. These
methods also suffer from generalization issues as the agents
require a large number of samples from the environment for
every novel task presented (Lake and Baroni 2018).
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To overcome the generalization issue, we leverage the prin-
ciple of compositionality, which states that a complex expres-
sion’s meaning is defined by the meanings of its constituent
expressions and the rules used to combine the meanings of
these expressions (Szabó 2020). In particular, we exploit the
compositional nature of task specifications and their solu-
tions (in the form of a special type of value function). Our
approach is possible as both natural language and the learned
value functions exhibit the property of compositionality.

In our work, the constituent expressions are possible
atomic goal specifications. These goal specifications have
value functions which define the agent’s behavior. The value
functions can be combined using the rules of Boolean algebra
to solve novel tasks. We use machine translation approaches
to map linguistic task specifications onto corresponding logi-
cal expressions, which are then used to combine value func-
tions to solve the specified tasks.

First, we train task-specific value functions in the man-
ner of Nangue Tasse, James, and Rosman (2020) for a
set of preselected atomic tasks from the BabyAI environ-
ment (Chevalier-Boisvert et al. 2019). Additionally, we fine-
tune a T5 model (Raffel et al. 2020) using reinforcement
learning to translate natural language instructions into logical
expressions that specify the compositions of the task-specific
value functions. The compositional value functions are then
used by the agent to form policies for acting in the environ-
ment. Finally, the agent’s collected environment rewards are
used as a signal to improve the translation model.

We evaluate the agent by learning a set of compositional
tasks in series and observe the number of training steps
needed to learn each additional task in the series. Further, we
perform ablation studies to understand the effect of model
pretraining on web-scale corpora and the stochastic nature of
feedback from the environment on sample complexity. With a
pretrained T5 model (Raffel et al. 2020), the mean number of
training steps needed to learn an additional task drops by 86%
after learning just one task. Without model pretraining, the
mean training steps drops by only 6%, although the number
of training steps continues to drop as more tasks are learned.

When learning all available tasks in the environment, the
number of training steps needed to learn the final task de-
creases by 98% for the pretrained model, compared to only



80% for the randomly initialized model. In terms of the frac-
tional improvement in the training steps needed to learn the
final task, the pretrained model provides a 10× improvement
(2% versus 20%) over the randomly-initialized model.

Overall, our paper makes the following contributions:
• We connect pretrained compositional policies to a trans-

lation model capable of mapping natural language state-
ments to logical expressions specifying compositions of
those policies.

• We demonstrate empirically that pretraining of the trans-
lation model on non-task-specific data is sufficient to gen-
erate compositional expressions. We found the T5 (Raffel
et al. 2020) language model sufficient to generate novel
Boolean expressions given language commands. This abil-
ity to generate novel expressions leads to a significant
reduction in samples from the environment after the pre-
trained model learns to solve just a single task.

• We detail learning results for 18 tasks in the BabyAI show-
ing that compositional policies, along with a pretrained
model, lead to substantial savings in the number of samples
required to learn novel tasks.

• We provide ablation results with and without a pretrained
language model, and with and without our compositional
policies evaluated in the environment.

Background
We are interested in the multitask setting, where an agent
is required to solve a series of related tasks, modelled by a
unordered set of Markov Decision Processes (MDPs). An
MDP is defined by the tuple 〈S,A, p, r〉, where (i) S is the
state space, (ii) A is the action space, (iii) p is a Markov
transition kernel (s, a) 7→ ρ(s,a) from S ×A to S , and (iv) r
is the real-valued reward function bounded by [rMIN, rMAX].
We focus here on stochastic shortest path problems (Bertsekas
and Tsitsiklis 1991), where an agent must optimally reach a
set of absorbing goal states G ⊆ S.

We assume that all tasks share the same state space, ac-
tion space and dynamics, but differ in their reward func-
tions. More specifically, we define the background MDP
M0 = 〈S0,A0, p0, r0〉 with its own state space, action space,
transition dynamics and background reward function. Any
individual task τ is specified by a task-specific reward func-
tion rτ that is non-zero only for transitions entering a state in
G. The reward function for the resulting MDP is then simply
r0 + rτ .

Given a task, the agent’s aim is to learn an optimal Markov
policy π from S to A. A given policy π induces a value func-
tion V π(s) = Eπ [

∑∞
t=0 r(st, at)], representing the expected

return obtained under π starting from state s. The optimal
policy π∗ is the policy that obtains the greatest expected re-
turn at each state: V π

∗
(s) = V ∗(s) = maxπ V

π(s) for all
s ∈ S. A related quantity is the Q-value function, Qπ(s, a),
which defines the expected return obtained by executing a
from s, and thereafter following π. Similarly, the optimal
Q-value function is given by Q∗(s, a) = maxπ Q

π(s, a) for
all (s, a) ∈ S × A. Finally, we define a proper policy to
be a policy that is guaranteed to eventually reach G (James

and Collins 2006; Van Niekerk et al. 2019). We assume the
value functions for improper policies—those that never reach
absorbing states—are unbounded from below.

Logical Composition of Tasks and Value Functions
Nangue Tasse, James, and Rosman (2020) recently pro-
posed a framework for agents to apply logical operations—
conjunction (∧), disjunction (∨) and negation (¬)—over the
space of tasks and value functions. This is achieved by first
defining the goal-oriented reward function r̄ which extends
the task rewards r to penalise an agent for achieving goals
different from the one it wished to achieve:

r̄(s, g, a) =

{
r̄MIN if g 6= s ∈ G
r(s, a) otherwise,

(1)

where r̄MIN ≤ min{rMIN, (rMIN − rMAX)D}, and D is the
diameter of the MDP (Jaksch, Ortner, and Auer 2010). Equa-
tion 1 specifies the reward function for the agent to achieve
all reachable goals.

Using Equation 1, we can define the related goal-oriented
value function as:

Q̄(s, g, a) = r̄(s, g, a) +

∫
S
V̄ π̄(s′, g)p(s,a)(ds

′), (2)

where V̄ π̄(s, g) = Eπ̄ [
∑∞
t=0 r̄(st, g, at)].

If a new task can be represented as the logical expression
of previously learned tasks, Nangue Tasse, James, and Ros-
man (2020) prove that the optimal policy can immediately
be obtained by composing the learned goal-oriented value
functions using the same expression.

For example, consider the PickUpObj domain shown in
Figure 1, where an agent has learned to pick up the yellow
object (task Y ) and to pick up the ball (task B). We can
then provably solve the tasks defined by their union, intersec-
tion, and negation as follows (we omit the value functions’
parameters for readability):

Q̄∗Y ∨B = Q̄∗Y ∨ Q̄∗B := max{Q̄∗Y , Q̄∗B}

Q̄∗Y ∧B = Q̄∗Y ∧ Q̄∗B := min{Q̄∗Y , Q̄∗B}

Q̄∗¬Y = ¬Q̄∗Y :=
(
Q̄∗MAX + Q̄∗MIN

)
− Q̄∗Y ,

where Q̄∗MAX is the goal-oriented value function for the
maximum task where r = rMAX for all G. Similarly Q̄∗MIN
is goal-oriented value function for the minimum task where
r = rMIN for all G. We henceforth refer to these goal-oriented
value functions as compositional value functions.

Translation with Transformer Models
Recent progress in natural language processing (NLP) has
demonstrated the effectiveness of large-scale generative pre-
training and subsequent fine-tuning on downstream tasks,
such as translation, question answering, and classification
(Devlin et al. 2018; Peters et al. 2018; Radford et al. 2018).
Subsequent work has shown that scaling both model parame-
ters and pretraining corpus size leads to better transfer learn-
ing and generalization (Radford et al. 2019).



(a) Language command “pick up the yellow
ball” with corresponding logical expression
pickup_yellow ∧ pickup_ball.

(b) Language command “pick up the red
key” with corresponding logical expression
pickup_red ∧ pickup_key.

(c) Language command “pick up the red
key” with corresponding logical expression
pickup_red ∧ pickup_key.

Figure 1: Examples of tasks in the BabyAI PickUpObj environment. For each task, there is a target and distractor object. The
agent is represented by the red triangle. We also investigate performance when four distrator objects are present. a) The agent
must pick up the yellow ball but not the yellow key. To solve this level, the agent must use the intersection of the “pickup” value
functions for “yellow” and “ball”. b) The agent must pick up the red key while not picking up the grey key. Solving this level
requires using the intersection of the “pickup” value functions for “red” and “key”. c) The agent must pick up the red key while
not being distracted by the yellow key and red ball. Solving this level requires using the intersection of the “pickup” value
functions for “red” and “key”.

To map between natural language instructions and Boolean
expressions specifying policy compositions, we utilize the
T5 sequence-to-sequence model (Raffel et al. 2020) based
on the Transformer architecture (Vaswani et al. 2017). The
model is pretrained using an unsupervised learning objective
on the Colossal Clean Crawled Corpus (C4) (Raffel et al.
2020), a filtered version of the Common Crawl.1 The C4
corpus contains 750GB of text, the vast majority of which
is fluent English. Raffel et al. perform exhaustive ablation
studies to develop their pretrained models, which offer good
performance on a variety of NLP tasks including translation.

Transformer-based models use the self-attention mecha-
nism (Vaswani et al. 2017) to build sequence representations
of text inputs, and to transform those representations into
probability distributions over text outputs. As with the origi-
nal Transformer architecture, the T5 model is composed of
both an encoder and decoder stack of self-attention layers to
map input sequences to output sequences. Self-attention lay-
ers receive input embeddings from lower layers and compose
them to form higher-level embeddings.

Methods
Our agent learns to combine pretrained compositional poli-
cies by translating BabyAI “mission” statements (e.g. “pick
up the blue box”) into Boolean algebraic expressions which
specify compositions of policies. We limit our investigation to
intersections of policies, although the Boolean compositional
policies also allow for disjunction and negation. Training
begins with training a compositional policy to solve each
of the task primitives. The agent can navigate to objects
in the BabyAI domain described by three type attributes
{box, ball, key} and six color attributes {red, blue, green,
grey, purple, yellow}, which yields eighteen possible navi-
gation tasks.

1https://commoncrawl.org

Learning the Compositional Value Functions

Like Nangue Tasse, James, and Rosman (2020), we use deep
Q-learning (Mnih et al. 2015) to learn the Q-function for
each goal of the compositional value functions. We repre-
sent each compositional value function Q̄∗ with a list of |G|
DQNs, such that the Q-function for each goal Q∗g(s, a) :=

Q̄∗(s, g, a) is approximated with a separate DQN.2

For each task, the agent starts training after 1000 steps of
random exploration to populate an experience replay buffer
and a goal buffer (set of reached terminal states). For each
episode, the agent samples a random goal from the goal
buffer and uses ε-greedy to act in the environment. For each
action, a, that the agent takes in each state, s, it receives
goal-oriented rewards (Equation 1) given by:

r̄(s, g, a) =

{
−0.1 if g 6= s ∈ G
r(s, a) otherwise,

where task reward r(s, a) = 2 for picking up the correct
object and r(s, a) = −0.1 everywhere else.3 The episode
terminates after the agent picks up any object. The agent’s
compositional value function is then trained per episode us-
ing the collected experience. Training ends once the agent
reaches a success rate of at least 0.98. For lower success
rates, the compounding effect of composing sub-optimal poli-
cies negatively impacts the translation model’s learning. For
full details on policy performance please refer to Table 1 in
Appendix A.

2Architecture and hyperparameter details are presented in the
appendix.

3We used r̄MIN = rMIN = −0.1 since that is the simplest
choice and it did not result in any discernible change in the success
rate of the composed policies.



Translating Missions to Boolean Expressions
We select the smallest of the publicly released T5 models as
the pretrained model for our experiments (Table 2): the T5-
small model which has 60 million parameters and is sufficient
for our tasks based upon our empirical exploration.

We translate natural language task instructions to Boolean
algebraic expressions that represent the task’s value function.
The Boolean algebraic expressions have tokens and operators.
The legal operators are union (disjunction), intersection (con-
junction) and negation. The tokens in the Boolean algebraic
expressions represent goal value functions that can be com-
posed to create richer tasks. For the BabyAI domain, these to-
kens represent value functions for picking up objects by type
{pickup_box, pickup_ball, pickup_key}, picking up ob-
jects by color {pickup_red, pickup_blue, pickup_green,
pickup_grey, pickup_purple, pickup_yellow}, the logical
operators and end-of-sentence tokens {and,< s >}.

Both the input and output tokens are byte-pair encod-
ing (BPE) subword units (Sennrich, Haddow, and Birch
2016) learned from the C4 training corpus. For example, the
Boolean task algebra token “pickup_purple′′ is represented
by the subwords “pickup′′, “_′′, “pur′′, and “ple′′. Each of
the tokens in the Boolean task algebra is represented by one
or more BPE subword units. Instead of sampling from the
BPE subword units directly, continuations are sampled from
the distribution of tokens in the Boolean task algebra. If BPE
subwords were sampled directly, at the beginning of training
the probability of outputting valid tokens from the Boolean
task algebra would be vanishingly small. Decoding stops
when the stop token is produced or more than three Boolean
algebra tokens have been sampled. We use temperature-based
sampling (Ackley, Hinton, and Sejnowski 1985) to produce
translated sequences during training, and greedy sampling
during evaluation. For translation model details see Table 2.

Given an input mission to the T5-small model (e.g. “pick
up the red ball”) we can sample a Boolean expression from
its output distribution over tokens (e.g. pickup_red and
pickup_ball). This expression is then parsed and vali-
dated for syntactic correctness by a Boolean algebra expres-
sion parser. The corresponding compositional value function
is obtained as follows (we omit the value functions’ parame-
ters for readability):

Q̄pickup_red∧pickup_ball = min{Q̄pickup_red, Q̄pickup_ball}
The full process for generating policies from task instruc-

tions is illustrated in Figure 2. Finally, the agent can maximise
over the composed value function to act in the environment:
π(s) ∈ arg maxa∈Amaxg∈G Q̄(s, g, a).

Baseline Model
The baseline is a non-compositional CNN-DQN (Mnih et al.
2015) conditioned on the input mission language. The model
is a simplified version of the baseline used by Chevalier-
Boisvert et al. (2019), and uses a CNN to extract image
features and a Gated Recurrent Unit (GRU) (Cho et al. 2014)
that takes the mission as input and outputs text features. The
image and text features are then concatenated and passed
through two fully-connected layers to compute the output
Q-values.

"pick up the red ball"
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Figure 2: The T5-small model first translates the input mis-
sion command “pick up the red ball” into a Boolean expres-
sion, with variables representing the vocabulary of possible
compositional value functions. Then the intersection of the
value functions is computed, resulting in a value function for
picking up a red ball in the environment.

In contrast to our method, the baseline is a joint model
which learns a Q-function conditioned on both image state
and language features. As such, its component value function
and language representations are not pretrained. Our method
learns both tasks and language separately and then learns to
combine them compositionally. Likewise, the baseline model
does not have explicit compositional structure and must in-
stead learn to condition output Q-values on a combination of
image and language features.

Experiments
To assess the agent’s ability to generalize compositionally,
we evaluate the agent as it learns to solve all available tasks
in sequence. In each of ten trials, we randomly shuffle the
order in which the 18 tasks are introduced and then train
the agent to solve each task one at a time. At iteration 0 of



each new task, and every 100 training steps thereafter, the
performance of the agent is evaluated using returns from
100 policy roll-outs. A task is considered solved if the agent
successfully reaches the goal object in 95 out of 100 roll-outs,
at which point the agent is presented with the next task in the
sequence. During training, Boolean policy expressions are
sampled from the translation model using temperature-based
sampling with a temperature of 1.0 to inject randomness in
the sampling process. However, when evaluating whether
the agent has successfully solved the task, expressions are
generated through greedy sampling to only select the most
likely continuation tokens without noise.

Learning Tasks in Series
We adopt four experimental settings to investigate the impact
of the different components in our overall system.

First, we consider two strategies for initializing the transla-
tion model: we use either 1) the pretrained T5-small model,
or 2) its randomly initialized instantiation provided by Wolf
et al. (2020). We also consider the effect of the pretrained poli-
cies on the overall performance of the agent by 1) using the
returns of the policies executed in the environment as a learn-
ing signal for the language model, or 2) directly comparing
the output of the language model to the ground-truth logical
expression. The combinations of language model pretraining
and feedback type form the four experiments presented.

During training the environment provides noisy feedback
from randomization of object and agent positions and imper-
fections in the trained compositional policies. Further, each
of the environments has one or four distractor objects sam-
pled uniformly at random from the 18 object types. These
objects may have the same type attributes as the target ob-
ject, in which case the mission command changes from using
the definite to the indefinite article (e.g. “pick up a red ball,”
instead of “pick up the red ball”).

During inference the mission statement for the current task
is translated to a Boolean expression, which is passed to a
Boolean expression parser to determine syntactic correctness.
If the expression is not syntactically valid, the agent receives
a reward of −1.0. If the expression is valid, the correspond-
ing compositional policy is instantiated and executed in the
environment 50 times.

The agent receives the mean reward from these 50 roll-
outs. Each episode receives a reward of +1.0 for successfully
picking up the target object, and−2.0 for failing to pickup the
target object within 50 time-steps. The 50 roll-out parameter
was chosen by imperially establishing that 50 offers a robust
estimation of the mean reward for the instantiated policy.

The rewards of +1.0 and −2.0 were determined empiri-
cally to incentivize the production of optimal Boolean expres-
sions. Without asymmetrically discouragement for picking up
the wrong objects, the agent can learn to simply rely on color
or object type (rather than both) to act in the environment
and attain reward. This behavior represents a local minimum,
where the agent will attain reward in cases where color or
object type distinguishes the correct object from a distractor
object. By asymmetrically discouraging failure, the agent is
incentivized to utilize both the color and object type informa-
tion to execute more precise policies. The reward scale and

sign determines whether the output Boolean expressions are
made more or less likely by the cross-entropy loss.

Additionally, we evaluate the effect of environment noise
on the translation model’s learning. The translation model is
separately trained using feedback from logically comparing
sampled Boolean expressions to the known true Boolean ex-
pressions for those tasks. In this setting, the translation model
receives a reward of +1.0 for outputting equivalent Boolean
expressions and −1.0 for non-equivalent expressions. This
removes sources of noise in training the language model: the
environmental randomization, distractor objects, and noise
from imperfect policies. However, it differs from purely su-
pervised learning in that learning only occurs on samples
from the translation model, produced through temperature
sampling.

Figure 3 depicts the effects of pretraining versus randomly
initializing the translation model, when training with feed-
back from the environment, and with feedback from the
equivalence of output logical expressions. The results in-
dicate that whether acting in the real environment or with
“perfect” feedback based on logical equivalence, using the
pretrained model vastly outperforms the randomly-initialized
translation model. While both models see a decrease in the
mean train steps across the randomly shuffled 18 tasks, the
number of samples required by the pretrained model drops
precipitously after learning the first task. Further, in both
the pretrained and randomly-initialized cases, learning in the
environment is detrimental to model performance, with both
the mean number of training steps, and the standard devia-
tion higher for the agent when learning from environmental
feedback. The greater number of training steps demonstrates
the negative impact of the distractor objects and the agent’s
imperfect policies on translation model learning. In Figure 3e
the addition of more distractor objects initially requires more
training steps on average to learn new tasks, but with substan-
tially higher variance. However, as more tasks are learned,
the pretrained model outperforms the randomly initialized
model (as in the single distractor setup). We speculate that
this is due to the higher variance in the rewards when using
more distractor objects.

Baseline Comparison

Figure 3f compares the number of training steps needed by
the BabyAI baseline model to our compositional model. As
with the other experiments, results are reported over 10 tri-
als, where the agent learns to solve each task in the task set
sequentially. The task order is shuffled between trials. In this
experiment the number of training steps is capped at 20, 000
and a single distractor object is present in the environment.
Initially, the baseline model succeeds in learning the first sev-
eral tasks. However, this model eventually begins to overfit,
and reaches the training step limit for the remaining tasks
in the set. Despite a much larger parameter count, neither
of the compositional models overfit, and the compositional
model with language model pretraining needs close to zero
additional samples to learn the later tasks.
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(a) With feedback from evaluating the compositional policies
in the environment with one distractor, compares the effect of
pretraining on the number of training steps needed to learn each
translation from each mission to each Boolean expression.
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(b) With “perfect” feedback based only on the output Boolean
expression, compares the effect of pretraining on the number of
training steps needed to learn each translation from each mission
to each Boolean expression.
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(c) With a randomly-initialized T5 model, compares the learning
of the agent from policies evaluated in the environment with one
distractor to “perfect” feedback based only on the output Boolean
expression.
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(d) With a pretrained T5 model, compares the learning of the agent
from policies evaluated in the environment with one distractor to
“perfect” feedback based only on the output Boolean expression.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Train Tasks

0

5000

10000

15000

20000

M
ea

n 
Tr

ai
n 

S
te

ps

Pretrained
Random-init

(e) With four distractor objects and feedback from evaluating the
compositional policies in the environment, compares the effect of
pretraining on the number of training steps needed to learn each
translation from each mission to each Boolean expression.
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(f) Performance of the Baseline model versus Compositional mod-
els (both with and without pretraining). All three models are
trained using feedback from the environment with a single dis-
tractor object. While the baseline model requires substantially
more training steps to learn each task, it does not poses explicit
compositional structure and does not benefit from pretrained value
functions or language representations.

Figure 3: Number of training steps required by various agents to solve each task in a random sequence of tasks. The translation
model used is the T5-small model with and without pretraining. Tasks are learned in series, with the same model used across
tasks. Task order is randomized across trials. The shaded regions represent the standard deviations over 10 runs.

Difficulty of Translation Tasks

In this experiment, we fine-tune the pretrained translation
model using reinforcement learning individually on each of
the 18 tasks to compare the relative difficulty of the underly-
ing translations. Unlike in the serial task learning experiment,
the translation model learns each task individually with no

transfer between tasks. The mean train steps and standard
deviations are plotted for 10 trials for each task. The purpose
is to determine if learning any of the translations for the tasks
are significantly more challenging to learn than the others,
which would lead to differential performance when learning
certain sequences of tasks.

Figure 4 shows the mean train steps needed to learn each
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Figure 4: The mean training steps needed to learn the translation from each mission to each Boolean expression for each of
the 18 potential tasks, when the translation model has perfect feedback from the environment. Rewards are +1.0 for equivalent
output Boolean expressions and −1.0 for incorrect expressions. Means and Standard Deviations computed over 10 trials.

translation task based on the logical equivalence of the out-
put expression to the ground-truth expression. The figure
shows a similar range of difficulty in translating from each
mission statement to each logical expression, indicating that
no tasks are overwhelmingly more difficult than the others.
However, there are differences in the translation difficulty
between certain tasks. Translations for picking up “box” ob-
jects consistently require more training samples to learn. The
unequal difficulty could be due to differences between the
pretrained features for box objects.

Related Work
Instruction following by an artificial agent combines reason-
ing about an agent’s current state, the language command
given, and the best sequence of actions an agent can take
to solve the given task, making it a challenging problem to
solve. Previous approaches have attempted to solve this prob-
lem using a single neural network architecture trained using
reinforcement learning (Anderson et al. 2018; Blukis et al.
2019; Chaplot et al. 2018). Another approach to solve this
problem is to translate language into a sequence of symbols
that can then be given as input to a planner (Gopalan et al.
2018). It is possible to learn these symbols directly from
data (Gopalan et al. 2020), and compose these symbols using
semantic parsing (Dzifcak et al. 2009; Williams et al. 2018)
to create novel task specifications that can then be planned
over.

Previous work has also attempted to learn compositional
linguistic representations to solve instruction following
tasks (Kuo, Katz, and Barbu 2021). We, however, do not
attempt to train and use compositional language representa-
tions (Andreas 2019), and instead use the power of a large
language model (Raffel et al. 2020) that has a richer repre-
sentation as it is created using more data. In this work, we
translate language to a set of tokens that represent compo-
sitional value functions. To the best of our knowledge, our
approach is novel, and maps language to a representation that
is inherently compositional allowing us to solve novel tasks

with few samples.
Composing value functions was first demonstrated using

the linearly-solvable MDP framework by Todorov (2007),
in which value functions could be composed in an operator
similar to disjunction to solve tasks (Todorov 2009). This
idea was extended to compose skills that achieve zero-shot
disjunction (Van Niekerk et al. 2019) and approximate con-
junction (Haarnoja et al. 2018; Van Niekerk et al. 2019; Hunt
et al. 2019). More recently, Nangue Tasse, James, and Ros-
man (2020) show that zero-shot optimal composition can
be achieved for all three logical operators—disjunction, con-
junction, and negation—in the stochastic shortest path setting.
Our approach allows versatility in the type of expressions,
and thereby the type of goal-based instructions that can be
given to our agents.

Conclusion
In this work, we proposed an approach for instruction follow-
ing that leverages the compositional representations present
in both the Boolean Task algebra value functions and in large,
pretrained language models. Since regular value functions
cannot in general be optimally combined to produce desired
behaviours (Todorov 2009; Van Niekerk et al. 2019), we
leveraged a recently introduced form of goal-oriented value
functions that admit composability. By ensuring that both the
language and control aspects of the agent are compositional,
we demonstrated that an agent can use its existing knowledge
to quickly solve new tasks using very few samples. Such
sample efficiency is critical in developing long-lived agents
that are required to learn and act in the real world. In future
work, we would like to create a fully differentiable model that
learns to create a space of compositional goals and to map
language to the space of Boolean algebra over the learned
compostional goals.
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Appendix A

Task primitive Success rate

pickup_ball 0.997 ± 0.004
pickup_box 0.996 ± 0.006
pickup_key 1.000 ± 0.000
pickup_red 0.996 ± 0.005
pickup_blue 0.999 ± 0.003
pickup_green 1.000 ± 0.000
pickup_grey 0.996 ± 0.005

pickup_purple 0.996 ± 0.005
pickup_yellow 0.995 ± 0.008

Table 1: The mean success rate of the individual pretrained
compositional value functions for each task primitive over
100 episodes. The standard deviations are over 10 runs.

T5-small model parameters

Embedding dimension 512
Fully-connected dimension 2048
Attention-heads 8
Encoder, Decoder Layers 6

Table 2: The parameters of the T5-small model used in our
experiments. To train the model we use the AdamW optimizer
(Loshchilov and Hutter 2019) and a learning rate of 1e-4.

Appendix B
The DQNs used to learn the compositional value functions
have the following architecture, with the CNN part being
identical to that used by Mnih et al. (2015):

1. Three convolutional layers:
(a) Layer 1 has 3 input channels, 32 output channels, a

kernel size of 8 and a stride of 4.
(b) Layer 2 has 32 input channels, 64 output channels, a

kernel size of 4 and a stride of 2.
(c) Layer 3 has 64 input channels, 64 output channels, a

kernel size of 3 and a stride of 1.
2. Two fully-connected linear layers:

(a) Layer 1 has input size 3136 and output size 512 and
uses a ReLU activation function.

(b) Layer 2 has input size 512 and output size 7 with no
activation function.

We used the ADAM optimiser with batch size 256 and a
learning rate of 10−3. The target Q-network was updated ev-
ery 1000 steps, and we used ε-greedy exploration, annealing
ε from 1.0 to 0.1 over 1000000 timesteps.
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