
Learning Options from Demonstration
using Skill Segmentation

Matthew Cockcroft†, Shahil Mawjee†, Steven James, and Pravesh Ranchod
School of Computer Science and Applied Mathematics

University of the Witwatersrand
Johannesburg, South Africa

{matthew.cockcroft1, shahil.mawjee}@students.wits.ac.za, {steven.james, pravesh.ranchod}@wits.ac.za

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—We present a method for learning options from
segmented demonstration trajectories. The trajectories are first
segmented into skills using nonparametric Bayesian clustering
and a reward function for each segment is then learned using
inverse reinforcement learning. From this, a set of inferred trajec-
tories for the demonstration are generated. Option initiation sets
and termination conditions are learned from these trajectories
using the one-class support vector machine clustering algorithm.
We demonstrate our method in the four rooms domain, where
an agent is able to autonomously discover usable options from
human demonstration. Our results show that these inferred
options can then be used to improve learning and planning.

Index Terms—hierarchical reinforcement learning, inverse re-
inforcement learning, options discovery, skill acquisition

I. INTRODUCTION

Humans often execute tasks in an autonomous manner, with-
out actually focusing on the individual actions they perform.
Consider the act of driving a car—the person will enter the car,
drive and then arrive at their destination, but while driving they
do not contemplate each decision, such as turning, braking or
changing gear. Instead, the person only checks whether or not
they have arrived at their destination.

Hierarchical reinforcement learning encapsulates this idea
for agents acting in an environment. This is achieved through
action abstraction, transforming low-level actions into higher-
level skills. A skill may be composed of many different actions
and consists of a particular endpoint or termination state.
Using this approach, an agent executing a specific skill only
has to check whether it has reached such a termination state,
instead of considering which action to take at each time step.

Before action abstraction can be performed, an agent must
first learn which low-level actions to take. One method which
has proved successful for teaching agents in complex domains
is that of Learning from Demonstration (LfD), which provides
the agent with demonstrations created by a human expert from
which to learn. The agent then makes use of a process known
as inverse reinforcement learning (IRL) [1] to learn a policy
that best describes the expert’s demonstration.

†Authors contributed equally.

This work is based on the research supported in part by the National
Research Foundation of South Africa (Grant Number: 17808).

One issue with this approach is that the learned policy
describes the entire demonstration and has no context or
transferability outside of the original problem domain. Recent
work has attempted to decompose into sets of skills. Most of
this work has focused on representing skills as methods which
attempt to reach a subgoal state [8], but these approaches often
struggle to encapsulate more complicated reward functions.

One method which overcomes this is nonparametric
Bayesian reward segmentation (NPBRS) [12]. This approach
uses nonparametric Bayesian statistics to propose segmenta-
tions and maximum entropy IRL [19] to learn the reward
functions associated with these segmentations. Another benefit
of this method is that it does not require the number of skills
to be known, but rather is able to infer them from the data.

While this method has proven to be successful in segment-
ing skills from demonstrations, the policies and trajectories
generated by NPBRS are not leveraged in any way. We
propose a method which uses these policies and trajectories
so that high-level skills can be autonomously acquired by an
agent and leveraged to improve learning.

To transform low-level actions into higher-level skills we
make use of the options framework [15]. An option is a
temporally extended action, so it may take more than one
time step to complete. Each option consists of an initiation
set, a policy and a termination condition. To learn options,
our method makes use of the one-class support vector machine
clustering algorithm [13], by classifying the start and endpoints
of the trajectories segmented by NPBRS. These classifications
provide an initiation set and a termination set, from which a
termination condition can be generated. These are combined
with the policies produced by NPBRS to create options.

The method is tested in the four rooms domain used in the
original presentation of the options framework [15]. We show
that an agent in this domain is able to autonomously discover
usable options from human demonstration, and is able to use
these options to accelerate learning dramatically. We explain
the benefits of this method with regards to planning, in that it
greatly reduces the size of an agent’s decision tree.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning defines a set of algorithms which
aim to solve problems by maximising the reward obtained in

ar
X

iv
:2

00
1.

06
79

3v
1 

 [
cs

.L
G

] 
 1

9 
Ja

n 
20

20



a particular situation. These problems are usually modelled as
a Markov Decision Process (MDP) [14]. An MDP is a tuple
defined as M = (S,A, P,R, γ), where S is a set of states, A is
a set of actions, P (s′|s, a) is the probability that a transition to
state s′ will result from taking action a in state s, R(s, a, s′)
is the reward obtained when taking action a in state s and
transitioning to state s′, and γ ∈ [0, 1] is the discount factor.

The goal of reinforcement learning is to find an action policy
that maximises the cumulative expected reward. An action
policy is a function which gives the probability of an agent in
state s choosing to take action a, and is denoted by π(a|s).
Due to the Markov Property, a transition from one state to the
next only depends on the action taken in the current state.

B. Options Framework
While any task can theoretically be solved using only low-

level actions, in practice many learning tasks are intractable
in this space. Action abstraction, which combines low-level
actions into higher-level skills, can be used to reduce the
learning time. A commonly-used approach for this is the
options framework [15]. An option is a temporally-extended
action made up of the original low-level actions.

An option o is formally defined as a tuple (Io, πo, βo), where
Io ⊆ S is an initiation set of all states from which option o
can be initiated, πo : S × A → [0, 1] is a policy giving the
probability of option o executing each action in each state, and
βo : S → [0, 1] is the termination condition, which gives the
probability of the option terminating in a particular state.

A method for creating a new option needs to determine
how to learn its policy and how to define its initiation set and
termination condition. This is achieved by identifying states in
which the option will terminate once reached, and by defining
the initiation set as the set of states from which that option
would be useful to execute.

C. Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) [1] defines a set

of algorithms used to determine a reward function from
a given demonstration. IRL algorithms consider all of the
information from an MDP excluding the reward function,
defined as an MDP\R. Together with this they also re-
quire a set of demonstration trajectories, defined as ζ =
{(s1, a1), (s2, a2), ..., (sn, an)}, where each pair (si, ai) in-
dicates the action ai taken by the demonstrator while in state
si. The algorithm then attempts to find the reward function R
that is most likely to have produced ζ by an agent attempting
to solve the given MDP (S,A, P,R, γ).

We consider the maximum entropy inverse reinforcement
learning algorithm [19]. This algorithm builds upon the initial
approach to IRL [1], which maps rewards to features within
the states so as to reflect the importance of those features to
the expert presenting the demonstration. The problem is that
IRL is ill-posed, as it is possible for many reward functions
to map to the same feature counts.

Maximum entropy IRL instead focuses on the entire distri-
bution of possible behaviours and considers a set of trajecto-
ries, ζ. Using MDPs as previously defined, maximum entropy

IRL additionally defines fs ∈ Rk as the feature vector of the
state s, and θ ∈ Rk as the reward weights [19].

The algorithm uses the principle of maximum entropy [7]
to assert that the most likely distribution is one that does not
display any preferences not implied by the feature counts.
This is achieved by the relation P (ζ) ∝ eR(ζ), where P (ζ) is
the probability of trajectory ζ occurring. In this model, paths
with higher rewards are exponentially preferred over paths
with lower rewards. This is used to generate a distribution
over paths, given by P (ζ|θ, P ), where P is the transition
distribution. By maximising the entropy of the distribution
over paths a convex function is obtained, for which its maxima
can be calculated using gradient-based optimization.

At the maxima, the gradient is 0, and so the feature counts
match. This guarantees that the agent performs equivalently to
the expert’s demonstration.

D. Nonparametric Bayesian Reward Segmentation

Bayesian statistical inference is the process of calculating
a posterior distribution by using a given prior probability
distribution for an unknown parameter and a calculated like-
lihood for that distribution. Nonparametric models [6] are
probability models that may have infinitely many parameters,
while stochastic processes, such as the Beta process, are exam-
ples of prior distributions when dealing with a nonparametric
Bayesian model.

Nonparametric Bayesian reward segmentation (NPBRS)
[12] is a method proposed for combining nonparametric
Bayesian statistics for segmentation and IRL for policy learn-
ing. The maximum entropy algorithm is used to find the
option policies that represent skills and the Beta-Process
Autoregressive Hidden Markov Model (BP-AR-HMM) [4] is
used to determine how to segment the demonstration for skill
extraction.

A Hidden Markov Model is an MDP with hidden states,
known as modes. The benefit of using the BP-AR-HMM is
that the number of hidden modes does not need to be known
as a beta process prior is placed on the sequence of modes.
Instead of specifying the appropriate number of modes, they
can then be inferred directly from the data. The model is
also autoregressive, meaning that for continuous observations
a mode-specific Vector Autoregressive (VAR) process can be
used to describe temporal dependencies. The generative model
for the BP-AR-HMM [4] is given as follows:

B | B0 ∼ BP (1, β)

Xi | B ∼ BeP (B)

π
(i)
j |fi, γ, κ ∼ Dir([γ, ..., γ + κ, γ, ...]⊗ fi)

z
(i)
t ∼ π

(i)

z
(i)
t−1

y
(i)
t =

r∑
j=1

A
j,z

(i)
t
y
(i)
t−j + e

(i)
t (z

(i)
t )

B is drawn from a Beta Process (BP) and provides a set
of global probabilities for each skill. This probabilities are



used to produce a Bernoulli Process (BeP), from which Xi is
drawn. Considering the ith trajectory, distribution Xi is used
to construct a binary feature vector fi, indicating which skills
are present for this trajectory. Note that B encourages sharing
of skills among the demonstration trajectories. Next, for mode
j we define the transition probabilities for time series i using
the transition probability vector π(i)

j , which is drawn from a
Dirichlet distribution.

Hyperparameter κ is used to place extra expected mass on
the jth component, making the selection “sticky” due to the
fact that skills are likely to be employed for multiple sequential
time steps. For each time step t, a mode z(i)t is drawn from
the transition distribution at time step t − 1. The observation
for the ith time series, at time t, is represented by y(i)t . If the
order of the model is r, then y

(i)
t is computed as a sum of

mode-dependent linear transformations using the previous r
observations, as well as the model-dependent noise term e

(i)
t .

Sampling of the mode sequence z(i)t is achieved using the
Markov Chain Monte Carlo sampler [5] developed for the BP-
AR-HMM. This sampler proposes skill birth and death moves
based on their likelihoods, thereby adding or removing features
from the global feature set.

The BP-AR-HMM emissions are modelled as VAR pro-
cesses by Fox et al. [4]. To use this model in conjunction
with inverse reinforcement learning, we require the emissions
to be modelled as MDPs. Ranchod et al. [12] propose the
following model to achieve this:

P (a)|z(i)t =
eτQ

z
(i)
t (y

(i)
t−1,a)∑

a e
τQz

(i)
t (y

(i)
t−1,a)

a
(i)
t ∼ P (a)|z(i)t
yt ∼ T (yt−1, a

(i)
t )

This model removes the step of sampling of parameters A
and e for the BP-AR-HMM. Instead the dynamics of the
environment are used in conjunction with IRL to calculate the
transition probabilities. The action-value function associated
with each skill is represented by Qz

(i)
t . This function is

learned by grouping sub-trajectories in terms of skills and
performing the maximum entropy IRL algorithm on each
skill. This produces reward functions associated with each
skill. The optimal policy for Qz

(i)
t is then determined by

using value iteration, which gives the likelihood of each of
the demonstration trajectories, and selecting the set with the
highest likelihood [12].

III. RESEARCH METHODOLOGY

While previous work using the NPBRS framework [12] is
able to successfully segment skills from demonstrations, the
resulting policies are not used in any way. In this section,
we show how to leverage these approaches to learn option
models, consisting of initiation sets, policies and termination
conditions. This requires creating a set of demonstration
trajectories, segmenting these trajectories using NPBRS, and

then estimating the initialisation set and termination condition
from the segmented trajectories produced by NPBRS.

A. Generating Trajectories
Due to the deterministic nature of the domain in which this

approach was tested, the use of human expert demonstrations
was not required. Instead, Q-learning [18] was used to learn an
optimal policy for the domain and trajectories were generated
by following this policy to and from predefined start and
endpoints. These trajectories are then sent to the NPBRS
method to be segmented.

B. Learning Options from Demonstration
Given the set of trajectories produced by NPBRS, we wish

to generate estimates for the initialisation and termination sets
for an option. We phrase this as a classification problem in
which we wish to classify the final trajectory state as a termina-
tion state (positive) or a non-termination state (negative), and
similarly classify start states as to whether they are initiation
states or not. It is important to note here that while we are
classifying termination states, options require a termination
condition. Thus, we will use our set of termination states to
generate a probability of being a termination state for any
particular state and use this as our termination condition.

A commonly used algorithm for supervised classification
problems is the Support Vector Machine (SVM) [16]. The
SVM aims to split a given dataset into two separate classes
by finding a hyperplane with the maximum margin between
the two classes. SVMs require the training data to be labelled
into two distinct classes, but in our case there are no negative
samples available for learning the initiation set and termination
condition of the options.

An alternate approach is to use an anomaly detection
method, in this case the one-class SVM (OC-SVM) [13]. The
OC-SVM determines a hypersphere that bounds as much of
the training data as possible, while attempting to minimise its
volume.

Given a set of training data X1, ..., Xn ∈ d, the OC-SVM
first uses a mapping Φ : Rd → F to project this data into
a higher-dimensional space. The hypersphere in this space is
then parameterised by a centre c and a radius r. These are
computed by minimising the equation:

min
r,c,ξ

r2 + 1
vn

∑
i ξi

s.t. ‖Φ (Xi)− c‖2 ≤ r2 + ξi, ξi ≥ 0, i = 1, . . . , n,

where v ∈ (0, 1) is a trade-off parameter between the radius
and the number of training data points that fall inside the
hypersphere, and ξi are slack variables which determine how
far away outliers lie from the hypersphere surface.

Thus, given a set of trajectories, we can use the OC-SVM
to define separate hyperspheres, using the trajectory start and
end states as our training data. We will then consider any
state which lies within our hypersphere trained on the start
states as an initiation state and any state which lies within our
hypersphere trained on the end states as a termination state.



IV. EXPERIMENTATION

A. Domain and Setup

The domain used to test our method for learning options
is the four rooms domain discussed in the original options
framework paper [15]. The domain consists of four rooms,
each connected by a hallway. Sutton et al. [15] investigates the
usefulness of options by handcrafting options for each room
that take the agent to the adjoining hallways. In this case the
initiation set is any state within the room, the policy is the
set of actions taking the shortest path to the hallway and the
termination condition is 1 for a hallway state and 0 elsewhere.

For each room, there are two different options available,
one which takes the agent from its current position to the
hallway encountered when travelling clockwise, and the other
which takes the agent to the corresponding anti-clockwise
hallway. We wish to infer similar options from a set of given
demonstrations.

First, we use Q-learning to generate a set of 5000 trajec-
tories, each with random start and goal states. The reward
function for learning in this domain was defined as 10 at the
goal state and -1 elsewhere. These trajectories were then used
as input for the NPBRS segmentation, with the sampler left to
run for 60 minutes. This produced a total of four segmented
skills, each with their own policy, reward function and set of
inferred trajectories.

Due to the fact that a large number of trajectories were
used to generate our skills, the number of inferred trajectories
returned by NPBRS for each skill is also large. We wish to
only use trajectories in which the termination state has a high
likelihood of occurring. To achieve this we apply a threshold
of 2% of the total states on the occurrence of termination states
and discard any trajectory with a termination state occurring
less than this threshold.

Using the trajectories resulting from this thresholding we
can then apply our OC-SVM to obtain sets of initiation and
termination states. We use the Scikit-learn one-class SVM for
Python, with the radial basis function kernel, ν = 0.1 and
γ = 0.5, where ν is an upper bound on the fraction of training
errors and γ is the kernel coefficient.

B. Results and Discussion

The set of initiation states obtained from applying the OC-
SVM to the trajectory sets can be seen in Fig. 1 and similarly
the set termination states can be seen in Fig. 2. We define our
termination condition here as 1 for any state contained in the
set of termination states and 0 elsewhere. Finally, to obtain the
policies of our options, we take the policy generated for each
skill by NPBRS and restrict it to only include states that the
policy leads to from any of our initiation states. These policies
can be seen in Fig. 3, where green states indicate our initiation
states and purple states indicate termination states.

Looking at the resulting options that we have obtained,
we put particular focus on the termination condition. This
is because it is these termination conditions which assist in
greatly reducing the complexity of the agent’s decision tree.

Based on how we have defined our termination condition, the
agent no longer has to check which action to take at each
time step once initiating an option. Instead it is only required
to check whether it is in a termination state or not.

From the termination states detected in Fig. 2 we observe
that the OC-SVM identifies hallway areas as the termination
states. We consider the three states surrounding a particular
hallway as states contributing to a hallway zone. This is
because these states act as chokepoints for any trajectory
moving between rooms, as the agent will have to pass through
all three of these states. All of the termination states that we
obtain are within 1 step of these hallway zone states.

It is easiest to consider the initiation states in Fig. 1 in
conjunction with the policies beginning from those states in
Fig. 3. From this we can see that the initiation states typically
lie on a path that takes the agent between hallways. Hence the
options that we form by combining our policy, initiation set
and termination condition allow for the agent to travel between
hallways. The options that we are able to autonomously detect
are very similar to those defined originally for the four rooms
domain by Sutton et al. [15].

The only notable significance between the sets of options is
that the original initiation set contains all states for a particular
room, while our initiation set only lies on the path between
hallways, restricting us to inter-hallway travel. This aside,
we can conclude that our method was successful in learning
options from demonstration trajectories for the four rooms
domain.

C. Learning With Options

To show the effectiveness of our learned options, we use
them to find optimal policies for two different goal states.
This process mimics the learning performed in the original
options work [15], with the goal states defined as G1 and G2
as seen in Fig. 4.

We combine our options with the standard MDP for the
four rooms domain to form a semi-Markov decision processes
(SMDP) [2], which allows us to switch between executing
option and using single actions.

We apply Q-learning [18] to our domain to learn the optimal
policies, recording the average number of steps taken for each
episode. We then compare this to the average number of steps
using Q-Learning without options, and using the handcrafted
clockwise and anti-clockwise options described previously. For
all cases, Q-learning is performed with ε-greedy exploration
(ε = 0.1), learning rate α = 0.5, and discount factor γ = 0.9.
Results are averaged over 25 runs.

The results are shown in Fig. 5, where our options display
similar performance to that of the handcrafted options. Both
SMDPs begin learning at a lower average number of steps and
converge faster than the MDP without options.

The difference between our options and the handcrafted
options can be seen in the first few episodes, where our options
have a higher average number of steps due to the limited
initiation sets in comparison to the handcrafted initiation sets
which each consist of the entire room.



Fig. 1: Initiation states learned by OC-SVM

Fig. 2: Termination states learned by OC-SVM

Fig. 3: Policies for each skill starting at initiation states

D. Limitations and Future Work

One of the main limitations with using the OC-SVM is in
generating the termination condition. This is due to the fact
that the OC-SVM is used for anomaly detection and thus only
returns a classification of -1 or 1 depending on whether a given
point is predicted to be an anomaly or not. This does not prove
to be an issue in our study because we define our termination
condition to be 1 for a state in the set of termination states and

Fig. 4: Four rooms domain with goals defined at G1 and G2

0 elsewhere, but generally we want to be able to estimate the
probability of terminating at each state. Potential adaptations
to achieve this include running the output through logistic
regression or using a kernel density estimator [17].

Another limitation is in the number of trajectories we have
generated. NBPRS should generally perform better given more
trajectories, but it is possible that too many trajectories can
result in noise occurring in the skills that are proposed. Ideally
we would like to generate multiple sets of trajectories of
different sizes and use the set for which the segmentation of
the demonstration has highest log-likelihood.

Finally, we must note that the NPBRS framework looks to
find the longest trajectory possible to explain a single skill.
In this case the domain is not very large and so smaller
trajectories might explain the skill better. Despite this, both
of the estimated policies will still be the same and so this
should not have too great of an impact on the final options
that are learned.

One potential extension of the work in this area would be
to incorporate the learned termination states into the NPBRS
framework. These termination states can then be used to cap



Fig. 5: Performance comparison between the standard MDP without options, our learned options, and the handcrafted options from the original framework
using Q-learning in the four rooms domain.

the length of the proposed trajectories. Another potential area
of future work is the adaptation of this method to a continuous
domain, and further into real-world domains for robot tasks.

V. RELATED WORK

Niekum et al. [11] also make use of the BP-AR-HMM for
segmenting demonstration trajectories, but model the extracted
skill policies as Dynamic Movement Primitives rather than
options. The use of a sequence of primitives allows for bet-
ter generalisation and the application of policy improvement
on the skill policies, but is limited to single demonstration
segments.

Support vector machines have been used in conjunction with
the options framework before to learn sets of parameterised
skills [3]. This method requires the policies for these skills to
be learned from experience rather than segmented from a set
demonstration trajectories though.

An alternate approach to learning options from sets of
demonstration trajectories has been through the use of cluster-
ing algorithms. This includes K-means clustering and spectral
clustering methods such as Perron Cluster Analysis [9], [10].
These methods group regions of the trajectory into abstract
states and options are then used to define transitions between
these states.

VI. CONCLUSION

In this paper, we presented a method that allows an agent
to autonomously discover usable options from human demon-
strations. We detailed the method of discovering these skills
using the one-class SVM and tested it the four rooms domain,
showing the benefit that the discovered options provide for
learning. Finally, we outlined areas of improvement within the
method and discussed the potential to incorporate the method
within the NPBRS framework. While the method has proved
successful in a common reinforcement learning domain, there
is also potential for it to be adapted to handling more complex,
real-world problems.

REFERENCES

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[2] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for
continuous-time markov decision problems,” in Advances in neural
information processing systems, 1995, pp. 393–400.

[3] B. C. Da Silva, G. Konidaris, and A. G. Barto, “Learning parameterized
skills,” in Proceedings of the 29th International Coference on Interna-
tional Conference on Machine Learning. Omnipress, 2012, pp. 1443–
1450.

[4] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “Joint
modeling of multiple related time series via the beta process,” The
Annals of Applied Statistics, vol. 8, no. 3, pp. 1281–1313, 2014.

[5] E. B. Fox, “Bayesian nonparametric learning of complex dynamical
phenomena,” Ph.D. dissertation, Massachusetts Institute of Technology,
2009.

[6] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013, vol. 751.

[7] E. T. Jaynes, “Information theory and statistical mechanics,” Physical
review, vol. 106, no. 4, p. 620, 1957.

[8] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-
ing from demonstration by constructing skill trees,” The International
Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[9] A. S. Lakshminarayanan, R. Krishnamurthy, P. Kumar, and B. Ravin-
dran, “Option discovery in hierarchical reinforcement learning using
spatio-temporal clustering,” arXiv preprint arXiv:1605.05359, 2016.

[10] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal-
ysis and an algorithm,” in Advances in neural information processing
systems, 2002, pp. 849–856.

[11] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning
and generalization of complex tasks from unstructured demonstrations,”
in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct 2012, pp. 5239–5246.

[12] P. Ranchod, B. Rosman, and G. Konidaris, “Nonparametric bayesian
reward segmentation for skill discovery using inverse reinforcement
learning,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2015, pp. 471–477.

[13] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[14] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[15] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[16] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[17] M. P. Wand and M. C. Jones, Kernel smoothing. Chapman and
Hall/CRC, 1994.

[18] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[19] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.


	I Introduction
	II Background
	II-A Reinforcement Learning
	II-B Options Framework
	II-C Inverse Reinforcement Learning
	II-D Nonparametric Bayesian Reward Segmentation

	III Research Methodology
	III-A Generating Trajectories
	III-B Learning Options from Demonstration

	IV Experimentation
	IV-A Domain and Setup
	IV-B Results and Discussion
	IV-C Learning With Options
	IV-D Limitations and Future Work

	V Related Work
	VI Conclusion
	References

